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ABSTRACT. Recently there has been some interest in studying the explanation of

meaning by using signaling games. I shall argue that the meaning of signals in
signaling games remains sufficiently unclear to motivate further investigation. In
particular, the possibility of distinguishing imperatives and indicatives at a funda-
mental level will be explored. Thereby I am trying to preserve the generality of the

signaling games framework while bringing it closer to human languages. A number
of convergence results for the evolutionary dynamics of our models will be proved.

1. INTRODUCTION

The main goal of this study is to investigate whether a distinction
between indicatives and imperatives can be drawn at a very basic
level. This will be done by building on work in evolutionary game
theory where signaling games serve as a point of departure for
investigating reference and meaning (see, for example, Lewis, 1969;
Crawford and Sobel, 1982; Skyrms, 1996; Nowak and Krakauer,
1999; Harms, 2004a; Komarova and Niyogi, 2004; van Rooij, 2004).
In signaling games information must be encoded and decoded cor-
rectly in order to facilitate social coordination. A sender observes a
state of the world while a receiver responds to the sender’s signal. To
coordinate behavior properly the signals must have some kind of
already established meaning.

Harms (2000, 2004a), who is further developing Millikan’s (1984)
teleosemantics with game theoretic tools, explains the meaning of
those signals in terms of primitive content. A signal has primitive
content if it both tracks the environment and motivates behavior. The
tracking function of the signal specifies the conditions under which it
is true to utter it. The motivating function characterizes which kind of
behavior follows from the signal.
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Primitive content enables us to characterize animal signals like
warning cries semantically although they are not translatable into
human languages (Harms, 2004b). This is due to the fact that many
forms of non-human communication cannot be explained in terms of
propositional content. To see this, note that in philosophical lin-
guistics the meaning of indicatives and imperatives is explained in
terms of propositions with subject-predicate structure. Propositions
can be thought of as abstract, truth-bearing units. A proposition may
be expressed in different modes like the indicative mode or the
imperative mode. The indicative mode refers to (indicates) a state of
the world. The imperative mode, however, indicates an action or an
outcome. Thus, propositions are fundamentally indicative since the
meaning of imperatives derives from indication by turning it to the
purpose of commanding.

According to Harms (2000, 2004a, b), primitive content is able to
explain our common sense notion of correspondence truth and the
meaning of normative statements. Ultimately, however, we need to
understand why norms can be expressed as imperatives while
knowledge-oriented systems, like science, use indicatives. Where do
indicatives and imperatives part? Do some imperatives have a
grounding similar to that of indicatives?1 Studying these questions
without imposing propositional structure seems to be the right place
to start.

The results elaborated in this study are based on the following
observation: The main difference between indicatives and imperatives
is that the emphasis in the meaning of imperatives is to motivate
behavior while the emphasis in the meaning of indicatives is to
indicate some state of the world. Of course, an imperative may relate
to the world in some way and an indicative may motivate behavior.
But imperatives lead to behavior directly and refer to world states
only indirectly. Indicatives may lead indirectly to behavior but relate
to the world directly. ‘‘Directly’’ and ‘‘indirectly’’ are not to be
understood as strict, discrete categories. It is a matter of degree how
directness is judged.

Lewis (1969) suggested that the difference between indicatives
and imperatives is with deliberation on the part of the sender or the
receiver. I propose that by deliberation we may understand, in the
context of signaling games, any mechanism that processes infor-
mation inputs and eventually leads to an output (like, e.g., a
decision). Deliberation, in this sense, explains whether relations
between messages and states or behaviors can be called direct or
indirect. If information processing has enough behavioral
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consequences, then it can be employed as a strategy in some suit-
able class of signaling games. This class of signaling games repre-
sents a further step in the evolutionary sequence of the emergence
of meaningful communication.

In Section 2 we briefly review some facts about simple signaling
games. Section 3 continues by discussing primitive content. In
Section 4 I argue informally that indicatives and imperatives can be
distinguished on a fundamental level. Section 5 introduces a first
formal model. Section 6 presents a formal analysis of the class of
signaling games that induce indicatives and imperatives. Section 7
develops a second model. Section 8 concludes by discussing the
relation between our results and the use of imperatives in normative
systems and the use of indicatives in science.

2. SIGNALING GAMES

A simple signaling game consists of two players, the sender and the
receiver, n states, n acts and n signals. The sender observes the state of
the world and sends one of the n signals. The receiver has to choose
an act. It is assumed that each act is a proper response to exactly one
state. Moreover, the sender and the receiver get the same payoff for
each outcome. Their payoff is a>0 if the receiver responds correctly.
Otherwise both get 0. Thus, the sender and the receiver have a
common interest in coordinating states and acts. To do this opti-
mally, their combined strategies must constitute a signaling system. A
signaling system corresponds to a combination of a one-to-one
mapping, s, from the set of states S to the set of messages, M, and
a one-to-one mapping, r, from M to the set of acts, A, such
that the composition r � s associates each state ri with the state ai,
i = 1, . . ., n.

Suppose n = 2, a = 1, and that each of the two states occurs with
equal probability.2 Then there are four possible sender strategies and
four possible receiver strategies as shown in Figure 1. The payoffs are
as in Figure 2. (s1, r1) and (s2, r2) are two strict Nash equilibria. They

Figure 1. Sender strategies and receiver strategies.
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are identical to the two signaling system strategies. There are also
four non-strict pure Nash equilibria, (s3, r3), (s3, r4), (s4, r3) and
(s4, r4). In each of these outcomes the sender sends the same signal
regardless of the state. The receiver chooses the same act regardless of
the signal. Thus there are two stable outcomes where the agents
communicate and four stable, but less desirable outcomes where no
information is transmitted. If individuals are in one of the latter
states, it is hard to see how they could get to one of the signaling
systems without communication.

Skyrms (1996) studies this signaling game by simulating a corre-
sponding evolutionary dynamic, the one-population replicator
dynamic. Skyrms (2000) obtains analytical results for a simplified
version of these dynamics where only three types – one signaling
system type and two anti-signaling system types – are present.
Huttegger (forthcoming) provides a more general analysis of simple
signaling games with an equal number of states, acts and messages,
and for signaling games involving probabilistic associations between
states, signals, and acts. It can be shown that the one-population
replicator dynamics will almost surely converge to a signaling system
type in simple signaling games with two states, acts and signals if the
probability for the occurrence of the first state equals the probability
for the occurrence of the second state. For signaling games with a
non-uniform distribution over states and for signaling games with
more than two signals, the results are more complex. But they suggest
that states of partial communication are likely to emerge under some
adaptive dynamics.3

The evolutionary viewpoint to explain the emergence of meaning
in signaling games avoids some difficulties any rational choice ap-
proach faces.4 In particular, evolutionary accounts for the explana-
tion of meaning do not rely on assumptions about an already existing
common understanding of relevant aspects of the signaling problem
and the other players. The replicator equations are agnostic about the
cognitive capacities the agents of the population might possess indi-
vidually. The dynamics are driven by the performance of types with

Figure 2. A simple signaling game in strategic form (the payoffs are the same for
both players).
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respect to the average payoff in the population. Thus, one of the
strengths of the replicator dynamics as an idealized model is its
compatibility with diverse specifications of the individual agents.

We should expect that some kind of evolutionary dynamics will
allow communication to evolve when we look at the biological evi-
dence we have. One of the best-known examples of a signaling system
in animals are the predator alarm calls of vervet monkeys (Cheney
and Seyfarth, 1990). There is a huge number of other examples of
signaling systems for various animal species (Snowdon, 1990; Hauser,
1997; Maynard Smith and Harper, 2003). Moreover, signaling
systems can already be observed on the level of microorganisms
(England et al., 1999; Crespi, 2001).

The structure of human languages is, of course, far more complex
than the structure of the signaling systems mentioned so far. I do not
claim that all aspects of human languages can be captured by viewing
them as signaling systems. Still, there is at least one functional aspect
of human languages that can fundamentally be expressed in terms of
signaling systems: communication facilitates social coordination.
Human languages share this function with less complex signaling
systems and can thus be viewed in a similar way from the standpoint
of social coordination.5 From this point of view, the replicator
equations provide a partial explanation for the evolution of language
in a very simplified, but still interesting way.

3. THE MEANING OF SIGNALS IN SIGNALING GAMES

As long as no signaling system or convention is established in a
population, signals have no meaning. E.g., we do not want to speak
about the meaning of a signal if the sender sends this signal regardless
of the state of the world. On the other hand, meaning may be con-
sidered as a property of signals in equilibrium. If almost all individ-
uals play according to a signaling system, then signals are
representations of parts of the world and have these parts as contents.
To be more specific, signals in a signaling system refer to a state of the
world and to an act that is a proper response to this state. We will say
that signals in signaling systems refer to state–act pairs.6

Harms (2004a, b) proposes that signals in simple signaling games
have primitive content. This means that two sorts of conventions
apply in signaling systems: extensional tracking conventions and
intensional consequence conventions. The former specify the state of
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the world to which the signal corresponds to or which make it true.
The latter specify the consequences or the behavior that is the proper
response to the signal.

Harms adopts the terms ‘‘extensional’’ and ‘‘intensional’’ for sig-
nals although they are usually associated with the meaning of words,
and words are, in general, not the proper analogues to signals in
human languages. Moreover, something essential is also missing in
any analogy between signals and sentences. Signals in simple sig-
naling games have primitive content. They refer to state–act pairs.
This is not true of sentences, however. In general, sentences indicate
acts or command actions, but not both.

These considerations lead us to our main object of study. In sig-
naling systems of simple signaling games it is not at all clear whether
signals are indicative or imperative. This is due to the fact that simple
signaling games are not structured in a way that would allow us to
talk about indicative and imperative signals. The next four sections
are devoted to the study of models that may give rise to indicative
and imperative signals. Before turning our attention to these models,
allow me to point out some philosophical and scientific consequences
our investigation has. Those consequences also serve to motivate our
models.

First of all, our study allows us to further elaborate the answers
offered to a skeptical philosophy of language. As we have noted in the
previous section, Skyrms (1996, 2000) and Huttegger (forthcoming)
provide some results which indicate that signaling systems emerge
with high probability under reasonable evolutionary dynamics.
A skeptic might not only call the details of the model into question.7

A skeptic might also cast doubt on the explanatory power of these
results by claiming that an account of the emergence of language
conventions that does not include some of the most basic features of
human languages falls short of its main goal, the explanation of
meaning. If the distinction between indicative and imperative sen-
tences is taken to be a basic semantic feature of human languages,
then the skeptic might be right.

At second, we may be able to better understand how imperatives
relate to the world compared to indicatives. If a signal has the
function to represent either a particular state of the world r or a
particular act a, then this signal has, respectively, r or a as its con-
tent. This is just another way to say that the signal means r or a. This
leads to a number of problems concerning (i) the explanation of how
a correspondence between representations and the world is estab-
lished; and (ii) the problem whether statements concerning moral
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wrongness or rightness and concerning the justification of acts can be
called true or false with respect to some objective standards. Harms’
(2004a, b) account of primitive content promises to resolve these
problems. With the help of our results we will be able to address
some issues surrounding the use of indicatives and imperatives in
knowledge-oriented and behavior-oriented systems. How this might
be achieved is outlined in Section 8.

Furthermore, one of the main challenges for an evolutionary
account of language is the problem of filling the gaps between
simple communication systems and human language (Maynard
Smith and Szathmáry, 1995; Maynard Smith and Harper, 2003).
Thus, our account might be valuable in making precise just where
meaning as we find it in indicatives and imperatives departs from
primitive content.

Finally, on the scientific side we will be able to reinterpret some
animal signaling systems (some of which will be considered in the
next section). As we shall see, our models will allow a more coherent
interpretation of signals than was possible with standard signaling
games.

4. INDICATIVES AND IMPERATIVES AS INTERPRETATIONS OF SIGNALS

Lewis (1969) distinguishes between signals-that, signals-to and neu-
tral signals. More specifically, the meaning of signals in simple sig-
naling games can sometimes reasonably be given as a signal-that
(indicative), as a signal-to (imperative) or as both (neutral). Lewis
also mentions criteria to draw these distinctions. They are based on
whether the sender or the receiver has to deliberate in order to
achieve the optimal outcome. If the sender does not have to delib-
erate but the receiver must deliberate, then the signal is indicative. If
the receiver must not deliberate but the sender has to deliberate, then
the signal is imperative. If both descriptions are compatible with the
signaling behavior of the players, then the signal is neutral.

It will be useful to investigate whether interpreting signals as
indicatives or imperatives can enhance our understanding of actual
signaling systems. There are a number of examples where these
interpretations seem to be possible.

A closer examination of the vervet signaling system (Cheney and
Seyfarth, 1990) suggests that we might interpret some of the signals as
indicatives and others as imperatives. E.g., the proper response to the
snake alarm call is to stand bipedally and to look around. Ultimately,
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the receivers of the snake alarm call have thus to decide what to do.
Hence, the snake alarm call might be interpreted as indicative. The
leopard alarm call, on the other hand, usually results in the vervet
monkeys running up trees immediately. So we might interpret the
leopard alarm call as imperative because the sender has to classify the
situation whereas the receiver must react very fast.

The California ground squirrel seems to have different alarm calls
for ground predators and aerial predators (Owings and Henessy,
1984; Snowdon, 1990). Terrestrial predators usually approach slowly
and their approach is closely monitored by the squirrels whereas
aerial predators show up fast most of the time. Owings and Henessy
(1984) report that alarm calls for aerial predators are sometimes given
to terrestrial predators and sometimes the alarm call for ground
predators is given for aerial predators. This happens when aerial
predators are spotted by the squirrels while they are still far away or
when ground predators are already close before one of the squirrels
observes their presence. Thus, an interpretation of the two alarm calls
in terms of referring to aerial predators or ground predators is
ambiguous. We might, however, interpret the alarm calls as indicative
or imperative signals. An indicative signal is used if a predator ap-
proaches slowly and an imperative signal is used if it approaches fast
and there is a much greater urgency to respond. (Note that the usage
of indicative and imperative signals arises out of the structure of the
underlying situation.)

In a study on symbolic communication, Boesch (1991) describes
the signaling behavior of the chimpanzees of the Tai national park. In
one of the chimp groups the alpha male, Brutus, sometimes drummed
on a tree. Brutus’ drumming was related to three different messages.
After drumming on two trees consecutively, the group changed
direction and went on in the direction between the two trees. If
Brutus was drumming twice on the same tree, the group rested for
about one hour. By combining these two messages, i.e. by first
drumming twice on a tree and then once on a second tree, Brutus
indicated a short rest and the direction the group should take after
the rest.

This example is remarkable in at least two ways. First, Brutus was
able to combine two signals to form a new message. This can be
regarded as a very simple ‘‘syntax.’’ And second, it seems hard not to
interpret these signals as imperative. An interpretation in purely
indicative terms might be possible but would turn out to be rather
complicated. It seems that the emphasis of these signals is on moti-
vating behavior.
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These examples show that a distinction between indicative and
imperative communication might already be possible at the level of
animal signaling systems. We can also think of human examples.
Your doctor usually does not tell you what is wrong with your health,
but what you ought to do to get healthy again. She decides what is
best for your health since you usually cannot make this decision
yourself. On the other hand, in a situation where somebody has
information that can help you make a decision you don’t want her to
tell you what to do, but to reveal the information.

In simple signaling games a distinction between indicative and
imperative signals that is not just an interpretation of the signals
seems to be impossible. Simple signaling games do not have enough
structure. But Lewis’ considerations show us one possibility to give a
signaling game more structure. The underlying intuition is that some
state–act pairs require the sender to deliberate, whereas the receiver
must not deliberate but just has to act. This might be because the
receiver has to act fast, or because the gathering of information
would be of no use for the receiver to make the right decision (like in
the doctor example). Other state–act pairs require the sender not to
deliberate and the receiver to decide what would be the best thing
to do.

This relates in an obvious way to the main distinction we have
drawn between imperatives and indicatives. Indicatives motivate
behavior only indirectly because they need to be combined with other
indicatives to determine efficient behavior (see also Harms, 2004b).
Imperatives relate to the world indirectly via the sender’s information
processing mechanism.8

The rest of this paper is devoted to developing two models that try
to capture these ideas and to present some convergence results on the
class of games they belong to.

5. A FIRST MODEL

The class of games we shall consider is based on a combination of two
coordination problems. One is a state–act coordination problem that
underlies simple signaling games. In a state–act coordination problem
exactly one of the acts is the proper response to each state of the
world. Accordingly, individuals only get a positive payoff if the right
act is chosen in response to a particular state. This scenario is illus-
trated in Figure 3. The second coordination problem is asymmetric.
Either player may deliberate or not deliberate, but if both do the
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same they get no payoff. The second coordination problem is shown
in Figure 4.

Our first model is based on a combination of the two coordination
problems. There are two states of the world, r1 and r2, and two
corresponding acts, a1 and a2. In addition, each player has to decide if
she deliberates or if she doesn’t deliberate. (r1, a1) is a state–act pair
that requires the row player to deliberate and the column player to
act without deliberating. (r2, a2) is a state–act pair where the row
player must not deliberate and the column player is required to
deliberate. This payoff matrix is illustrated in Figure 5.

So far we have specified the coordination problem which underlies
a signaling game that involves deliberation. For the signaling game
itself we suppose that the sender has to decide whether to deliberate
or not before sending a signal. The receiver has to decide whether to
choose an act deliberately or not. A sender strategy specifies, for each
state of the world, whether the player spends some time deliberating
and what signal is sent. A receiver strategy specifies, for each mes-
sage, whether the receiver chooses an act deliberately and what act is
chosen. Thus there are 16 sender strategies and 16 receiver strategies.
There are four groups within each of these, those who never delib-
erate, those who always deliberate, those who switch between delib-
erating and not deliberating in the wrong way and those who switch
in the right way. Within these four groups there are types who employ

Figure 5. A coordination problem where d stands for deliberate and n for don’t
deliberate.

Figure 3. A state–act coordination problem with a>0.

Figure 4. An asymmetric coordination problem with b>0.
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signaling system strategies and types who always send the same sig-
nal. For a list of the strategies see Figure 6. We will assume that
Pðr1Þ ¼ Pðr2Þ to avoid the difficulties mentioned in Section 2 for our
first analysis. Under these assumptions, the 16� 16 payoff matrix can
easily be computed.

Before we analyze this model let me try to motivate the additional
structure imposed on signaling games. For the new signaling game we
assume that deliberation has enough behavioral consequences to
employ it as a strategy in a game. That is, deliberation comes with
costs. It may cause delays, for instance. Or it may never lead to an
appropriate decision if the player lacks necessary information in
principle. In a similar way, choosing not to deliberate might be costly.
It may, for example, forfeit further moves because decisions relevant
for those moves were not made as a result of deliberation. For a
baseline model this characterization of the behavioral consequences
of deliberation seems to be enough. In more advanced models,
however, structural effects of choosing to deliberate or choosing not
to deliberate should be made explicit.

In particular, we do not specify how the deliberational process
might look. It may be something that requires more or less compu-

Figure 6. Sender and receiver strategies in Model 1. 1 or 0 at the first place mean
that the sender deliberates or doesn’t deliberate if r1 occurs. The second place

specifies the same for r2. At the third place, 1 means that the sender signals m1 if r1

and 0 means that she sends m2 in this case. The fourth place specifies the same for
state r2. A receiver strategy is coded in the same way except that the first and the

third place specify what happens if m1 was sent; the second and fourth place specify
the same if m2.
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tational capacities. It might even be a non-cognitive mechanism that
makes a decision according to a number of inputs (think of a cell that
reacts in a particular way after receiving some signals and in response
to other environmental states). It is best to think about it in terms of
which agent acquires and processes information. If the acquiring and
processing of information is entirely on the side of one of them, then
we say (in a strict sense) that the respective agent deliberates while the
other one does not deliberate. We do not assume that deliberation
always leads to the right decision. Regardless of the deliberation
mechanism our agents employ, deliberation leads to the right decision
with a certain probability. The payoffs should thus be understood as
expected payoffs. What we do assume is that agents who start to
deliberate or who don’t deliberate when the situation requires them to
do the other thing get no payoff. We justify this again by expected
payoffs. If the sender is required to deliberate after the occurrence of
a particular state and before sending a signal but decides not to
deliberate, we assume that the chances for the receiver to nevertheless
choose the right act are very low. The same holds for the receiver and
for situations that require the agent not to deliberate. This assump-
tion will be relaxed in our second model.

For example, a California ground squirrel that spots a nearby
predator may deliberate for some time whether the perception it had
resembles a predator. As soon as it gives the alarm call for a nearby
predator, it would be fatal for the other squirrels to start deliberating.
In this situation they are supposed to react fast and hide in holes.
This response would not be appropriate for predators which are far
away. In this case receivers have to deliberate more than senders.

In order to report simulation results on our first model we have to
introduce some concepts from dynamical system theory (Hirsch and
Smale, 1974; Hirsch et al., 2004). Let x 2 Rn and f: W fi W where
W � Rn. Then a discrete time dynamical system on W is given by

x0 ¼ fðxÞ;

where x is the current state of the system and x¢ is the state at the next
time step. A point �x is called a fixed point of the discrete time
dynamical system if fð�xÞ ¼ �x. If the system reaches a fixed point, then
it remains there forever. �x is an attracting fixed point for f if there
exists a neighborhood U of �x such that every orbit starting in U
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converges to �x. The set of all points converging to �x is called its basin
of attraction. �x is a source or a repelling fixed point if there is a
neighborhood U such that all orbits (except �x) leave U under iter-
ation of f. �x is called neutral if it is neither attracting nor repelling.

The discrete time replicator dynamics for two populations can be
used as a model for biological as well as cultural evolution (like other
forms of the replicator dynamics; for more on the replicator dynamics
see Weibull, 1995; Hofbauer and Sigmund, 1998).9 These dynamics
are given by

ð1Þ x0i ¼ xi
aþ uðxi; yÞ
aþ uðx; yÞ and y0j ¼ yj

aþ uðyj;xÞ
aþ uðy; xÞ ;

where xi and yj are the frequencies of type i senders and type j
receivers at a particular time and xi¢ and yj¢ are their frequencies at
the next time step. The state of the sender population is given by the
vector of frequencies x = (x1, . . . , xn) of the sender types. Likewise,
the state of the receiver population is given by y = (y1, . . . , yn). a is
the common background fitness of individuals in both populations.
u(xi, y) and u(yj, x) are the payoffs to i and j when the current sender
population state is x and the current receiver population state is y.
u(x, y) and u(y, x) are the respective average payoffs.10

In our first model, there are four sender strategies, s5 to s8, and
four receiver strategies, r1, r6, r11, and r16, that never get it right. This
is so because individuals of one of those sender types choose to
deliberate or not to deliberate wrongly while receivers of one of those
receiver types either choose to deliberate or not to deliberate wrongly
or they choose the wrong act regardless of the message. These
strategies can thus be ignored in the further analysis.

There are 54 Nash equilibria in pure strategies. Only two of them
are strict. The two strict Nash equilibria are (s10, r10) and (s11, r7).
Regardless of the state, these outcomes guarantee the players the
maximum payoff a. Both are the only combinations of strategies that
solve the problem of deliberation-coordination and are signaling
systems. All other combinations yield a maximum payoff less than a.
This is due either to the fact that they always or never deliberate or
because they form no signaling system or because of both.

In simulations for the discrete time replicator dynamics we observe
that 100% of the time populations converge to the states corre-
sponding to the two strict Nash equilibria (s10, r10) or to (s11, r7).
They converge to either of them approximately half of the time.
These results suggest that (s10, r10) and (s11, r7) are the only attracting
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fixed points for (1) and that their basins of attraction are of equal
size. The other Nash equilibria seem to correspond to non-attracting
fixed points. To obtain analytical results, we will study the continu-
ous time replicator dynamics of our model. This will be done in the
next section.

6. SIMPLE SIGNALING GAMES WITH DELIBERATION

Although we will only consider a special case of signaling games with
deliberation in this paper, we will give a definition for a more general
class first. The definition of simple signaling games with deliberation is
based on state–act coordination problems like the one illustrated in
Figure 3. More generally, Pn = ÆS, A, uæ is a n-state–act coordination
problem if and only if S = {r1, . . . ,rn} is a set of n distinct states of the
world, A = {a1, . . . , an} is a set of n distinct acts, and u is a function
that determines the utility of each state–act pair such that u(ri,
aj) = dijaiwhere dii = 1 and dij = 0 for j „ i. ai is a real number that
depends on the state. For simplicity, we will assume that ai = 1 for all
i. Let P ¼ fp1; . . . ; png be a probability distribution over S.

DEFINITION 1 (simple signaling game with deliberation). Let Pn be
a n-state–act coordination problem, let M = {m1, . . . , mn} be a set of n
messages, P a probability distribution over the states and D = {d,n}
the set of deliberation states. Then a d-signaling game Sn

d is a triplet
I; fSigi2I; fuigi2I
� �

where

1. I = {1,2} is the set of players, the sender, 1, and the receiver, 2;
2. Si, i = 1,2, is the set of strategies generated by Pn and D as follows:

S1 ¼ fskjsk : S! D�Mg and S2 ¼ frljrl : M! D� Ag ;
3. ui, i = 1, 2 are the players’ utility functions generated by Pn as

follows:

uiðsk; rlÞ ¼
Xn

j¼1
pj � u rj; ðrl � c � skÞðrjÞ

� �
; i ¼ 1; 2;

where c: D � M fi M is the function defined by c(Æ, mk) = mk for
k = 1, . . . , n.

Thus, a d-signaling game is an asymmetric two-player game.
Condition 2 states that the set of possible sender strategies consists of
all functions from the set of states to the product of the set of delib-
eration states and the set of messages. Similarly, the set of possible
receiver strategies consists of all possible functions from the set of
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messages to the product of the set of deliberation states and the set of
actions. Condition 3 specifies the players’ payoff functions. This
specification employs a function c that ‘‘cuts away’’ the deliberational
state of the sender. What the payoffs in fact are depends on the
specification of how deliberational states influence the payoff struc-
ture of the game. This flexibility in choosing how deliberational states
effect the players’ payoffs makes it possible to model situations where
deliberational states influence payoffs in varying degrees.

In the previous section we have used the discrete time two-
population replicator dynamics (1) to obtain some simulation
results for a signaling game S2

d. To obtain analytical results it is
more convenient to work with continuous time versions of the two-
population replicator dynamics. There are two principal versions of
them. We will employ both in our subsequent analysis.

The standard version of the two-population replicator dynamics is
a coupled system of differential equations:

ð2Þ

dxi
dt
¼ xi uðxi; yÞ � uðx; yÞð Þ

dyj
dt
¼ yj uðyj; xÞ � uðy;xÞ

� �

(see Hofbauer and Sigmund, 1998). The variables and the state space
of this system are the same as for the discrete time system (1). There is
a second version of the continuous time two-population replicator
dynamics whose qualitative behavior is in general different from the
qualitative behavior of the dynamics (2). It was introduced by May-
nard Smith (1982) and is formally similar to the discrete time repli-
cator dynamics (1) since it involves normalization by mean payoff:

ð3Þ

dxi
dt
¼xi

uðxi; yÞ � uðx; yÞ
uðx; yÞ

dyj
dt
¼yj

uðyj; xÞ � uðy;xÞ
uðy; xÞ

The appendix provides some propositions on the dynamics of
d-signaling games. In particular, the following basic convergence
result for the dynamics (2) and (3) is proved. (Notice that the con-
vergence results hold for both versions of the two-population repli-
cator dynamics.) A pair of deliberational states for a state of the
world consists of a deliberational state (d or n) for the sender and a
deliberational state for the receiver.
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THEOREM 1. Let S2
d be a d-signaling game where for both r1 and r2

exactly one pair of deliberational states is optimal. Let Pðr1Þ ¼ Pðr2Þ.
If initially all types are present, then almost every solution for (2) and
(3) converges to a strict Nash equilibrium of S2

d.

Theorem 1 shows that the simulation results reported in the previous
section hold analytically in a more general setting. The theorem con-
tinues to hold for a more general class of games than just partnership
games. Games in this more general class are structurally similar to
partnership games (they are called rescaled partnership games) but do
not require that the players get the same payoff for each outcome.11

Concerning our first model we obtain a corollary by applying Theorem
1 to this model and observing that the vector fields (2) and (3) are
invariant under permutations of the points corresponding to the strict
Nash equilibria.

THEOREM 2. In S2
d with payoffs specified in the previous section,

almost every solution converges to (s10, r10) or to (s11, r7) for (2) and
(3). Moreover, their basins of attraction are of equal size.

7. A SECOND MODEL

The payoffs in our first model are quite rigid. They require the players
to coordinate their deliberational activities strictly. It is possible to
relax this requirement while preserving enough of the original
structure of the game. This will allow us to still talk meaningfully
about imperatives and indicatives in many cases.

We will change our first model according to the following con-
siderations: If the sender fails to deliberate in state r1 but the receiver
is able to deliberate and to choose the right act, then they may still get
it right. For state r2, if the sender starts to deliberate and the receiver
is nonetheless fast or lucky enough to choose the right act, there
might be some chance to get a payoff as well. This gives rise to the
payoff structure that is illustrated in Figure 7.

The game corresponding to this payoff matrix has 28 Nash equi-
libria in pure strategies, 6 of which are strict. The sender strategies or
receiver strategies that always got it wrong in model 1 have
disappeared. But still none of these strategies is part of a strict Nash
equilibrium. The strict Nash equilibria are (s10, r10), (s11, r7), (s2, r14),
(s3, r15), (s14, r2) and (s15, r3). The first two give a payoff of 1. The
latter four give a payoff of 3/4. They are either characterized by a
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sender strategy that never deliberates and a receiver strategy that
always deliberates or the other way round. But note that the signaling
parts of each of these strict Nash equilibria form signaling systems.
Thus, we have as an important side result that the signaling parts of
all strict Nash equilibria constitute signaling systems.

In simulations for the discrete time replicator dynamics (1) the
population converged to each of (s10, r10) and (s11, r7) at a rate of
about 40%, and to each of the other strict Nash equilibria about 5%
of the time. This indicates that the basins of attraction of the latter
ones are considerably smaller than the basins of attraction of the first
two. Theorem 1 informs us again about convergence.

THEOREM 3. Let S2
d be given by the above payoffs and let

Pðr1Þ ¼ Pðr2Þ. Then (s2, r14), (s3, r15), (s10, r10), (s11, r7), (s14, r2) and
(s15, r3) are the only asymptotically stable states under (2) and (3). If
initially all types are present, then almost every solution converges to
one of the strict Nash equilibria.

There are a number of interesting limiting cases we can obtain by
changing the payoff structure. If the players must coordinate delib-
erations more precisely than in the second model, we get back to our
first model. If the 1/2 payoffs go to one, the distinction between
indicatives and imperatives becomes less important. If the payoffs are
such that sender and receiver get the same payoff no matter whether
sender and receiver deliberate or do not deliberate, we are back at
simple signaling games where a distinction between indicatives and
imperatives is not meaningful anymore. As we vary the payoffs, the
meaningfulness of this distinction corresponds to the asymptotically
stable states and the size of their basins of attraction.

8. NORMATIVE AND DESCRIPTIVE STATEMENTS

Let us conclude with an application of the previous analysis. The goal
of this application is to gain some heuristic understanding of why

Figure 7. Model 2; d stands for deliberate and n for not deliberate.
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norms can be expressed as imperatives and why science, on the other
hand, uses indicatives.

In the last part of Harms (2004a) the basic ingredients of a nat-
uralistic theory of the meaning of descriptive and, in particular,
normative statements are presented. Harms thereby attempts to de-
scribe the semantic content of normative statements by two features.
First, they are part of signaling systems (which we may call normative
systems). And second, they enforce rules of behavior. To see the
advantages of this point of view, compare it to a more traditional
characterization of normative imperatives in terms of propositional
content. According to this characterization, norms may be expressed
in the indicative or in the imperative mood. But this yields the
problem of what is indicated with a normative imperative. More
generally, if a proposition is used in the imperative mood, then it
might not be clear what is indicated. E.g., the imperative mood ‘‘open
the door’’ of the proposition ‘‘the door is open’’ looses its regular
indicative function because the door is closed and may never be
opened. Essentially the same happens in the context of norms. Most
norms may be expressed in the indicative mood, like ‘‘stealing is
wrong.’’ They may also be turned to the purpose of commanding like
in ‘‘don’t steal this.’’ But even if you steal this, the norm expressed by
‘‘stealing is wrong’’ does not cease to be a norm.

Harms (2004a), on the other hand, argues that normativity
comes from primitive content. A normative system specifies the
appropriate actions for particular circumstances. In this respect,
norms, or normative intuitions, resemble animal warning cries. We
may also think of a normative system as an internal control
mechanism.

The primitive content of a norm specifies some historically deter-
mined standards of how to behave in certain situations. Suppose a
convention prescribes to act according to a certain behavioral rule b if
situation s occurs. Conventions are fallible. A response to a failure of
this convention might be a signaling convention. That is, if an indi-
vidual fails to act according to b in s, then another (or the same)
individual might respond by sending a signal m that means something
like ‘‘In a situation like s act according to b’’ or ‘‘In a situation like s
you ought not act according to b¢’’ if b¢ was the individual’s behavior.
This is an example of a second order convention. According to the
primitive content of the signal m, there is an extension, namely ‘‘not
b,’’ that makes the behavior enforcing signal m true. Normative
imperatives are, according to Harms (2004a), linguistic proxies to the
intensional part of the primitive content of a signal. On this level,
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a normative system has the function to regulate behavior in the
population via the enforcement of conventions. The primitive content
of the signals in the normative system is determined by the history of
the population.

The evolution of a normative system may be described similarly to
the evolution of other signaling systems (see Section 2). It presup-
poses special states and acts, however. For a signaling system to be
called a normative system the states and acts of the underlying
coordination problem must be failures of behavioral conventions and
acting according to those conventions, respectively. Thus the evolu-
tion of normative systems presupposes already existing behavioral
conventions. It may also be the case that a normative signaling sys-
tem and behavioral conventions coevolve. Studying the coevolution
of normative systems and behavioral conventions would be of con-
siderable interest.

The emergence of indicative and imperative signals marks the
departure from primitive content. A signal can be used in two dif-
ferent ways depending on the history of the population and the kind
of situations it is confronted with. Notice that in the corresponding
class of signaling games we do not have to talk about the agents’
desires or beliefs. This means that we do not have to characterize an
imperative semantically in terms of an agent’s desires – i.e. an agent
who wants another agent to do something. Instead we may point at
the maximum payoff agents get when using signals in an appropriate
way. Our explanation of indicative and imperative signals is thus in
some way more basic since we only require there to be agents with
some information processing mechanism. Agents with beliefs and
desires may, of course, be substituted. Our framework is compatible
with that.

Often, the emphasis of a normative statement is on motivating
behavior since norms enforce rules of behavior. Imperative signals as
developed in the previous sections give a first, basic understanding of
what the ‘‘linguistic proxies’’ to the primitive content of norms are. If
the content of norms is captured by a normative system and if the
main function of this system is to motivate behavior, then it will
mostly yield imperative signals as outputs. That is, we have a simple
signaling system on the one hand and a signaling system that induces
imperatives on the other. Both signaling systems have to be related
in some way. This situation is more complex than the ones considered
in this paper and the literature so far.

To be sure, norms (i.e. a set of specific epistemic standards) are
also underlying knowledge-oriented systems like science. But the
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purpose of science, as opposed to, e.g., moral systems, is not to
express its underlying epistemic standards by inducing imperatives.
That is to say, as long as this underlying normative system is ‘‘silent,’’
imperatives do not enter science. At another level, science may be
viewed as a signaling system that is about the world. As such, it yields
indicatives that inform us about the world.

To summarize, simple signaling games are not enough to describe
normative systems completely. But the signaling games studied in the
previous sections are able to give us a first explanation of why
different systems may yield imperatives or indicatives.
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APPENDIX

I will present a number of results which shed light on the dynamical
properties of generalized simple signaling games and which will be
used in the proof of Theorem 1. Let me introduce the concept of
partnership games first. An asymmetric noncooperative two-player
game C is a partnership game if the payoff matrices (A, B) corre-
sponding to C are such that B = At.

PROPOSITION 1. Let Sn
d be a d-signaling game. Then Sn

d is a
partnership game.

Proof. Let us denote that payoff matrix for the sender’s payoffs by A
and the receiver’s payoff matrix by B. Then obviously B = At since
sender and receiver get the same payoff for each outcome. h

PROPOSITION 2. Let Sn
d be a d-signaling game. Then the dynamics

(2) and (3) for Sn
d have the same qualitative behavior.

Proof. Let Sn
d be a d-signaling game. By Proposition 1, Sn

d is a part-
nership game. For partnership games, the average payoffs u(x, y) and
u(y, x) coincide. To see this, note that
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uðx; yÞ ¼ x � Ay and uðy;xÞ ¼ y � Bx;

where Æ is the dot product. Since

y � Bx ¼ y � Atx ¼ x � Ay

we have

uðx; yÞ ¼ uðy; xÞ:

Thus (3) involves just a change of velocity compared to (2), but the
qualitative behavior of the two is the same. h

To formulate our next intermediate result, we have to be clear
about the notion of evolutionary stability in a two-population model.
As Weibull (1995) points out, every reasonably strong analogue to
the concept of evolutionary stability for n-population models (n ‡ 2)
coincides with strict Nash equilibria. Accordingly we call a state (x, y)
(x and y representing the states in each population, respectively)
evolutionarily stable if (x, y) is a strict Nash equilibrium of the
underlying asymmetric game. Moreover, we have to introduce the
notion of a gradient system. To do this, let V be a twice continuously
differentiable function from an open subset U of Rn to R . Then

dx

dt
¼ rVðxÞ

is a gradient system with potential V. If the gradient � V is defined
relative to the standard inner product for Rn , then

rV ¼ @V

@x1
; . . . ;

@V

@xn

� �
¼:

@V

@x
:

Notice that due to this relation V gives us a lot of information
about the system. The gradient � V may also be defined relative to a
non-standard inner product for Rn by considering the dual vector
space for Rn (that is, the space of all linear mappings from Rn to R).
Many of the results for gradient systems defined with respect to the
standard inner product for Rn continue to hold in this more general
setting. This is due to the basic equality @V

@x y ¼ rV; yh i , where
y 2 Rn and ÆÆ,Ææ is an arbitrary inner product. For more information
about gradient systems see Hirsch and Smale (1974).
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PROPOSITION 3. Let C be a partnership game and (A, At) be the
corresponding payoff matrices. Then the following two statements are
true:

1. (2) is a gradient system with u(x, y) = xÆ Ay as potential.
2. (p, q) is asymptotically stable for (2) and (3) if and only if (p, q)

is evolutionarily stable.

Proof. Let C be a partnership game and A be the corresponding
payoff matrix. A proof of 1 can be found in Hofbauer and Sigmund
(1998, Theorem 11.2.2). To prove 2, suppose that (p, q) is an equi-
librium of (2) but not evolutionarily stable for a two population
model. Thus, (p, q) is not a strict Nash equilibrium of C. We claim
that (p, q) is not a strict local maximum of xÆ Ay and, thus, not
asymptotically stable for (2). This conclusion follows from the fact
that xÆ Ay is also a strict Liapunov function for (2).

To prove that (p, q) is not a local strict maximum of (2) note that,
since (p, q) is not a strictNash equilibrium, there is a s or there is a r such
that s is an alternative best reply to p or r is an alternative best reply to q:

s � Aq ¼ p � Aq or p � Ar ¼ p � Aq:

Suppose s is an alternative best reply to p. Then every convex
combination ks + (1)k)p, 0 £ k £ 1 is also a best reply to p. From
this we can conclude that in every neighborhood of (p, q) there exist
x, y, namely x = ks + (1)k)p and y = q, such that (p, q) is no strict
maximum of pÆ Aq. A similar argument applies to the case where r is
an alternative best reply to q.

If (p, q) is evolutionarily stable, on the other hand, then it is a strict
Nash equilibrium. Thus, there is no alternative best reply to (p, q) and
it must therefore be a strict local maximum of xÆ Ay. This implies that
(p, q) is asymptotically stable. h

If Sn
d is a d-signaling game, then the only evolutionarily stable

states are strategy combinations where the sender and the receiver
deliberate in the right way and the signaling parts of their strategies
form a signaling system. In our first model there are two such strategy
combinations, (s10, r10) and (s11, r7). Hence, these strategy combina-
tions are the only asymptotically stable states for (2) and (3).

LEMMA 1. Let S2
d be a signaling game with deliberation. If (p*, q*) is

an interior rest point for the replicator dynamics (2), then (p*, q*)
is linearly unstable.
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Proof. (p*, q*) is linearly unstable if the Jacobian matrix evaluated at
(p*, q*) has at least one eigenvalue with positive real part. The tangent
space at a point (x, y) in the interior of the state space consists of
vectors (n, g) with n; g 2 R16

0 ¼ ff :
P16

j¼1 fj ¼ 0g. Set pi ¼ p�i þ ni
and qi ¼ q�i þ gi where (n, g) is a vector in the tangent space at
(p*, q*). Then

_ni ¼ _pi ¼ ðp�i þ niÞðuðpi; q� þ gÞ � uðp� þ n; q� þ gÞÞ
¼ p�i ðuðpi; gÞ � uðp�; gÞÞ þ niðuðpi; gÞ
� uðp�; gÞÞ � ðp�i þ niÞuðn; gÞ
¼
X

j

Ls
ijgj þ higher-order terms

where Ls
ij ¼ p�i ðaij � p� � AejÞ (aij being the ijth component of the

sender’s payoff matrix A) is the partial derivative of the ith equation
of (2) relative to the jth variable. By a similar calculation we get

_gi ¼ _qi �
X

j

Lr
ijnj

with Lr
ij ¼ q�i ðbij � q� � BejÞ; bij being the ijth component of the

receiver’s payoff matrix B = At. If we set

L ¼ 0 Ls

Lr 0

� �

then L is the Jacobian evaluated at (p*, q*). L is a self-adjoined
operator with respect to the Shashshahani inner product on the
tangent space. The Shashshahani inner product is given by

hðn; gÞ; ðn0; g0Þiðx;yÞ ¼
X

i

1

xi
nin
0
i þ
X

j

1

yj
gjg
0
j

where (x, y) is a point in state space and (n, g) and (n¢, g¢) are vectors
in the tangent space at (x, y). (For more information see Hofbauer
and Sigmund, 1998, p. 128.) L is self-adjoined at (p*, q*) if
hn;Lgiðp�;q�Þ ¼ hLn; giðp�;q�Þ . That L is self-adjoined follows from the
fact that the replicator dynamic of a partnership game is a gradient
system. (It can also be shown directly.) Since the Jacobian L is self-
adjoined, L has at least one positive eigenvalue if L is not negative
semi-definite on the tangent space at (p*, q*), i.e. if
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hðn; gÞ;Lðn; gÞiðp�;q�Þ > 0

for some (n, g) in the tangent space at (p*, q*). We claim that by
setting p = �s + (1)�)p* and q = dr + (1)d)p*, with (s, r) a strict
Nash equilibrium of S2

d, there exist such points n = p)p* and
g = q)q* arbitrarily close to (p*, q*). Observe first that

hðn; gÞ;Lðn; gÞiðp�;q�Þ ¼
X

i

1

p�i
ni
X

j

Ls
ijgj þ

X

k

1

q�k
gk
X

m

Lr
kmnm

¼ 2ðuðp; qÞ � uðp�; q�ÞÞ

The last term is positive since u(p, q) = �du(s, r) + �(1 ) d)
u(s, q*) + (1 ) �)du(p*, r) + (1 ) �)(1 ) d)u(p*, q*)> u(p*, q*).
Thus L is not negative semi-definite. h

Lemma 1 holds for all signaling games Sn
d.

PROOF OF THEOREM 1. Let S2
d be a d-signaling game with

Pðr1Þ ¼ Pðr2Þ . By Proposition 3, the replicator dynamics (2) for S2
d

is a gradient system and the only asymptotically stable fixed points
are the strict Nash equilibria of S2

d. This implies that all other rest
points are either unstable or weakly stable (i.e. stable, but not
asymptotically stable).

Let us consider the interior of the state space first. In Huttegger
(forthcoming) it is shown that the set of interior rest points of the
one-population replicator dynamics is a linear manifold if there is
more than one interior rest point. The same argument can be applied
to the two-population replicator dynamics. Lemma 1 and the center-
stable-manifold theorem (see Kelley, 1967) imply that the center-
stable manifold at each interior rest point has Lebesgue measure zero.
The center-stable manifold of a rest point x* is the manifold which is
tangent to the stable eigenspace of x*, i.e. the eigenspace spanned by
eigenvectors corresponding to eigenvalues with non-positive real
part. Thus the center-stable manifold contains the solutions con-
verging to a point close to an interior rest point (p*, q*) or staying
close to this rest point. The center-stable manifold is defined locally
for every interior rest point. If there is a linear component of interior
rest points, then we can pick countable many center-stable manifolds
which cover all points of this linear component and all points
converging to it. This, together with the fact that the average payoff is
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increasing along non-stationary solutions (which excludes cycling
solutions), shows that the set of points which converges to an interior
rest point has Lebesgue measure zero (the gradient property ensures
that every solution converges to some rest point).

All equilibrium points on the boundary where the senders or
receivers coordinate their deliberational states suboptimally with
positive frequency will be unstable. To see this consider an arbitrary
rest point (x, y). Disregarding the deliberational states in the supports
of x and y defines equivalence classes of strategies which are just
characterized by a sender strategy or a receiver strategy, respectively.
Define a copy (x¢, y¢) of (x, y) by requiring x¢ and y¢ to have the right
deliberational states for both states of the world and by setting the
frequency of each sender and receiver strategy in x¢ and y¢ equal to
the frequency of the corresponding equivalence class based on
strategies in the support of (x, y). Perturbing (x, y) in the direction of
(x¢, y¢) clearly leads away from equilibrium.

Thus the only rest points we still have to analyze are on the
boundary where sender strategies and receiver strategies with sub-
optimal deliberational states are not present. Apart from the two
signaling system types, equilibria on this boundary are the same as in
the two-population replicator dynamics for signaling games without
deliberation. Let x1 and x2 denote the frequency of the two one-to-
one sender strategies s and s¢. Let y1 and y2 denote the frequency of
the two one-to-one receiver strategies r and r¢, (s, r) and (s¢, r¢) being
the strict Nash equilibria. The vertex x1 = 1 and y2 = 1 is linearly
unstable as is the vertex x2 = 1 and y1 = 1. There is a manifold of
equilibria M where x1 = x2 and y1 = y2. Rest points in M are also
linearly unstable except when all one-to-one strategies have zero
frequency. In this case, rest points are second order unstable: only
many-to-one strategies are present, so introducing (s, r) or (s¢, r¢) will
increase the average payoff. There remain two types of sets of rest
points. x1 = 0 = x2 defines a manifold of rest points which are
linearly unstable if y1 „ y2 and second order unstable otherwise (by
the same argument which uses average payoff as before). Similar
arguments apply for the manifold where y1 = 0 = y2. h

PROOF OF THEOREM 3. In the second model there is not one pair
of deliberational states which is optimal relative to a state of the
world. There are two pairs for each state which are characterized by
being asymmetric: if the sender deliberates, the receiver isn’t supposed
to deliberate, or the other way round. This means that the same
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arguments as in the proof of Theorem 1 go through except that
convergence will depend on how many of one of the two configura-
tions of deliberational states are initially present. h

NOTES

1 This question also puzzled 20th century positivists like Dubislav (1937).
2 This is one way to translate the underlying extensive form signaling game into a
game in strategic form.
3 More discussion concerning these issues can be found in Huttegger (forthcoming).

These problems are not directly relevant for the questions discussed in the present
paper, however.
4 For rational choice interpretations see Lewis (1969) and Cubitt and Sugden (2003).
5 For more on the semantic differences between human languages and animal sig-

naling systems see Harms (2004a).
6 From a representational point of view, signals, states and acts might be viewed as
representations of each other if they are part of a signaling system. Notice that we do

not need to introduce any kind of mental representations. Mental representations
could mediate between states and signals or signals and acts. But our argumentations
below do not rely on additional mediating representations. For more on the rela-

tionship between animal signals and mentalistic language see Radner (1999).
7 For an analysis of signaling games which include the realistic feature of local
interaction see Grim et al. (2001) and Zollman (2005).
8 On this view, one may wonder about the status of a cry for help like ‘Help!’. In
many such situations the receiver is required to think about what to do and not to
make a decision without deliberation. I don’t think that this poses any serious
problem to Lewis’ proposal. Either it is clear what the appropriate response to a cry

for help is. Or the act of starting to deliberate about further actions without thinking
whether to start it or not is the required response.
9 Discrete time dynamics are easier to program than dynamics in continuous time.

We used a two population model in order to keep the number of types in the
population reasonably low.
10 Notice that (1) does not necessarily have to be a model for the evolutionary

dynamics of two populations. It may also serve as a model for two agents that
interact repeatedly and have strategies corresponding to the types for (1). The fre-
quencies then represent the probability with which each agent chooses a certain
strategy. Börgers and Sarin (1997) derive a continuous version of (1) as a model of

individual learning from a variant of reinforcement learning that was studied in Bush
and Mosteller (1955). Other reinforcement learning dynamics may also lead to a
continuous version of (1) (Beggs, 2005; Hopkins and Posch, 2005).
11 An asymmetric two-player game with payoff matrices (A, B) is a rescaled part-
nership game if there exist constants a, b>0 and cj, di such that the game with payoff
matrices (A¢, B¢) defined by a0ij ¼ aaij þ cj and b0ji ¼ bbji þ di is a partnership game.

See Hofbauer and Sigmund (1998).
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