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Abstract
The number of billion-dollar natural disasters in the USA has increased from 28 in 1980–1989 to 105 in 2010–2018. Dur-
ing these same time periods, the total cost of these natural disasters increased from $172 billion to $755 billion. Generating 
probabilistic assessments of the cost of these billion-dollar natural disasters can provide insight into the financial risks posed 
by these disasters while accounting for the uncertainty and variation in these disasters. This article simulates the frequency 
and cost of billion-dollar disasters and analyses the financial risk of these disasters in the USA. We use a probabilistic 
approach to quantify and create five models. These models are created by fitting probability distributions to the historical cost 
of billion-dollar disasters. The model that fits the data best and accounts for the recent increase in the cost and frequency of 
billion-dollar disasters forecasts that the expected annual cost of these disasters is $91 billion, with about a 1% chance that 
the annual costs could exceed $500 billion. Simulating the costs and frequency of natural disasters provides an understanding 
of the risks of different types of disasters in the USA.
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1  Introduction

From 1980 to 2018, the USA sustained nearly 250 weather 
and climate events with a cost of $1 billion or more (adjusted 
to 2018 U.S. dollars). The total cost of all the billion-dol-
lar natural disasters in these 38 years exceeds $1.7 trillion 
(National Centers for Environmental Information (NCEI) 
2019). The average annual cost from billion-dollar natural 
disasters has increased from $35 billion in 1980 to $300 bil-
lion in 2017 in real dollars. The frequency of billion-dollar 
natural disasters has increased by 2.5 times from 1980 to 
2018. Twenty billion-dollar disasters occurred in the USA 
in 1980–1985, and 72 billion-dollar disasters occurred in 
2013–2018. Table 1 shows the number and total cost of 
billion-dollar disasters in every decade. Seventy-two out of 
244 billion-dollar disasters, nearly 30% of the total number 
of disasters, occurred in 2013–2018, and they account for 
almost one-third of the total costs. These costs are adjusted 
for inflation using the 2018 Consumer Price Index. See 

Kazimi and Mackenzie (2016) for a good review of previous 
studies that estimate the economic costs of natural disasters. 
The billion-dollar disasters are categorized into seven types 
of natural disasters: freeze, tropical cyclone, winter storm, 
drought, wildfire, severe storm, and flooding.

When a billion-dollar disaster occurs, it frequently gar-
ners significant media. Academic research often analyzes 
emergency preparedness and response for a billion-dollar 
disaster. A myriad of journal articles on emergency prepar-
edness and disaster resilience exist; however, policymak-
ers often struggle with allocating resources to prepare and 
respond to disasters in part due to the uncertainty inherent 
in disaster preparedness (He and Zhuang 2016; Dudley et al. 
2019). These billion-dollar disasters frequently appear in 
journal articles as case studies or illustrative examples to 
demonstrate how a mathematical model or analysis can help 
the USA better prepare for and respond to disasters. When 
researchers and policymakers discuss how the nation and its 
communities need to be more resilient to natural disasters, 
these billion-dollar disasters often serve as the type of dis-
aster for which we need to mitigate the risk.

Several factors contribute to the difficulty in preparing 
for and responding to these large-scale disasters, but one 
important factor is the uncertainty and variability of these 
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disasters. Considerable uncertainty exists in how frequently 
these disasters occur and the extent of damage that a disaster 
may cause (Farber 2010; Button 2016). The data suggest 
that billion-dollar disasters occur more frequently than they 
did in the past and are more costly. However that does not 
mean that each succeeding year will necessarily have more 
billion-dollar disasters or more costly disasters than the pre-
vious year. Each of the seven types of natural disasters may 
follow a different pattern and occur with different frequen-
cies with different costs. For example, the average cost of 
droughts during 1980–2000 is greater than the average cost 
of droughts during 2001–2018. The average cost of tropical 
cyclones during 1980–2000 is less than the average cost of 
tropical cyclones during 2001–2018. The largest cost from a 
flood was approximately $40 billion in 1993, and the small-
est cost from a flood was $1 billion in 2016 (converted to 
2018 U.S. dollars). Considerable annual variability exists 
in the number of billion-dollar disasters, the specific mix of 
natural disasters that comprise the billion-dollar disasters in 
any given year, the cost of each disaster, and the total cost 
of all billion-dollar disasters in a year. This uncertainty and 
variability in disaster cost pose a tremendous challenge in 
precisely modeling these disasters.

One of the principles in risk management is to quantify 
risk using the likelihood and consequences of undesir-
able events (Kaplan and Garrick 1981; Kunreuther 2002). 
A probability distribution of the consequences is perhaps 
the gold standard of risk assessments (Hubbard 2014). A 
probabilistic description of the consequences can be used 
to understand the seriousness of the risk, compare and pri-
oritize among different risks, and ultimately determine what 
should be done, if anything, to mitigate the risk. Probabili-
ties that describe the uncertainty and numerical estimates 
of the consequences enable good decision-making for risk. 
Quantifying the losses from disasters help defines priorities 
for policymakers on where to allocate resources and how to 
evaluate the effectiveness of risk mitigation activities. Insur-
ance companies also require reliable disaster estimates for 
their portfolios. Simulations are a good way to combine data 
from different sources to quantify the risk and visually pre-
sent information using charts and histograms.

Despite the importance of probabilistically assessing the 
consequences, no research to our knowledge has attempted 
to model the annual costs of these billion-dollar disasters 
probabilistically. Previous research into billion-dollar dis-
asters either focuses on a single disaster or examines and 
improves on the methodology to estimate the economic 
cost of natural disasters. Some researchers have assessed 
the uncertainty in those estimates and attempted to identify 
factors contributing to the more frequent and costly natural 
disasters (Smith and Matthews 2015). Much of the discus-
sion of uncertainty around billion-dollar disasters focus on 
uncertainty in estimating disaster losses (Romão and Paupé-
rio 2016). Data-driven approaches are increasingly inform-
ing comprehensive model-based analysis. More work needs 
to be done in organizing poor, fragmented, and inconsistent 
available knowledge (Molinari et al. 2014). The previous 
research has not attempted to assess the uncertainty in the 
number of billion-dollar disasters, the specific type and cost 
of each disaster, and the total costs for natural disasters.

Reliable disaster loss accounts are fundamental to estab-
lishing loss trends and spatial patterns (Kunreuther and 
Michel-Kerjan 2007). These are used to measure the success 
and failure of public health and safety policies. Disaster loss 
data are also important for defining priorities for funding 
scientific research fields and for evaluating the contribution 
and effectiveness of scientific advances for disaster mitiga-
tion. Insurance companies also require reliable disaster loss 
accounts in their portfolios (Sturm and Oh 2010; Kunreuther 
1996).

This article is unique because this research probabilisti-
cally assesses the annual cost of billion-dollar disasters. The 
probabilistic assessment is based entirely on the database 
of billion-dollar disasters and the Gross Domestic Product 
(GDP) of the USA. Rather than attempting to model the 
entire set of billion-dollar disasters, each of the seven types 
of natural disasters is modeled separately. We used one 
probability distribution for the frequency of a specific type 
of natural disaster and another probability distribution to 
describe the costs incurred due to a disaster. After obtaining 
frequency and cost distributions, Monte Carlo simulation 
combines these probability distributions into an overall pic-
ture of the risk of billion-dollar disasters in the USA. This 
approach to separately modeling and combining extreme dis-
asters provides a more extensive understanding of the losses 
in the USA. Simulations aid in identifying different scenar-
ios of what could happen and in drawing better conclusions 
to make the nation more resilient to natural disasters.

This article is divided into five sections. Section 2 identi-
fies the open questions from the literature review. Section 3 
presents the methodology and the steps taken to model the 
billion-dollar disasters. The analysis includes five models 
to estimate the cost to the U.S. economy. Two of the five 
models incorporate the U.S. GDP. One model compares the 

Table 1   Number and cost of billion-dollar disasters

Time period Number of billion-
dollar disasters

Cost Percent of 
total cost 
(%)

1980–1989 28 $172 B 10
1990–1999 52 $268 B 16
2000–2009 59 $507 B 30
2010–2018 105 $755 B 44
Total 244 $1702 B 100
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results to validate the best model. Section 4 discusses the 
outcomes of fitting distributions to the data and the Monte 
Carlo simulation. The discussion in Sect. 5 highlights the 
risk of natural disasters expressed in costs to understand the 
benefits of increasing the country’s preparedness for natural 
disasters and enhancing the nation's resilience.

2 � Literature review

A number of studies have estimated the economic impact 
of natural disasters. Some of the most common models to 
estimate economic losses are the Input–Output (I–O) and 
the Computable General Equilibrium (CGE) models (Mac-
Kenzie et al. 2012). These models consider the economy as a 
collection of industries that interact with each other through 
intermediate consumption. Models are generated to fit the 
specific scenarios to measure the reduction in GDP in areas 
impacted by the disruptions to predict the impacts of disas-
ters across different regions (Oosterhaven and Bouwmeester 
2016). Some authors have attempted to isolate parts of the 
state of California (Rose et al. 2016) and its impact on the 
rest of the U.S. economy. These economic models identify 
the direct and indirect losses from disasters (Leontief 1936; 
Keen et al. 2003; Rose and Liao 2005). Al Kazimi and Mac-
Kenzie (2016) review several I–O and CGE studies of past 
and potential disasters in the USA. The estimates in total 
economic losses on a national scale from these models can 
differ by as much as a factor of seven (Koks et al. 2016). 
These differences are mainly due to assumptions made by 
the models.

The National Weather Service (NWS), a federal agency 
within the National Oceanic and Atmospheric Administra-
tion (NOAA), provides weather-related products and ser-
vices to the public. NWS has maintained a historical data-
base of flood damage in the nation since 1870. The accuracy 
of these flood datasets has been tested and shown to be con-
sistent but not perfect (Downton and Pielke 2005). The errors 
and uncertainty in data arise while collecting and estimating 
the economic impact. The variability could be due to a com-
bination of many factors, including incompatibility between 
different sources, human error, population changes, changes 
in wealth or economic development of the impacted area, 
and extreme weather disasters skewing the overall results. In 
the 1980s, NOAA’s National Climatic Data Center (NCDC) 
started tracking individual U.S. weather and climate events 
that cost at least $1 billion in overall damages and costs (Lott 
and Ross 2005). The data collected by NCDC rely on insur-
ance companies and government agencies. Researchers have 
identified new approaches to quantify the uncertainty in this 
data source (Smith and Matthews 2015).

Several weather agencies and climate-economic research 
have mentioned that the cost and frequency of natural 

disasters are increasing (Coronese et al. 2019). The increase 
in the frequency and costs of billion-dollar disasters could be 
due to several factors, including climate change, population 
increase, and economic activity. Over 80% of the nation’s 
total losses from weather and climate events are caused by 
billion-dollar disasters (NCEI 2019). The real U.S. GDP was 
$6.95 trillion in 1980 and $18.93 trillion in 2018 (FRED 
2019). U.S. GDP increased by more than 172% from 1980 
to 2018, but the average cost of billion-dollar disasters 
increased by more than 750%. The economic cost of natural 
disasters in the USA has grown faster than the nation’s GDP.

The billion-dollar disaster weather data published by 
NOAA and used in this article likely underestimate losses 
by 10–15% (Smith and Katz 2013). Due to the complex-
ity of the U.S. economy, the data on losses from natural 
disasters contain significant amounts of uncertainty (Kron 
et al. 2012), and the full extent of material losses may not be 
known until several years after the disaster. The cost of some 
disasters might be over-estimated. For example, rain from a 
hurricane might benefit agricultural crops yet damage other 
industries (Lott and Ross 2005). Due to this uncertainty, 
Smith and Matthews (2015) attempted to construct a con-
fidence interval around the billion-dollar disasters dataset.

After a natural disaster, government agencies, institutions, 
and insurance companies publish their estimate of the cost 
of the disaster. These estimations use various methodologies 
and different approaches to collect data. Different types of 
methodologies lead to different estimations. One study finds 
that the estimation differs by a factor of 2 or more for more 
than 50% of the flood damages in California that cost less 
than $50 million (Downton and Pielke 2005). As the area 
or the period of time is extended, the underestimation and 
overestimation errors tend to average out. The errors are 
significantly less for events that cost more than $500 mil-
lion. Extreme climate events cause damage to crops due to 
floods (Changnon and Hewings 2001), which can affect the 
nation’s ability to self-sustain during a crisis. The cost and 
frequency of wildfires and droughts have also increased over 
recent years (Whitman et al. 2019). The continuous effect 
of drought stresses trees and wildlife, which increases the 
risk of forest fires (Littell et al. 2016). Long-term and short-
term drought can influence wildfire. We attempt to account 
for this relationship between drought and wildfires in our 
models.

Research has tried to estimate the impact of different 
types of disasters separately (Peterson et al. 2008). Studies 
have shown that frequency of heavy precipitation events, 
such as flooding, and the frequency and intensity of tropical 
cyclones have increased in North America in the past few 
decades (Climate Change Science Program 2008; Elsner 
et al. 2008). Some studies have claimed that the increase 
in the intensity of tropical cyclones from 1982 to 2009 is 
only marginally statistically significant (Kossin et al. 2013). 
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There is clear evidence of tropical cyclones getting stronger 
as a result of global warming from 1979 to 2017 (Emanuel 
2020). A probabilistic model by Pall et al. (2011) concludes 
that the risk of flood occurrence in the United Kingdom 
substantially increased in 2000 due to anthropogenic green-
house gas emissions. In 1993, approximately 3.3 million ha 
of soybean and corn fields were flooded in the American 
Midwest, causing a 50% decrease in corn yields in Iowa, 
Minnesota, and Missouri and a 20–30% decrease in three 
other states (Kundzewicz et al. 2014). Recent studies on 
past and current changes in precipitation extremes in North 
America have reported an increasing trend in precipitation 
over the last half-century (Climate Change Science Program 
2008). Choi and Fisher (2003) constructed a regression 
model between annual flood loss and socioeconomic and cli-
mate drivers, with a conclusion that a 1% increase in average 
annual precipitation leads to an increase in annual national 
flood loss of around 6.5%. Floods also damage transporta-
tion infrastructure.

As the world has also become wealthier during the past 
decades (Gale 2006), the costs of natural disasters have 
also increased. This makes it harder to evaluate if the cost 
of the disasters has increased due to increased economic 
activity and wealth. Flood losses have greatly increased, 
mainly driven by the expanding assets at risk (Fothergill 
and Peek 2004). Not all people are equally impacted by 
disasters. Low-income populations are more physically and 
psychologically vulnerable to natural disasters (Pendleton 
et al. 2013), and robust data are needed to assess the impact 
of disasters on populations with different socioeconomic 
statuses. Disasters that destroy productive capital tend to 
reduce GDP, but disasters that destroy consumable goods 
(such as a car) tend to have no effect or increase the GDP 
of the nation (Strulik and Trimborn 2019). Public percep-
tion also changes with the amount of accurate information 
people receive from trusted weather and climate agencies 
(Lazo et al. 2009). Accurate forecasts benefit society in 
making a range of valuable decisions for their well-being. 
Even as the scientific understanding of the economic con-
sequences of these extreme events improves, higher-quality 
data are required to fully understand their economic costs 
across years, events, and places (Cutter et al. 2013). As 
data become more available, mathematical models can be 
extended to multi-event disaster planning to quantify resil-
ience and improve decision-making (Zobel and Khansa 
2014). Simulation effectively combines data from multiple 
sources and quantifies the results to make better data-driven 
decisions. Policymakers can use these mathematical models 
to make effective decisions to mitigate the consequences of 
natural disasters.

Temperature and CO2 levels have shown a very high 
correlation with the increase in billion-dollar disasters that 
could impact the U.S. healthcare system (Bhola et al. 2023). 

CO2 emissions are correlated with health care expenditure 
and economic growth (Yang et al. 2022). This could pose a 
significant challenge if multiple disasters or a disaster and 
a pandemic occur at the same time (Feitelson et al. 2022). 
The economic shocks from multiple sources could be highly 
disruptive to American lives. Moreover, natural disasters can 
have disproportionately larger impacts on older adults’ men-
tal health (Zhang et al. 2022). Billion-dollar disasters can 
have a negative effect on an aging society such as the USA 
where the average age of the population is increasing.

Extreme events continue to take a toll on the nation, 
threatening the well-being of Americans. Quantitative inves-
tigations of historical trends provide better results in estimat-
ing the frequency and losses from natural disasters (Par-
wanto and Oyama 2014). Scientific assessment on extreme 
natural disasters shows evidence toward increase in inten-
sity and frequency of storms and recommends risk-based 
approaches to resilience (Vose et al. 2014). However, there is 
no study using a probabilistic approach for tracking the risk 
of extreme events using the current data (Pendleton et al. 
2013). There is a need for mathematical models, improved 
data, and probabilistic approaches in response to natural dis-
aster anticipation. Better data-driven models could improve 
the standard of living and save lives.

3 � Method

NOAA annually records and publishes natural disasters 
whose cost exceeds $1 billion. Figure 1 shows substantial 
annual variation in the costs of billion-dollar disasters from 
1980 to 2018. As seen in Fig. 1, the total cost of all disasters 
in 2005, 2011, and 2017 was significantly greater than in 
the other years. This is largely due to a few extreme events. 
The total cost of $221 billion dollars in 2005 was largely 
due to Hurricane Katrina. The large cost in 2011 was due to 
Hurricane Irene. Several droughts, Hurricane Harvey, and 
Hurricane Maria generated large costs in 2017. We initially 
attempted to fit a probability distribution to this entire data 
set, but no distribution fits well with the observed data or 
provided good forecasts. To solve this problem, we divided 
the dataset and tested multiple models to capture the trend of 
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billion-dollar disasters. We create these models to incorpo-
rate the changes over time and compare the economic costs 
of billion-dollar disasters. Comparing these models provides 
insights into the effects of the increase in economic activity 
and changes in the frequency and costs of natural disasters 
in the past four decades.

Emergencies and disasters impact the nation and its pop-
ulation, especially if the disasters have a large economic 
impact. Disaster preparedness is challenging, and allocating 
resources for billion-dollar disasters is even more difficult 
due to competing priorities and limited resources (Khan 
et al. 2018). The current quantitative results seem inade-
quate in disaster planning to make the most effective strate-
gies and resource allocation (Timbie et al. 2013). Modeling 
the historical data of billion-dollar disasters can provide an 
understanding of the past and provide a means to forecast 
the cost of future disasters. This data could be modeled by 
time series methods, regression analysis, causal analysis, 
and simulations.

A better approach than fitting a model to all the data is 
to fit separate models for each disaster type. Analyzing each 
type of disaster also provides a better understanding of these 
billion-dollar disasters. Modeling each type of disaster sepa-
rately can make the model more robust to changes in the 
data. Using probabilistic models rather than deterministic 
models reflects the uncertainty that is inherent in forecasting 
future economic costs from natural disasters.

Table 2 depicts the cost and percentage impact of the 
billion-dollar disasters from 1980 to 2018. The costs of dis-
asters are unevenly spread for each type of disaster and split 
into unequal percentages.

We use the billion-dollar disaster data for each type of 
disaster. We model the distributions of each type of billion-
dollar natural disaster separately: drought, flood, freeze, 
severe storm (e.g., tornado, hail, wind damage), tropical 
cyclone, wildfire, and winter storm. First, we fit a discrete 
distribution to the annual frequency of each type of disaster. 
This analysis tests to see if the frequencies of any of these 

disasters are correlated. If the frequencies are highly cor-
related, the model will incorporate this correlation. Second, 
we fit a continuous probability distribution to the cost of 
each type of billion-dollar disaster. We assume the cost for 
each type of a billion-dollar disaster is identically and inde-
pendently distributed (IID). We use the Akaike information 
criterion (AIC) (Akaike 1998) and the log likelihood (Bar-
nard et al. 1962) to assess the goodness of fit and choose a 
distribution. We also attempt to use common distributions 
across many of the disasters. If a single distribution performs 
very well according to the AIC and log-likelihood metrics 
for many different disasters, we attempt to use that same 
distribution for each type of disaster.

JMP Statistical Software is used to fit a continuous ran-
dom variable for the cost of each type of disaster. We fit 
the costs for each type of disaster to the following continu-
ous distributions: Johnson with a lower bound, sinh-arcsinh 
(SHASH), lognormal, generalized log, gamma, normal mix-
tures (2 and 3), Weibull, extreme value, exponential, and 
normal.

Five distinct models are created, and each model uses a 
different dataset to analyze the economic impact of these 
natural disasters. The first two models only rely on the costs 
of billion-dollar natural disasters. Model 3 and Model 4 give 
insights into the effect of the increase in GDP on the cost of 
billion-dollar disasters. The last model compares the costs 
and frequency of disasters in recent years to support the 
argument that disasters have gotten stronger over time.

Model 1 uses all the historical data from 1980 to 2018 to 
model the costs of natural disasters. We use all of the data 
to fit a discrete distribution to the annual frequency for each 
type of disaster. This frequency is analyzed and incorporated 
into the model to generate the number of disasters that occur 
in a year for each of the seven types of disasters separately. 
The probability distribution is fit to the cost of each type of 
disaster for all the disasters that cost more than $1 billion 
from 1980 to 2018. The AIC and log-likelihood values are 
evaluated, and the best fit of the probability distribution is 
selected for each type of disaster.

Monte Carlo simulation is used to generate the fre-
quency of disasters and their costs for all seven disasters. 
The simulated cost is summed up to obtain the total cost of 
disasters from the events that cost more than a billion dol-
lars to the U.S. economy. There are seven different types of 
disasters, and each disaster has two uncertainties (number 
of disasters per year and the economic impact for each 
disaster). A total of fourteen uncertainties are combined 
to create a picture of the risk of billion-dollar disasters. 
Some of the frequencies of disasters are also correlated. 
Monte Carlo simulation, in which the random variables 
are sampled thousands of times based on the input distri-
butions, is a well-established method to obtain solutions 
for problems that combine multiple uncertainties (Vose 

Table 2   Cost of each disaster type

Disaster type Number events Cost Percent of 
total cost 
(%)

Freeze 9 $30 B 2
Tropical cyclone 42 $935 B 55
Winter storm 17 $49 B 3
Drought 26 $248 B 15
Wildfire 16 $80 B 5
Severe storm 105 $233 B 14
Flooding 29 $126 B 7
Total 244 $1,702 B 100
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2008; Law 2015). It is possible to calculate the annual 
expected cost and the variance of billion-dollar disasters 
without using simulation, but generating the entire cumu-
lative distribution that combines all seven different types 
of disasters would be extremely difficult, prone to errors, 
and may be impossible. A simulation aids in learning what 
could happen with different scenarios that enables us to 
derive a more complete picture of the risk of billion-dollar 
disasters.

Model 2 follows the same steps as Model 1 with one cru-
cial difference—Model 2 only uses the most recent disaster 
data as opposed to using all of the data from 1980 to 2018, 
as in Model 1. Figure 2 depicts the number of each billion-
dollar disaster by year. The number of billion-dollar disasters 
seems to increase a lot beginning in 2000. In Model 2, we 
examine each disaster separately and identify a year in which 
the annual frequency of the disaster appears to change. After 
identifying the year in which the annual frequency changes, 
we follow all of the steps in the previous paragraphs to fit 
a probability distribution for the frequency and the cost for 
each type of disaster, but we only use the data from the more 
recent year through 2018 to fit these distributions.

One explanation for the growth in billion-dollar disasters 
and the increase in costs from 1980 to 2018 may be the 
growth of GDP and population in the USA. Accounting for 
the change in wealth and population in the USA within the 
model may provide a better forecast of the financial costs of 
natural disasters. Although the costs of natural disasters are 
adjusted for inflation via the 2018 Consumer Price Index, we 
want to account for GDP as well. Model 3 uses the same data 
for the cost of disasters as Model 1 (years 1980–2018) and 
divides the costs by the corresponding GDP of that year. We 
use the same steps as Model 1, but the costs of disasters are 
replaced by the ratio of the cost of the disaster to GDP. We 
generate the ratio of the cost of disasters to the GDP using 
Monte Carlo simulation and multiply simulated annual costs 
for each disaster and the GDP in 2018 to generate a proba-
bilistic estimate of the cost of natural disasters.

Model 4 combines the process of Model 2 and Model 3. 
We use the ratio of the cost of the disaster to the correspond-
ing GDP. Rather than using all of the data from 1980 to 
2018, we only use the recent disaster data similar to Model 
2. This creates another dataset with the same number of 
billion-dollar disaster events as Model 2. We follow identical 
steps to Model 3 to generate the annual costs and multiply 
the annual costs by the GDP in 2018.

A single trial in the Monte Carlo simulation begins by 
randomly generating the number of billion-dollar disasters 
that occur in a single year for each of the seven disasters. For 
each simulated disaster, we randomly generate the cost of 
that disaster from the probability distribution that best fits 
that type of disaster. If the cost of a simulated disaster in a 
trial is negative, we generate another cost for that disaster 
from the probability distribution until the cost is positive. 
The U.S. GDP in 2018 was $18.93 trillion. As mentioned 
previously, for Model 3 and Model 4, to convert the ratio of 
data to the GDP back to the costs of disasters, we multiply 
the costs generated by the model for each type of disaster 
and the GDP in 2018. We calculate the total cost of billion-
dollar disasters in a single trial by summing the costs of 
individual disasters. This process is repeated 100,000 times 
to generate a simulated probability distribution of the annual 
costs of billion-dollar disasters. The annual costs for each of 
the seven types of disasters and the total annual costs from 
all the disasters are analyzed and presented in Sect. 4.

4 � Results

4.1 � Fitting distributions

This article analyzes, fits distributions, and simulates all 
the billion-dollar natural disasters in the USA from 1980 to 
2018. When all the data are included (Models 1 and 3), the 
annual frequencies of drought and wildfire have a correlation 
equal to 0.43, and the annual frequencies of flood and severe 

Fig. 2   Frequency of each type 
of billion-dollar natural disaster 
from 1980 to 2018 (NCEI 2019)
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storm have a correlation equal to 0.48. These are the only 
two correlations greater than 0.4. It is reasonable that these 
disasters are correlated because hot and dry weather can lead 
to more droughts and wildfires, and rainy weather can lead 
to more severe storms and floods. If just the recent disas-
ters are analyzed (Models 2 and 4), the correlation between 
droughts and wildfires increases to 0.64, and the correlation 
between floods and severe storms is 0.37. All four models 
incorporate the correlation between drought and wildfire 
and between flood and severe storm so that the simulated 
number of disasters for these four types of disasters exhibit 
these correlations. The annual frequency of each of the other 
three disasters (freeze, tropical cyclone, and winter storm) 
is treated as independent of the frequency of the other types 
of disasters.

Table 3 depicts the distribution for the annual frequency 
for each distribution, the year in which data for Model 2 and 
Model 4 begins (i.e., the year in which the annual frequency 
changes), and the parameters for each distribution for the 
four models. These parameters are based on the data visual-
ized in Fig. 2. The Poisson distribution is used to model the 
number of events for freeze, tropical cyclone, winter storm, 
severe storm, and flood. The parameter � (average num-
ber of annual events) for the Poisson distribution is given 
in Table 3 for these disasters. The number of droughts or 
wildfires never exceeded 1 in any given year from 1980 to 
2018, and the frequency of each of these two disasters is 
modeled as a Bernoulli random variable with the probabil-
ity p . The annual frequency of all the disasters except for 
freeze increases, and the year in which the annual frequency 
changes are depicted in Table 3. Since the annual frequency 
of freeze appears to remain constant, we use the data for 
freeze from 1980 to 2018 in all of the models.

Fitted probability distributions are generated using the 
frequency of the type of disaster for each model. Table 4 
shows the log likelihood and AIC for the distributions for the 
severe storm based on JMP. The Johnson distribution (with 
a lower bound) fits the best to the historical data of severe 
storms among all the other distributions. Figure 3 provides 
an example of fitting the Johnson distribution to the costs of 
severe storms from 1980 to 2018. The SHASH distribution’s 

AIC and log-likelihood values are very similar to that of the 
Johnson distribution. The two distributions look very simi-
lar, and using either of these two distributions to model the 
costs of severe storms is reasonable. The Johnson distribu-
tion perhaps underestimates the likelihood of extreme costs, 
and three severe storms cost more than $9 billion, which the 
Johnson distribution has trouble capturing. Despite this defi-
ciency, the Johnson distribution provides a good fit for every 
type of disaster except for the costs of recent winter storms. 
We prefer to use the same type of distribution for as many 

Table 3   Distributions of the 
annual frequency

Disaster type Type of distribution Model 1 and 3 
parameter

Year model 2 
and 4 begins

Model 2 and 
4 parameter

Freeze Poisson � = 0.2 3 1980 � = 0.23

Tropical cyclone Poisson � = 1.07 2004 � = 1.4

Winter storm Poisson � = 0.44 2009 � = 0.5

Drought Bernoulli, correlated with wildfire p = 0.67 2000 p = 0.84

Wildfire Bernoulli, correlated with drought p = 0.41 2000 p = 0.68

Severe storm Poisson, correlated with flood � = 2.7 2006 � = 5.85

Flood Poisson, correlated with severe storm � = 0.74 2006 � = 1.3

Table 4   Distributions comparison for severe storms, 1980–2018

Distribution − 2*Log-likelihood AIC

Johnson 1680 1688
SHASH 1682 1691
Lognormal 1735 1739
Generalized log 1735 1741
Gamma 1766 1770
Normal 2 mixture 1762 1772
Normal 3 mixture 1762 1779
Weibull 1793 1797
Extreme value 1793 1797
Exponential 1828 1830
Normal 1861 1865

Fig. 3   Fitted Johnson distribution to severe storm dollar value during 
the period 1980–2018
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disasters as possible, and we select the Johnson distribution 
to model the cost of each type of disaster except for the 
winter storm in Model 2. The AIC and log-likelihood values 
for the Johnson distribution remain within 10 of the best 
distribution for each type of disaster in all of the models, 
except for winter storm and drought. For winter storm, the 
AIC value of the Weibull distribution is 79.5, while the AIC 
value of the Johnson distribution is 109.6. The Weibull dis-
tribution provides the best fit for the recent winter storm cost 
in Model 2 and Model 4. Table 5 displays the probability 
distributions used for each of the models and disaster types.

4.2 � Simulating economic costs

As mentioned, 100,000 simulations are generated for each 
model. Figure 4 shows the cumulative probability of the 
annual costs for each model, given the disaster is a billion-
dollar disaster. According to Model 1, which is based on 
all of the data from 1980 to 2018, the expected cost of all 
billion-dollar disasters is $52 billion, with a standard devia-
tion of $95 billion. The median annual cost is about $30 
billion. There is a 10% chance that the cost of billion-dollar 
disasters will exceed $100 billion and about a 5% chance that 
the cost will exceed $150 billion. The vast majority of the 

simulations result in costs of less than $80 billion. However, 
some simulations result in costs of $200, $300, or even $400 
billion. As seen from Fig. 4, the likelihood of costs exceed-
ing $300 billion is very small. Model 1 suggests that the 
USA should plan for $20 to $100 billion in economic losses 
from these large-scale natural disasters, but the losses could 
be as large as $200 to $300 billion.

Model 2, which is based on the most recent data of bil-
lion-dollar disasters, results in an expected cost of $91 bil-
lion with a standard deviation of $120 billion. The median 
annual cost is $56 billion, almost twice the value of Model 
1. There is a 10% chance that the economic costs will exceed 
$175 billion in a single year. The annual cost of disasters 
based on using just the recent data is almost twice the annual 
cost based on using all of the data in Model 1. This increase 
in cost is due to the increased frequency of natural disasters 
and the increase in costs of these billion-dollar disasters over 
the past two decades. Model 2 suggests that the USA should 
plan for about $40 to $175 billion in economic costs from 
billion-dollar natural disasters with losses that could be as 
large as $300 or even $400 billion. These extreme costs rep-
resented more than 2% of the U.S. GDP in 2018.

Models 3 and 4 simulate the ratio of annual costs to 
GDP and multiply the resulting cost by U.S. GDP in 2018. 
Model 3, which uses all the data from 1980 to 2018, gener-
ates higher annual costs than those in Model 1. The median 
cost of disasters estimated by Model 3 is $40 billion. For 
Model 3, which has a similar dataset of costs of disasters as 
Model 1 from 1980 to 2018, the expected cost is $91 billion, 
approximately $26 billion higher than Model 1. Model 3 
has a standard deviation of $220 billion, which is twice the 
amount of standard deviation from Model 1. The probabil-
ity of exceeding $100 billion is 20%, which is also twice as 
large as Model 1. As seen from Fig. 4, Model 3 predicts the 
costs can exceed even $400 billion.

Model 4 relies on the same recent data as Model 2 while 
simulating the ratio of cost to GDP. The expected cost gener-
ated by Model 4 is approximately $108 billion, with a stand-
ard deviation of $321 billion. The median annual cost is $62 
billion. There is a 30% chance that the annual cost from the 
billion-dollar disasters will exceed $100 billion and a 10% 
chance the annual cost will exceed $200 billion.

Table 6 presents the simulated annual costs for each of the 
seven types of billion-dollar disasters. The 99th percentile is 
depicted in order to show the very extreme or 1-in-100-year 
scenario. Since none of the disasters are perfectly correlated 
to each other, as shown in Table 3, the sum of the 99th per-
centile of each type of disaster will not be equal to the 99th 
percentile of the total cost. The 99th percentile of the total 
costs from the billion-dollar disasters is calculated separately 
from the models and presented in Table 6. Tropical cyclones 
are the largest contributor to the total cost of disasters, and 
they account for 50–80% of the average total cost in the 

Table 5   Type of probability distributions for each of the four models

Disaster type Model 1 Model 2 Model 3 Model 4

Freeze Johnson Johnson Johnson Johnson
Tropical cyclone Johnson Johnson Johnson Johnson
Winter storm Johnson Weibull Johnson Weibull
Drought Johnson Johnson Johnson Weibull
Wildfire Johnson Johnson Johnson Johnson
Severe storm Johnson Johnson Johnson Johnson
Flood Johnson Johnson Johnson Johnson

Fig. 4   Combined cumulative probabilities generated by the four mod-
els
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four models. Model 2 shows a 90% increase in the costs of 
tropical cyclones compared to that of Model 1, which illus-
trates the substantial economic impact of tropical cyclones 
in recent years. Severe storms occur more frequently than 
any other disaster, but the total costs due to severe storms 
are much less than tropical cyclones. Recent disaster data 
depict that the cost and frequency of severe storms are also 

growing. The winter storm is the least expensive billion-
dollar disaster among all the seven types of weather and cli-
mate disasters. The average cost of winter storms is always 
less than 3% of the total average cost for the four models.

Figure 5 shows a relative frequency histogram of the 
simulated annual costs for all billion-dollar disasters for 
the four models. The annual cost generated by the four 

Table 6   Costs in billions of dollars for each type of disaster generated by the four models

Disaster type Model 1 Model 2 Model 3 Model 4

Average 99 percentile Average 99 percentile Average 99 percentile Average 99 percentile

Freeze $0.8 B $8 B $0.8 B $8 B $2 B $19 B $2 B $19 B
Tropical cyclone $32 B $399 B $61 B $534 B $37 B $410 B $68 B $579 B
Winter storm $1 B $12 B $1 B $7 B $2 B $20 B $1 B $7 B
Drought $6 B $53 B $7 B $41 B $11 B $109 B $5 B $15 B
Wildfire $3 B $34 B $4 B $45 B $13 B $124 B $12 B $142 B
Severe storm $6 B $22 B $13 B $36 B $8 B $27 B $15 B $43 B
Flood $3 B $27 B $4 B $27 B $5 B $47 B $5 B $30 B
Total annual cost $52 B $425 B $91 B $565 B $78 B $548 B $108 B $681 B

Fig. 5   Relative frequency histogram of annual costs of disasters by each of the model
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models is highly skewed to the right and unimodal. The 
major proportion of the costs are less than $100 billion for 
the four models. Models 3 and 4 show significant right-
hand skewness with relatively fat tails and a higher number 
of years with costs more than $100 billion. Incorporating 
GDP into the models appears to result in larger forecasts 
of the costs of disasters.

Quantile–quantile (Q–Q) plots provide a means to ana-
lyze how well the simulated results match the data. Fig-
ure 6 shows the Q–Q plots for the four models. The actual 
annual cost from the data is plotted on the y-axis versus 
the simulated annual cost on the x-axis. Figure 6a and c 
shows the models which use all the data from 1980–2018, 
whereas Fig. 6b and d uses the yearly data from 2000 to 
2018. Figure 6b–d demonstrate that their corresponding 
models may overestimate the actual costs since the plotted 
points are to the right of the 45° line. In Fig. 6a, the plotted 
points lay much more consistently along the 45° line. Q–Q 
plots for Models 3 and 4 are calculated by multiplying 
the ratio by the 2018 GDP. Since the Q–Q plots use the 
data from years prior to 2018, multiplying the ratio by the 

2018 GDP likely influences these larger forecasts from the 
simulated models.

4.3 � Comparison between 1980–2000 and 2000–
2018

The statistical forecast of this work is based on the assump-
tion that the cost of each type of disaster is independent 
and identically distributed. This makes the models time 
independent or time stationary. However, the statistical 
properties of the cost of disasters, such as mean, variance, 
and correlations, are not constant and have been increasing 
over time. To understand the change in the trend of cost of 
billion-dollar disasters from the year 1980 to 2000 and more 
recent years, 2000 to 2018, we create another model. We 
compare the results from Model 2 with a new model (Model 
5). Model 5 follows a similar process as Model 2. Instead of 
modeling cost after the year 2000, in which the annual fre-
quency of the disaster appears to change. Model 5 uses the 
costs and frequency of each type of disaster from 1980 to the 
year prior to the year used in Model 2, as shown in Table 3. 

Fig. 6   Q–Q probability plot of the annual cost of disaster for each of the models
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We follow all the steps as in Model 2 to fit the distribution 
to frequency and cost for each type of disaster. The annual 
expected cost generated by Model 5 is approximately $24 
billion, with a median of $14 billion and a standard deviation 
of $43 billion. Figure 7 shows the relative frequency histo-
gram of annual costs of billion-dollar disasters generated by 
Model 5. The extreme losses in Model 5 are less expensive 
than in Model 2, and Model 5 contains many more disasters, 
less than $30 billion compared to Model 2.

Table 7 shows the average expected cost of each type of 
disaster and 99-percentile values for Model 5 and Model 
2. The disasters freeze, winter storm, drought, and flood 
have the same average cost in both Models 2 and 5, and the 
99-percentile values for these disasters in Model 5 are either 
equal to or slightly greater than the 99-percentile values of 
the same disaster in Model 2. This suggests that the billion-
dollar disasters of freeze, winter storm, drought, and flood 
have not become more frequent or damaging in the 2000s. 
The costs of tropical cyclone, wildfire, and severe storm 
are much greater in Model 2 than in Model 5. The average 
cost of tropical cyclones is 7.6 times larger in Model 2 than 

Model 5 ($61 billion compared to $8 billion); the average 
cost of wildfires is 8 times larger in Model 2 than in Model 
5 ($4 billion compared to $0.5 billion), and the average cost 
of severe storms is 4.3 times larger in Model 2 than Model 
5 ($13 billion compared to $3 billion). The 99-percentile 
costs of these three disasters are substantially greater in 
Model 2 than in Model 5. This result suggests that tropical 
cyclone, wildfire, and severe storm have greatly increased 
in frequency and/or severity in the 2000s.

The total annual cost in Model 2 is greater than the total 
annual cost in Model 5, which is principally driven by the 
increase in annual costs due to tropical cyclones and severe 
storms. The average annual cost of Model 2 is 3.8 times 
larger than that of Model 5 ($91 billion compared to $24 
billion). The 99-percentile cost of Model 2 is more than 
$400 billion more than that of Model 5. It implies that the 
extreme disasters might get more extreme in the following 
recent years. This comparison supports the conclusion that 
billion-dollar disasters have gotten more frequent and more 
costly since 2000, and the main reason for this increase is 
due to increasing costs from tropical cyclones and severe 
storms. It is also supported by other research done in 2020 
using satellite imagery that the intensity of tropical cyclones 
has increased over time due to greenhouse gas-induced cli-
mate change (Emanuel 2020). This research fills the gap 
in cost assessment by probabilistically estimating the costs 
of these billion-dollar disasters individually and combined. 
Comparing Model 2 and Model 5 also provides the time 
period after which the economic cost of disasters has sig-
nificantly increased.

5 � Discussion and conclusion

There are a limited amount of resources and money in the 
USA to protect against and prepare for natural disasters. 
Mathematical models are one of the best tools available to 
analyze natural disasters to help policymakers determine 
where resources should be allocated in order to create the 
biggest effect in reducing the risks from natural disasters 
and enhancing resilience. Managing risks and resources can 
save American lives and reduce the cost of damage from 
disasters. Probabilistic models of the cost of billion-dollar 
natural disasters are generated in this article. The risk analy-
sis models in this article analyzed the disasters according 
to their frequency and economic costs while considering 
the inherent uncertainties in natural disasters. Policymakers 
can use information based on the probability distribution 
of the economic costs of billion-dollar natural disasters to 
determine how to effectively allocate resources for each type 
of disaster for protection against and preparation for natural 
disasters. Risk analysis models can be used as a guideline to 

Fig. 7   Relative frequency histogram of annual costs of disasters from 
1980 to 2000 of Model 5

Table 7   Cost generated in billions of dollars for each type of disaster 
by Model 5

Disaster type Model 5 Model 2

Average 99 percentile Average 99 percentile

Freeze $0.8 B $8 B $0.8 B $8 B
Tropical cyclone $8 B $84 B $61 B $534 B
Winter storm $1 B $11 B $1 B $7 B
Drought $7 B $86 B $7 B $41 B
Wildfire $0.5 B $7 B $4 B $45 B
Severe storm $3 B $19 B $13 B $36 B
Flood $4 B $54 B $4 B $27 B
Total annual cost $24 B $158 B $91 B $565 B
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invest in the country’s future generations and build a robust 
economy around disasters.

This article assesses the likelihood of costs from seven 
types of billion-dollar natural disasters. We forecast the 
economic consequences of billion-dollar natural disasters 
using Monte Carlo simulation. Five models are designed 
to evaluate the risk and forecast the costs of billion-dollar 
disasters, and the damages from the billion-dollar natural 
disasters have been converted to 2018 US dollar. Model 1 
and Model 2 use billion-dollar disaster data. Since some 
of the increase in the cost of the billion-dollar disasters is 
likely due to the growth in the GDP, Model 3 and Model 4 
incorporate GDP into the model. Model 1 and Model 3 use 
all the data from 1980 to 2018, while Model 2 and Model 4 
use only the most recent data. Model 5 uses the data from 
1980 to a year prior to Model 2, as depicted in Table 3, for 
each type of disaster. Model 2 and Model 5 are then com-
pared to draw some conclusions. The annual frequency and 
cost for each of the seven different types of disaster are mod-
eled separately. These separate costs of each type of disaster 
are combined into a single total annual cost. Monte Carlo 
simulation enables us to incorporate the different uncertain-
ties into a single probabilistic forecast of the annual cost of 
billion-dollar disasters in the USA.

A large difference in the forecasted costs occurs if all the 
data are used or only the most recent data are used to fore-
cast the risks of billion-dollar disasters. According to Model 
1, the average annual cost for all disasters for 1980–2018 
is $52 billion, with a median of $30 billion and a standard 
deviation of $95 billion. The average annual cost for disas-
ters, according to Model 2, is $91 billion, with a median of 
$56 billion and a standard deviation of $120 billion. Due 
to changes in the frequency and the costs of billion-dollar 
disasters, the average costs of each type of disaster from 
Model 2 are almost twice as large as the average costs from 
Model 1. Model 3 and Model 4 capture the effect of GDP 
on the cost of each disaster and, subsequently, on the total 
cost. Model 3, which has identical data as Model 1 for the 
costs of disasters, produces an average annual cost of $78 
billion, which is 50% higher than the average annual cost 
from Model 1. One of the reasons for higher costs from 
Model 3 as compared to Model 1 is drought. Losses from 
drought were substantially higher during 1980 ($33 billion), 
1988 ($44 billion), and 2002 ($13 billion) when compared 
to GDP in those years. Model 4 has the highest expected 
annual average cost ($108 billion), median ($62 billion), 
and 99th percentile ($681 billion) of all the models. These 
extreme disasters tend to skew distribution toward the right 
and overestimate the cost. As can be seen from the Q–Q 
plots in Fig. 6, Model 3 and Model 4 seem to overestimate 
the annual costs of extreme natural disasters.

The first four models demonstrate that tropical cyclones 
have the most severe impact on the U.S. economy. Extreme 

disasters such as Hurricane Katrina, Hurricane Harvey, and 
Hurricane Maria have each resulted in $93 billion or more 
in economic costs. The annual average cost from tropical 
cyclones is more than $30 billion according to Model 1 and 
more than $60 billion according to Model 2 and contributes 
60–70% of the annual costs. The cost to the U.S. economy 
by tropical cyclones is approximately five times more than 
the second most expensive disaster (severe storm) in both 
Model 1 and Model 2. Similarly, tropical cyclones also have 
the greatest average annual cost in Model 3 ($37 billion) 
and Model 4 ($68 billion). Tropical cyclones also exhibit 
the largest increase in costs since 2000 when comparing the 
results between Models 2 and 5.

Even though tropical cyclones incur the highest cost to 
the economy, the most frequent billion-dollar disaster is 
a severe storm in the four models. According to Model 1, 
Model 2, and Model 4, severe storms have the second-high-
est annual cost of $6–15 billion. Wildfires have the second-
largest average annual cost in Model 3 at $13 billion, and the 
average annual cost of severe storms is $8 billion in Model 3.

Droughts contribute the third-largest impact according to 
Model 1, Model 2, and Model 3, with an average cost of $6, 
$7, and $11 billion, respectively. Losses from wildfires ($12 
billion) are the third-largest contributor to the total average 
cost according to Model 4.

The five models seem to have some benefits and draw-
backs. Models 1 and 3 use all of the available historical data, 
which is generally good practice, especially when the size of 
the dataset is rather limited. However, since the frequency 
and costs of billion-dollar disasters appear to be increasing, 
only using the most recent data as Models 2 and 4 do seem 
reasonable. Incorporating GDP into the model to account 
for some of the increase in costs might be appropriate. Still, 
Models 3 and 4 do not seem to fit the data very well and may 
overestimate the costs of these natural disasters. Model 2 
seems to provide a good fit to the historical data and account 
for the rise in frequency and costs due to its ability to incor-
porate recent disaster costs and frequency changes.

Previous research has mentioned the importance of educa-
tion and experience in disaster preparedness (Hoffmann and 
Muttarak 2017; Torani et al. 2019). Educating vulnerable pop-
ulations about the effect of tropical cyclones (the most expen-
sive disasters) and severe storms (high-frequency disasters) 
could reduce the economic impact and save American lives. 
A dollar invested by the federal government in disaster mitiga-
tion saves six dollars in recovery (Gall and Friedland 2020). 
Proactive measures and numerical models can mitigate the 
adverse effects of highly disruptive disasters, such as tropical 
cyclones, severe storms, and drought (Hoffmann and Muttarak 
2017). Disaster risk reduction has been shown to mitigate the 
economic impacts of natural disasters (Shreve and Kelman 
2014). Mitigation efforts could be input into the probabilis-
tic models in order to quantify, forecast, and understand the 
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impact of mitigation strategies on the total economic costs of 
disasters. The ability to mathematically quantify different com-
plex natural disasters can be used by policymakers to compare 
different scenarios at different levels of severity.

The data collected by NCDC show some limitations. Some 
natural disaster losses take a long time for the economic 
impacts to be fully realized. The models are also limited to 
natural disasters contained in the dataset and do not consider 
other types of disruptive events, such as a pandemic or terror-
ist attacks. Disasters that cost less than $1 billion are excluded 
from this analysis. Billion-dollar disasters account for 80% of 
the damage from all recorded weather and climate events in the 
USA (NCEI 2019), so the analysis in this article accounts for 
the vast majority of costs of natural disasters. A disaster that 
costs slightly less than $1 billion may eventually be included 
in the database if inflation increases the cost to $1 billion in 
current dollars. To our knowledge, no database exists that 
includes weather and climate events that cost less than $1 bil-
lion. Future research could seek to construct such a database 
and include sub-billion-dollar disasters in this analysis to pre-
sent a fuller picture of the costs of natural disasters in the USA.

A future extension of this work could also include a model 
with the number of deaths. Quantitative measures can be 
refined further by incorporating subject matter expertise 
through Bayesian analysis. Ultimately, the strength of these 
models lies in the ability to incorporate the complexities and 
uncertainties of natural disasters and to help quantify these 
uncertainties to enhance effective decision-making.

These types of models can help policymakers understand 
the risk of large-scale natural disasters and help them be bet-
ter prepared and create a more resilient nation. This article 
provides one way of quantifying and understanding risks in 
the overall efforts toward building risk management strate-
gies. Quantifying and analyzing the costs of these disasters 
using probabilities can inform policymakers about how much 
resources and budget should be allocated in order to prepare 
for and hopefully reduce the frequency and magnitude of these 
billion-dollar disasters.
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