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Abstract
Lignocellulosic biomass resources include agri-waste and agri-biomass which are utilized as a suitable feedstock for bioen-
ergy production. The recalcitrant nature of these biomass can be reduced by the application of various pretreatment methods 
to access the cellulosic content. This study depicts the evaluation and ranking of different pretreatment methods, and selecting 
the rank 1 as the best pretreatment method using multiple attribute decision-making approach to facilitate the increased biogas 
yield. The evaluation was done using technique for order preference by similarity to ideal solution (TOPSIS) and integrated 
design of experiments (DoE)–TOPSIS. Seven alternatives with five relevant attributes were adopted for this study. Based on 
the above decision-making framework, alkaline pretreatment (Ca(OH)2 (8%)) option was ranked first for both the techniques. 
The second and third options were NaOH and NH3.H2O (10%) pretreatment, respectively. The integrated DoE–TOPSIS 
method has reduced the uncertainty in results by considering different weight sets and replications. The model results and 
experimental results were in good agreement and portray the best pretreatment method to be employed in the anaerobic diges-
tion, thus, minimizing the series of digestion test during the downstream process of pretreatment aided anaerobic digestion.

Keywords  Decision-making · Pretreatment · Technique for order preference by similarity to an ideal solution · Design of 
experiments · Anaerobic digestion

1  Introduction

Nowadays, conventional fossil fuels are replaced by renew-
able energy sources due to several drawbacks such as emis-
sions that cause global warming, fuel depletion, and other 
severe environmental impacts. In response to the rise in 
global energy demand, Biogas Technology (BT) has widely 
attracted the attention of researchers abided by green energy 
sources. Lignocellulosic biomass mainly agricultural resi-
dues, energy crops, and other municipal wastes can be uti-
lized as a substrate for the most significant energy conver-
sion using anaerobic digestion process (Liew et al. 2011). 
Moreover, its renewability and ample availability in low cost 
account these wastes to be a potential raw material for the 

energy generation. In this context, an increase of 2.5% in the 
biomass supply for energy has been estimated yearly since 
2010. According to the current studies, REN21 (Renewables 
2017 global status report 2017) reported that India holds a 
biogas capacity of 300 MW and many industrial processes 
follow waste to the energy concept to produce biomethane to 
tackle waste disposal problems. The use of biomass energy 
was in two forms: (1) traditional uses and (2) modern uses. 
Burning of biomass on fire for heating and cooking belongs 
to traditional uses, whereas the production of bioethanol, 
biogas, and other biofuels from biomass belongs to the mod-
ern use.

Anaerobic digestion (AD) process is the breakdown of the 
organic matter to produce biogas with the aid of a diverse 
group of microorganisms. Biogas has a composition of 
methane, CO2, and traces of other gases. It is the microbial 
consortium that carries out different activity starting from 
the hydrolysis phase to methanogenesis phase during the 
biogas conversion. Anaerobic digestion completes in a series 
of four metabolic phases: (I) hydrolysis, (II) acidogenesis, 
(III) acetogenesis, and (IV) methanogenesis. In phase I, the 
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complex organic matter disintegrates into simpler mono-
mers by hydrolysis and microorganism starts their micro-
bial activity after this stage. In phase II, volatile fatty acids 
(VFA) were formed from the monomer units by fermenta-
tive bacteria and called acidogenesis stage. Later, in phase 
III of acetogenesis, VFAs are converted to acetic acid, H2, 
and CO2 by acetogens. Finally, in phase IV of the methano-
genesis stage, conversion to methane and CO2 takes place 
through the action of methanogens. This method scores the 
best option out of all other methods for the environmental 
balance (Vasco-correa et al. 2018).

1.1 � Lignocellulosic biomass: a substrate for biogas 
production

Plant biomass residues obtained as a by-product from agri-
cultural and industrial processes serve as a sustainable car-
bon pool for bioenergy production. Plant biomass mainly 
consists of polymers such as cellulose (40–50%), hemicel-
lulose (20–30%), lignin (10–25%), and traces of extractives 
(Kim and Dale 2004). Cellulose forms the inner core, and 
hemicellulose and lignin act as the encrusting material 
(Anwar et al. 2014; Saini et al. 2015). After hydrolysis, the 
sugar components such as cellulose and hemicellulose are 
easily fermentable, which makes them a better feedstock for 
the biogas production. Cellulose is a polysaccharide poly-
mer of glucose disaccharides, strongly linked with β-1, 4 
glycosidic bond and attached with hydroxyl groups form-
ing a linear structure. Within the structure, they differ their 
orientation leading to different crystallinity levels. At high 
crystallinity level, the degradation rate of the cellulose 
reduces (Dulermo et al. 2016). Hemicellulose is a branched 
and amorphous kind of substance which is readily suscepti-
ble to thermal, chemical, and biological hydrolyses. Lignin 
is the most complex, hydrophobic, aromatic, and amorphous 
heteropolymers found in biomass. It is made up of sinapyl 
and coniferyl alcohols forming a firm 3-D structure of cell 
wall (Guo et al. 2014; Zheng et al. 2014). The lignin hinders 
the hydrolysis process accounting for the rate-limiting step 
in the anaerobic digestion process. This hindrance necessi-
tates the application of pretreatment for the lignocellulosic 
biomass before the AD. The pretreatment causes the lignin 
degradation and uncovers the hemicellulose and cellulose for 
the microbial attack to increase the biogas yield. Softwood 
contains higher lignin content than hardwood and agricul-
tural residues. So, the softwood resists the bioenergy conver-
sion even after pretreatment (Olusola and Omojola 2013).

1.2 � Pretreatment methods of lignocellulosic 
biomass

The application of pretreatment such as physical, chemi-
cal, biological, enzymatic, thermal, and their combination 

on various lignocellulosic biomass helps them to overcome 
the recalcitrance through structural and chemical changes 
during hydrolysis.

Physical pretreatment comprises of mechanical (mill-
ing and grinding), hydrothermal (liquid or gaseous), irra-
diation, and extrusion processes (Amin et al. 2017). The 
hydrothermal treatment (liquid hot water) of sugar beet 
pulp at 160 °C yielded four times more free glucose than 
at 120 °C. This glucose yield entailed an increase in the 
methane yield by 76% when compared with the raw sugar 
beet pulp (Zieminski et al. 2014). Chemical pretreatment 
method is a promising and effective method of degrad-
ing complex organic substrates using different chemicals 
with different nature. They can be roughly grouped into 
alkaline, dilute acid, organosolv (Mancini et al. 2018), 
oxidizing agents, etc. The reagents involved are sodium 
hydroxide (NaOH), sodium carbonate (Na2CO3), sodium 
bicarbonate (NaHCO3), calcium hydroxide, sulphuric 
acid (H2SO4), acetic acid, citric acid, hydrogen peroxide 
(H2O2), acetone, ethanol, ammonia, etc. Other inorganic 
salts such as sodium chloride (NaCl), and calcium chloride 
(CaCl2). are also used in chemical pretreatments of ligno-
cellulosic biomass (Achkar et al. 2018; Kaur and Phutela 
2016a; Pellera and Gidarakos 2017).

Biological pretreatment includes the bacterial and fun-
gal action to rupture the rigid lignocellulosic cell wall. This 
method accounts to be low cost, inhibition free and environ-
mental friendly with no chemical input, only if an appro-
priate selection of the microbes (bacterial strain) is done. 
The only drawback is that it consumes time when compared 
to other treatment methods (Barua et al. 2018). The recent 
introduction of the advanced oxidation process in the pre-
treatment of biomass along with the aid of UV irradiation 
has glorified the new chances for its combined applications. 
The studies have revealed that the oxidative fractionation of 
lignin takes place during the pretreatment and the by-prod-
ucts formed do not cause any inhibitions to the anaerobic 
digestion process (Alvarado-Morales et al. 2016). Research-
ers are now more interested in the combination of various 
pretreatments, i.e., physicochemical, thermochemical, etc. 
(Alexandropoulou et al. 2016; Ethaib et al. 2018; Kaur and 
Phutela 2016a). An extensive study on the enhancement of 
digestibility by enzymatic, ultrasounds, and their combina-
tions by Pérez-Rodríguez, García-Bernet, and Domínguez 
(2016) have shown some impressive results. They found 
that ultrasound pretreatment showed a detrimental effect 
on methane production, whereas the enzymatic hydrolysis 
showed a beneficial rise in methane production. The relo-
cation of lignin forms a shield over the substrate thereby 
blocking the biodegradability, which was the prime reason 
for their detrimental effect. The prior application of ultra-
sound to the enzymatic hydrolysis did not have much rise in 
methane generation potential.
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1.3 � Efficacy of pretreatment method and its issues

The effective pretreatment of biomass involve many key 
features. The pretreatment option adopted should be a low 
cost both in capital as well as operational aspects. It should 
be applicable in wide range and have to be effective in the 
recovery of most of the biomass components in an amena-
ble form. It should not produce any inhibitory compounds 
that inhibit the fermentative microorganism growth or the 
hydrolytic enzymes action and should be energy efficient 
(Hendriks and Zeeman 2009). The efficacy of pretreatment 
also depends on the feedstock characteristics (e.g., Ligno-
cellulosic biomass) and in addition to that lignocellulosic 
biomass in a bulk quantity requires a severe pretreatment 
(alkali, acidic, thermal, and thermochemical) method (Amin 
et al. 2017; Costa et al. 2014; Ward-Doria et al. 2016). How-
ever, improper implementations of these pretreatments can 
show negative influence on anaerobic digestion. Nowadays, 
combined bioethanol–biogas production process is gaining 
attraction as they contribute to energy-intensive bio refin-
ery platform in near future. Various pretreatment methods 
have both advantages and disadvantages but process cost 
and consumption of energy plays a crucial role in selection 
for process upscaling application. Thus, economic feasi-
bility with the derived benefits in form of waste minimi-
zation, biogas production, and digestate as bio fertilizers 
should be the watchword for the selection of pretreatment 
method (Noonari et al. 2017). Research on the pretreatment 
methods are still going on and these parameters considered 
should balance against the entire cost involved and steps in 
the down streaming process. It is complicated to evaluate 
and compare various pretreatment methods as they include 
total processing (upstream and downstream) cost, initial 
investment, recycle of chemicals, and treatment systems 
for wastes. This calls the need for a decision-making in the 
pretreatment method selection for the given feedstock from 
the various methods available so that methane yield can be 
maximized.

1.4 � Preliminaries

Multi-attribute decision-making (MADM) is one among 
the divisions of multi-criteria decision-making (MCDM). 
MADM helps in making the best possible decisions for vari-
ous alternatives based on attributes which can be quantita-
tive or qualitative in nature. Several methods were employed 
in this decision-making model which are outranking, prior-
ity, distance, and mixed methods. The methods adopted can 
be of fuzzy, deterministic, or stochastic in nature or even a 
combination of the above. Each method differed in its char-
acteristics and systematized into a single decision-making 
method or a grouped one. In the MADM model, the alter-
natives were customized from a particular pool of objective 

functions rather than taking it explicitly. These alternatives 
were assessed against the set of attributes, and the best from 
the various alternatives were chosen with respect to the 
attributes (Pohekar and Ramachandran 2004).

The primary available techniques in MADM modelling 
is simple additive weight (SAW) method, weighted product 
method (WPM), compromise and goal programming (CP 
and GP), technique for order preference by similarity to ideal 
solution (TOPSIS), Analytical Hierarchical Process (AHP), 
Elimination and Choice Translation Reality (ELECTRE), 
Preference Ranking Organisation Method for Enrichment 
evaluation (PROMETHEE) (Ameri et al. 2018; Dhanisetty 
et al. 2017; Mousavi-nasab and Sotoudeh-Anvari 2018; 
Zaman et al. 2018), and Multiple Attribute Utility Theory 
(MAUT) (Pohekar and Ramachandran 2004). Among the 
different approaches, TOPSIS and AHP were extensively 
used for logical decision-making. MADM model has found 
applications in every field of science and technology for the 
selection of the best choice from many alternatives. This 
modelling makes the subtle task of selection to more easier 
and simpler (Ashby 2000). Rao and Davim (2008) assessed 
the selection of material by evaluating and ranking the vari-
ous materials using TOPSIS and AHP techniques of MADM 
model.

TOPSIS approach is based on the selection of alternatives 
which has least Euclidean distance from an ideal solution. 
In the given database, the ideal solution can be hypotheti-
cally best or hypothetically worst from the attribute value, 
assimilating maximum and minimum values, respectively. 
The choice of alternatives was close enough to hypothetical 
best and far enough to hypothetical worst. In a decision-
making process, tangible and intangible attributes were con-
sidered by prioritizing those attributes by comparing one by 
one. Now, AHP plays a crucial role in the comparison by 
reducing the difficulty level and making the decision pro-
cess flexible and helps in forming the relative importance of 
each parameter (Tan et al. 2013). Expert’s choice of weights 
played a significant role in the decision-making process and 
the weights can be given by a single expert or a group of 
experts. In the real-time application of MADM, uniqueness 
in the expert’s preferences makes them reluctant to assign 
the specific numerical values for the relative importance 
matrix. In this regard, the results from MADM techniques 
were meant to be sensitive to this relative importance (domi-
nance weights) of each attribute. Hence, it is necessary to 
ascertain a set of unique weights which is very important to 
make the decision-making process accurate.

The primary intent of this research is to predetermine 
the best pretreatment method for biogas generation prior 
to the anaerobic digestion. The study includes the inte-
gration of Design of Experiments (DoE) with the TOP-
SIS approach to tackle the difficulty in assigning weights 
during the selection process. A comparison in the ranks 
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between integrated DoE–TOPSIS and TOPSIS was accom-
plished along with this research. According to the previous 
studies, the DoE–TOPSIS features a set of weights which 
makes them less sensitive to frame the relative importance 
or dominance of weights (Sabaghi et  al. 2015; Tansel 
2012; Yusuf 2014; Wang et al. 2013). The selection of the 
best pretreatment method was done based on the prioritiza-
tion results from both the techniques. The direct selection 
of the pretreatment method can be employed without per-
forming the actual set of AD experiments. Thus, limiting 
the digesters count to one single digester without compro-
mising the maximum biogas yield.

2 � Materials and methods

2.1 � Attributes involved in pretreatment and AD 
process

The varied and complex chemical structure of biomass 
resists the degradation process. The optimization of the 
pretreatment method depends on the type of lignocellu-
losic material. The compositional and structural properties 
include lignin content, hemicellulose content, silica con-
tent, crystallinity index, surface area, the degree of acety-
lation, and degree of polymerization of cellulose (Zheng 
et al. 2014). The attributes can be classified as general, 
physical, and chemical attributes. The physical attributes 
include Colour, odour, temperature, moisture content, total 
solids, and volatile solids. Similarly, chemical attributes 
include pH, alkalinity, volatile fatty acids (VFA), carbon/
nitrogen ratio (C/N), chemical oxygen demand, biochemi-
cal oxygen demand, sulphates, phosphates, lignin content, 
silica content, dissolved carbohydrates, lignin/cellulose 
ratio, uronic acids, heavy metals, inhibitory by-products 
(such as hydroxymethylfurfural (HMF), furfural, etc.), 
Ammonia, etc. Other general attributes comprise of the 
nature of the feedstock, its source, price, seasonal avail-
ability and production rate, the age of feedstock, biogas 
productivity, methane composition, and mode of transport. 
In the attributes as mentioned earlier, most of them are 
interdependent. Any variation in one attribute affects the 
other (Cioabla et al. 2012). These attributes are critical 
in the case of pretreated lignocellulosic materials for the 
anaerobic digestion.

The attributes can be mentioned in two ways, i.e., either 
quantitative or qualitative. Quantitative measurements of 
attributes are value based, whereas the qualitative measure-
ments are some characteristics such as very poor, poor, aver-
age, good, excellent. The conversion of these qualities into 
some values was done by using a set of scales ranging from 
1 to 9 (Rao and Baral 2011).

2.2 � TOPSIS approach

TOPSIS method is a widely accepted technique known for 
its simplicity and user friendly approach for ranking the 
alternatives according to the ranking score obtained. It is 
also well known for its easy computational practice, and 
they can be grouped with other MADM approaches solv-
ing the complex problems in structured and easy manner. 
The advantage of TOPSIS over other methods is that inter-
preted data can be given directly as input by not consider-
ing the past mathematical calculations (Tansel and Ergun 
2011; Yusuf 2014). In this study, the methodology was 
used for the evaluation and ranking of the pretreatment 
method for the lignocellulosic biomass with due emphasis 
on attributes. The methodology is as follows: (1) selection 
of pertinent attribute, (2) TOPSIS analysis, and (3) selec-
tion from the priority list (Bhangale et al. 2004; Kumar 
and Agrawal 2009).

2.2.1 � Phase 1: Selection of pertinent attribute

The application-specific attributes were selected from 
the pool of attributes considered for the pretreated sub-
strate anaerobic digestion. The irrelevant attributes were 
eliminated.

2.2.2 � Phase 2: TOPSIS analysis

The analysis using TOPSIS was done as explained below 
in steps 1–8.

Step 1: Decision matrix (DM) development:
The decision matrix contains the attribute values corre-

sponding to the alternatives. The attributes were arranged 
in a column, whereas the alternatives were arranged along 
the row to form a matrix as given in Eq. 1:

where, i = 1, 2, 3… m and j = 1, 2, 3… n; m is the number of 
attributes, n is the number of alternatives.

Step 2:  normalized decision matr ix (NDM) 
development.

The computationally efficient and symmetric vector 
normalization of the decision matrix values brings all 
attribute values to the same dimensionality (Vafaei et al. 
2015; Yang et al. 2017). This transformation process helps 
in comparing the input data in a common scale and are 
done using Eq. 2:

(1)D =
[
xij
]
m×n

,

(2)rij =
Xij�∑m

u=1
Xuj2

,
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The rij matrix denotes the normalized decision matrix.
Step 3: relative importance matrix (RIM) development.
The field experts frame the RIM by judging the impor-

tance of one attribute to another attribute concerning the 
problem statement. The scale of judgment was based 
on the Analytical Hierarchical Process (AHP) by Saaty 
(2008).

Step 4: formation of Eigenvalues.
The Eigenvalues calculation and the weights associated 

with each attribute were obtained using MATLAB code. 
The procedure to find the weights for each criterion was 
developed by Saaty (2008)and represented as a matrix wij. 
The determination of consistency index (CI) and consist-
ency ratio (CR) were checked inorder to check the consist-
ency of the judgement. If the CR value is lesser or equal 
to 0.1, the considered judgemental matrix is consistent 
in nature (Alonso and Lamata 2006; Kolios et al. 2016).

Step 5: development of a weighted normalized matrix 
(WNM).

These weights were incorporated into the normalized 
decision matrix to obtain the weighted normalized matrix. 
Thus, the values attained for each attribute can be struc-
tured to a comparable form and denoted as given in Eq. 3:

Step 6: estimation of ideal best and ideal worst solution.
Let I+ and I− be the ideal best and ideal worst solution 

for the given attributes. The ideal best and the ideal worst 
solutions were found by considering maximum and mini-
mum values from the alternatives for each attribute. If the 
jth attribute is a beneficial factor, it follows as mentioned 
in Eqs. 4 and 5:

If the attribute is non-beneficial, consider Eqs. 6 and 7:

Step 7: calculation of separation measures.
The distance between each attribute and its correspond-

ing ideal positive solution (I+) is called a positive separa-
tion measures (PSM). Similarly, the distance between the 
attributes and the ideal negative solution (I−) is called a 
negative separation measure (NSM). The PSM and NSM 
calculations for each alternative are given as mentioned 
below:

(3)WNM, aij = wij × rij,

(4)I+ = max
{
aij, i = 1, 2, 3… ,m

}
,

(5)I− = min
{
aij, i = 1, 2, 3… ,m

}
,

(6)I+ = min
{
aij, i = 1, 2, 3… ,m

}
,

(7)I− = max
{
aij, i = 1, 2, 3… ,m

}
,

Step 8: calculation of TOPSIS score or relative closeness 
of a particular alternative.

The TOPSIS score or relative closeness of each alterna-
tive to its ideal solution is found using Eq. 10:

2.2.3 � Phase 3: Selection from the priority list

According to the decreasing order of the TOPSIS scores, 
a ranking list of the alternatives was provided. The alter-
natives having the same TOPSIS scores have assigned the 
same rank. The first rank alternative was selected as the best 
alternative or the best pretreatment method.

2.3 � Integrated TOPSIS‑DOE approach

Design of experiments (DoE) is a statistical method applied 
to evaluate the effect of various factors simultaneously. The 
changes in the input variables (independent variables) are 
made intentionally to determine their effects on the output 
variable (dependent variables). In this study, full factorial 
design (2k) is used to illustrate the variation in the TOP-
SIS scores with the attributes. The ‘k’ denotes the number 
of attributes considered in the model. The upper and lower 
levels of attributes selected for the factorial design is the 
maximum and minimum values that an attribute can accept. 
Generally, in the DoE, the critical attributes are determined 
by fitting the data related to the problem statement to a 
polynomial in a multiple linear regression analysis (Yusuf 
2014). In this design, we try to examine the linear effects of 
attributes on TOPSIS scores. Figure 1 shows the steps in the 
integrated TOPSIS–DoE approach.

3 � Results and discussion

The data for the analysis of model and to select the best 
pretreatment method to yield maximum biogas (Song et al. 
2014) can be referred from Table 1 along with their nota-
tions. They have examined the effect of seven pretreatment 
methods in biogas production under batch mode and on 
the mesophilic condition. The pretreatments applied were 
H2SO4 (2%), HCl (2%), CH3COOH (4%), H2O2 (3%), NaOH 
(8%), Ca(OH)2 (8%), and NH3.H2O (10%).

(8)Si+ =

√(
ai1 − I+

1

)
+
(
ai2 − I+

2

)
+⋯ + (ain − I+

n
)

(9)Si− =

√(
ai1 − I−

1

)
+
(
ai2 − I−

2

)
+⋯ + (ain − I−

n
)

(10)TOPSIS scores =
S−

S+ + S−
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Fig. 1   Application steps of the integrated TOPSIS–DoE approach

Table 1   Data considered for 
modelling (Song et al. 2014)

Pretreatment method Decision matrix

Cellulose (%) Hemicellu-
lose (%)

Lignin (%) Total carbon 
(%)

C/N ratio

2% H2SO4 41.3 22.5 7.3 30.6 38.7
2% HCl 40.4 22.2 7.2 32.4 39.5
4% CH3COOH 30.4 15.1 6.7 26.4 32.2
3% H2O2 30.8 14.3 5.7 25.1 30.6
8% Ca(OH)2 46.7 16.2 4.6 33.7 42.1
8%NaOH 46.3 16.4 5.4 29.4 38.7
10% NH3.H2O 45.1 17.8 5.5 30.7 37.4
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3.1 � TOPSIS model

3.1.1 � Phase 1: Selection of pertinent attribute.

As the main aim of the present decision-making is to maxi-
mize the biogas generation, attributes that are highly influ-
encing the methane generation can be considered. Pretreat-
ment option mainly facilitate the reduction in recalcitrance 
and enhances the methane production. The pretreatment 
helps in reduction of lignin content can increase the acces-
sibility to cellulose and hemicellulose. From the various 
attributes considered for pretreatment options, some are 
interdependent in nature. For example, any reduction in the 
cellulose, hemicellulose, and lignin content forms the degra-
dation compounds which are inhibitory in nature. Moreover, 
lignin content shows a negative correlation with the methane 
production as studied by Monlau et al. (2012). So, cellu-
lose hemicellulose and lignin content can be considered as 
an important attribute responsible for methane production. 
The analysis of total carbon and C/N ratio affirmed that on 
pretreatment the TC decreases and C/N ratio drops down to 
a range of 20–30 which is crucial for an efficient anaerobic 
digester performance (Song et al. 2014). Hence, the selected 
pertinent attributes for the present study was cellulose, hemi-
cellulose, lignin content, total carbon (TC), and C/N ratio. 
The database for the study was obtained from the batch 
mode digestion study done by (Song et al. 2014) on corn 
stalks. The importance is given for the selection of attributes 
as beneficial and non-beneficial attributes (Bhangale et al. 
2004). In this research, the attribute values were consid-
ered after pretreatment with cellulose, hemicellulose, total 
carbon, and C/N ratio as the beneficial attributes and lignin 
content as the non-beneficial attribute. The selection of 
the pertinent attributes from the list of attributes primarily 
depends on the designer’s choice by considering economic 
feasibility, technical difficulty, field conditions, and viability 
(Rao and Baral 2011).

3.1.2 � Phase 2: TOPSIS analysis.

The explanation for the analysis of TOPSIS is given below.
Step 1: decision matrix (DM) development:
The matrix contains the attribute values (column-wise) 

corresponding to the alternatives (row-wise). The attributes 
were denoted as ‘A’ and alternatives as ‘P’. In this illustrative 
example, it forms a 7 × 5 decision matrix and the decision 
matrix (D) is shown in Eq. 11:

Step 2: normalized decision matrix (NDM) development.
Vector normalization was done and have made into sin-

gle dimensionality with values less than 1. The NDM was 
developed as shown in Eq. 12:

Step 3: relative importance matrix development.
The group of experts decides the relative importance 

matrix (RIM) by scaling the judgment from 1 to 9 (Saaty 
2008) and is depicted as shown in Eq. 13:

Step 4: determination of weights.
The Eigenvalues for the weight determination was calcu-

lated from the Eigenvectors of relative importance matrix 
Eigenvalues using MATLAB code. The procedure to find the 
weights for each criterion was developed by Saaty (2008). 
The weights for each attribute is shown as given in Eq. 14. 
The CI and CR values for the judgement set was calculated 
as 0.077 and 0.068, respectively, which is less than 0.1 
shows a better consistency and reliability.

 
Step 5: development of a weighted normalized matrix 

(WNM).
The normalized decision matrix multiplied to the attrib-

ute weight matrix gives a weighted normalized matrix as 
detailed in Eq. 15:

(11)D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cellulose Hemicellulose Lignin TC C/N

41.3 22.5 7.3 30.6 38.7

40.4 22.2 7.2 32.4 39.5

30.4 15.1 6.7 26.4 32.2

30.8 14.3 5.7 25.1 30.6

46.7 16.2 4.6 33.7 42.1

46.3 16.4 5.4 29.4 38.7

45.1 17.8 5.5 30.7 37.4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)NDM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.3839 0.4712 0.4501 0.3869 0.3929

0.3756 0.4649 0.4439 0.4096 0.4010

0.2826 0.3162 0.4131 0.3338 0.3269

0.2863 0.2995 0.3514 0.3173 0.3107

0.4304 0.3435 0.3329 0.3717 0.3929

0.4342 0.3393 0.2836 0.4261 0.4275

0.4193 0.3727 0.3391 0.3881 0.3797

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(13)RIM =

⎡
⎢⎢⎢⎢⎢⎣

1.0000 5.0000 7.0000 0.2000 0.1100

0.2000 1.0000 3.0000 4.0000 7.0000

0.1400 0.3300 1.0000 0.2000 0.1100

5.0000 0.2500 5.0000 1.0000 0.1400

9.0000 0.1400 9.0000 7.0000 1.0000

⎤⎥⎥⎥⎥⎥⎦

(14)w = [0.1902 0.1311 0.4132 0.1491 0.1164 ]
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Step 6: estimation of ideal best and ideal worst solution.
The maximum and minimum values of attributes account 

for the ideal best and the ideal worst solution. The ideal 
best and worst solution for cellulose, hemicellulose, lignin 
content, total carbon (TC), and C/N ratio are tabulated in 
Table 2.

Step 7: Separation measure determinations.
The Euclidean distance between the alternative and its 

particular ideal solution gives the separation measure for 
each alternative. The positive separation measure and nega-
tive separation measure for each alternative are shown in 
Table 3.

Step 8: calculation of TOPSIS score or relative closeness 
of a particular alternative.

The TOPSIS scores calculated as per Eq. 10 are given 
in Table 3.

3.1.3 � Phase 3: Selection from the priority list.

The ranking of alternatives was in accordance with the 
decrease in the suitability index value. The alternative 
with the highest TOPSIS score has chosen as the best 

(15)WNM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.0730 0.0618 0.1860 0.0577 0.0457

0.0715 0.0609 0.1834 0.0611 0.0467

0.0538 0.0414 0.1707 0.0498 0.0380

0.0545 0.0392 0.1452 0.0473 0.0361

0.0819 0.0450 0.1376 0.0554 0.0457

0.0826 0.0445 0.1172 0.0635 0.0497

0.0798 0.0489 0.1401 0.0579 0.0442

⎤⎥⎥⎥⎥⎥⎥⎥⎦

pretreatment method. The ranking for each alternative is 
shown in Table 3 along with separation measures and TOP-
SIS scores.

3.2 � Integrated TOPSIS‑DoE method

Step 1: factor level determination.
As per Table 1, cellulose (A1) with maximum level of 

49.3 and minimum level of 30.4, hemicellulose (A2) with 
maximum level of 28.8 and minimum level of 14.3, lignin 
(A3) with maximum level of 7.5 and a minimum level of 4.6, 
TC (A4) with maximum level of 42.3 and a minimum level 
of 25.1, and C/N ratio (A5) with maximum level of 51.4 and 
a minimum level of 30.6 were determined as the levels of 
factors affecting the selection of best pretreatment method.

Step 2: decision matrix development.
The independent attribute variables (A1, A2, A3, A4, 

and A5) along with their factor levels were used as an input 
to obtain the TOPSIS scores which forms the dependent 
output variables in the TOPSIS model. A 25 full factorial 
design with 32 combinations were studied. Only minimum 
and maximum levels of each attribute were considered to 
perform the data collection using TOPSIS models.

Step 3: TOPSIS model replications.
The replications were carried out by taking random weight 

sets which follows independency for the set of combinations. 
In this study, 3 replications performed accounts for 32 combi-
nations using 3 sets of independent random attribute weights. 
The weights were determined using the 9 point scale (Sen 
and Yang 1998) and incorporated into the decision matrix. 
The 25 full factorial design was based on five attributes, two 
levels, and three replications as given in Table 4.

Step 4: regression model determination.
The evaluation of experimental results can be done using 

ANOVA table which summarizes the main effects and the 
interactions. The ANOVA (Analysis of Variance) with a 
five-factor interaction (5FI) effect helps to analyse the DoE 
layout using the Design expert 10 software. The ANOVA 
results are shown in Table 5. The Fischer (F value) of 4.33 
for the model shows that the model was significant. The 
terms corresponding to p value < 0.05 indicates their signifi-
cance with 95% of confidence. The significance of the attrib-
utes and their interactions can be studied using ANOVA.

From Table 5, it is clear that lignin content and C/N ratio 
interactions were significant model terms (p value < 0.05), 
whereas their two-factor, three-factor, four-factor, and 
five-factor interactions were non-significant terms (p 
value > 0.05). So, the regression equation has only statisti-
cally significant terms as coded factors.

The TOPSIS score obtained for the above model is rep-
resented as follows:

Table 2   Ideal best and ideal worst solutions for the attributes

Attribute Cellulose Hemicellu-
lose

Lignin TC C/N ratio

Ideal best (+) 0.0826 0.0618 0.1172 0.0473 0.0361
Ideal worst 

(-)
0.0537 0.0392 0.1859 0.0635 0.0497

Table 3   Positive and negative separation measures, TOPSIS scores, 
and ranking of alternatives

Alternatives Positive 
separation 
measure

Negative 
separation 
measure

TOPSIS scores Rank

P1 0.0708 0.0304 0.3007 5
P2 0.0693 0.0283 0.2903 6
P3 0.0641 0.0237 0.2703 7
P4 0.0456 0.0459 0.5015 4
P5 0.0292 0.0569 0.6611 2
P6 0.0273 0.0747 0.7323 1
P7 0.0295 0.0541 0.6466 3
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Equation 16 represents the linear regression relation 
between C/N ratio, lignin content, and the TOPSIS scores 
since no any significant interactions among the attributes. 
The positive coefficient term indicates direct proportional 
whereas, negative coefficient indicates inversely propor-
tion to the response. Thus, we can confirm the negative 
correlation of the lignin and a positive correlation of C/N 
ratio with the considered response. The coefficient of 
determination (R2) value of 0.95 shows that the significant 
factors model the response well.

Step 5: Prioritizing of alternatives.
Now, the regression can be used to find the TOPSIS 

scores for various alternatives. The decision makers were 
able to rank the alternatives according to the decreasing 
TOPSIS scores. Table 6 shows the ranking of the alterna-
tives obtained.

The selection of the best pretreatment method has 
been made by analysing the attributes using TOPSIS and 
integrated TOPSIS–DoE approaches. Seven pretreatment 
methods were taken into consideration in this study. The 
decreasing value of TOPSIS score portrays the ranking 
of each alternative as given in Table 6. From the above 
studies, it was observed that alkaline pretreatment have a 
higher rank than the acidic pretreatment. As per the exper-
imental study was done by Song et al. (2014), the highest 
methane yield was obtained for Ca(OH)2 and H2O2 pre-
treatment followed by NaOH pretreatment. With due con-
sideration with the cost, alkaline pretreatment was found to 
be efficient for the biogas production. As per our statistical 
study, the results obtained matches well with the results 
of an experimental study done by Song et al. (2014). The 
results from TOPSIS and TOPSIS–DoE analysis have a 
close resemblance and can be adopted for decision-making 
in terms of selection of the best pretreatment method for 
biogas production.

Anaerobic digestion process is complex in view with 
the operational conditions, its maintenance, biogas qual-
ity and quantity, feedstock characteristics and its pretreat-
ment, performance time, and digestate quality which is 
evident from Tables 7, 8, and 9 in appendix. So, the evalu-
ation and selection of pretreatment method for a particu-
lar feedstock is a must in order to ease the further down 
streaming process. Thus, direct selection of the pretreat-
ment can be done without actually performing the anaero-
bic digestion experiment for the entire digestion period 
which in turn saves time and energy. The proposed meth-
odology helps the biogas unit operators to select the best 
pretreatment option for the particular feedstock based on 
the cellulose, hemicellulose, and lignin content in order to 

(16)

TOPSIS score = 36.59904 + ((C∕N ratio × 1.20851)

−(5.27028 × lignin content))
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maximize energy yield. This makes the process economi-
cally feasible.

4 � Conclusion

The selection of the best pretreatment method for enhanced 
biogas production from the lignocellulosic substrate is 
always a chaotic task. Pretreatment is essential in the case 
of lignocellulosic substrates as the lignin content cause 
hindrance to the anaerobic digestion. The prioritization 
of the pretreatment method was done using MADM tech-
nique to figure out the best out of all.

There were many attributes concerned with the pretreat-
ment aided anaerobic digestion. The selection of perti-
nent attributes can minimize the time taken for decision-
making. However, the increase in the number of pertinent 
attributes can raise the accuracy of the TOPSIS scores. 
The relative importance matrix varies with respect to the 
attributes and problem statement. The ideal best and worst 
solutions were calculated based on the attribute data for 

various alternatives. The ranking done for each alternative 
from the suitability index value gives the priority list. The 
weight sets reduce the sensitivity of the weights, and the 
regression equation was obtained using DoE. Further, the 
calculated TOPSIS scores from the regression equation 
were used for the ranking.

The best option obtained was the alkaline pretreatment 
both in terms of efficiency and economy. Similarly, the worst 
option was acidic pretreatment methods. The confirmation 
of the best pretreatment method obtained from the two tech-
niques can be done using the experimental findings by the 
source. It was clear that alkaline pretreatment aided a rise 
in methane potential and it can be concluded that the model 
works well in prioritizing the pretreatment method for the 
sustainable conversion of lignocellulosic biomass to biogas.
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Appendix

See Tables 7, 8, and 9.

Table 5   ANOVA results for the 
model

Source Sum of squares df Mean square F Value p value
Prob > F

Model 30,611.74 5 6122.35 4.33 0.0014 Significant
A-Cellulose 170.63 1 170.63 0.12 0.7290
B-Hemicellulose 448.95 1 448.95 0.32 0.5744
C-Lignin 5606.28 1 5606.28 3.97 0.0494
D-TC 876.92 1 876.92 0.62 0.4329
E-C/N ratio 23,508.96 1 23,508.96 16.64  < 0.0001
Residual 1.272E + 005 90 1412.98
Lack of fit 39,050.02 26 1501.92 1.09 0.3780 Not significant
Pure error 88,118.47 64 1376.85
Cor total 1.578E + 005 95

Table 6   Comparison of ranking by TOPSIS and integrated TOPSIS–
DoE method

Alternatives TOPSIS 
values

Rank Integrated 
TOPSIS–
DoE scores*

Rank Difference 
between 
rank

P1 0.3007 5 44.8953 5 0
P2 0.2903 6 46.3891 4 2
P3 0.2703 7 40.2021 7 0
P4 0.5015 4 43.5388 6 −2
P5 0.6611 2 54.9088 2 0
P6 0.7323 1 63.2340 1 0
P7 0.6466 3 52.8107 3 0
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