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Abstract
Designing sustainable and resilient buildings is a complex process involving multiple actors and numerous, often conflict-
ing, criteria to describe the social, environmental, and economic consequences of design decisions. Multi-Criteria Decision 
Making (MCDM) is a well-established branch of systematic decision science that may be used to narrow the choice set and 
balance decision criteria and objectives. MCDM methods rely on eliciting decision makers’ (DM) criteria preferences through 
surveys—a critical, but often time-consuming and expensive process. This study compares two survey methods—Simple 
Multi-Attribute Rating Technique and Potentially All Pairwise RanKings of all possible Alternatives—used to capture DM’s 
preferences for subjective criteria relevant to the design of resilient and sustainable buildings. Significant differences were 
found between the results of the two methods, indicating that building design criteria are evaluated differently in different 
contexts. However, most DMs reported that both surveys accurately captured their preferences, complicating conclusions 
about DM’s actual preferences through single surveys. The design professionals surveyed also report lower cognitive load 
for the direct weighting method. Although this study does not report a preferred survey method, the findings suggest that 
great care must be taken when eliciting DM preferences, and when attempting to apply MCDM to building design decisions.

Keywords  Multi-Criteria Decision Making (MCDM) · SMART​ · PAPRIKA · Decision-making cognitive load · Criteria 
preference techniques

1  Introduction

Multi-Criteria Decision Making (MCDM) is a branch of 
science that is particularly useful in environments where 
conflicting criteria and objectives impose immense cogni-
tive burdens on decision makers (DMs). Decision making 
through MCDM breaks complex decisions into six steps: 
defining the problem; articulating the objective(s); identi-
fying stakeholders; defining criteria to measure objectives; 
weighting the criteria; and ranking the decision alternatives 

based on the objectives, criteria, and weights derived in 
previous steps (Triantaphyllou 2000). Unlike optimization 
approaches, MCDM works from a set of explicitly known 
feasible solutions. Furthermore, optimization demands a 
mathematical relationship between the criteria and the objec-
tive, which is almost impossible for many qualitative criteria 
(Gandibleux 2006). The design of resilient and sustainable 
buildings (RSB) can present conflicting—often qualitative—
criteria and objectives, and generally proceeds through the 
iterative refinement of feasible solutions, suggesting it might 
be a good candidate for MCDM and motivating the present 
study. MCDM relies on experts’ input to define and weight 
criteria, and the way these questions are asked can dramati-
cally affect both the responses and the cognitive load on 
the DM as they balance the project-specific requirements 
within a context of hazards and environmental priorities. To 
support decision making, this paper compares two survey 
methods frequently used to establish weightings in the pro-
cess of MCDM. The paper begins with a brief description of 
MCDM in Sect. 1, followed by discussion of sustainability, 
resilience, and decision making in the context of building 
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design in Sect. 2. Section 3 introduces the method used in 
this study, and Sects. 4 and 5 present the results and conclu-
sions, respectively.

2 � MCDM background

This paper assumes that the first three steps of an MCDM—
problem definition, articulation of objective(s), and identifi-
cation of stakeholders—have been carried out already. This 
does not mean that these are trivial tasks with little bearing 
on the MCDM process and results. Rather, they may be con-
sidered pre-conditions for the analytical portion of MCDM 
and their influence on outcomes have been discussed in 
detail elsewhere (e.g., Wang and Lee 2009). The following 
two sections discuss the fourth step—criteria selection—and 
especially the fifth step of criteria weighting in detail.

2.1 � Criteria selection

While there are many well-established methods for criteria 
identification, in all cases, criteria must exhibit four qualities 
(Phillips et al. 2017), namely be

•	 coherent with the overall objective
•	 measurable in some way
•	 presented on a common scale
•	 independent from one another.

In some instances, coherent criteria are readily available 
and easily measurable. For example, the criteria for a basic 
energy-retrofit project might include first cost and monthly 
energy use, each distinct from the other and both quantifi-
able using available tools and data. However, in many cases 
selecting or measuring the appropriate criteria presents a 
significant challenge. Subjective aspects like aesthetics 
or occupant comfort are not only difficult to measure, but 
also challenging to present on a common scale, and criteria 
independence is important to ensure that only the necessary 
criteria are included. Avoiding duplication reduces the com-
plexity of the problem and facilitates analysis.

The present study selected criteria with the Delphi 
method. First used in 1948, the Delphi method aims to 
improve the use of expert predictions in policy-making 
(Woudenberg 1991) through interactions among a group of 
experts to agree on decision criteria (Martino et al. 1976). 
The process begins with a dialogue about criteria that most 
affect an objective of the problem, followed by an iterative 
commenting procedure; these repeated cycles of discussion 
and revision allow experts to update their reflections and 
arrive at group consensus. Delphi enables knowledge dis-
covery and perspective sharing among experts with differ-
ent disciplinary backgrounds (Pill 1971), and so the process 

works well for complex problems that include considerable 
uncertainty and require multiple perspectives. However, the 
authority of researchers over the problem definition may 
cause them to select participants with a certain viewpoint, 
or to manage group dynamics, potentially introducing bias 
(Linstone and Turoff 2011). The lack of participant anonym-
ity can sway individuals to change their positions, exacer-
bating these challenges. Nevertheless, the Delphi method 
affords results at a reasonable time and cost (William and 
Webb 1994) even for problems demanding judgment and 
subjective expertise; when causal relationships are hard to 
validate; or when the problem needs to consider diverse 
opinions within a large group of people (Powell 2003; Yang 
et al. 2012), a good fit for the present study.

2.2 � Criteria weighting

After selecting the proper criteria of the problem, their rela-
tive importance or weights must be established as inputs 
for the alternative-ranking process. Criteria weight or value 
depends on the problem and context; for example, design-
ing RSB in a desert might prioritize water conservation, 
while projects with scarce funding might value economic 
cost above other considerations. Weights also reflect differ-
ent stakeholders’ values. Criteria weights directly affect the 
final ranking, so assigning accurate values to criteria is one 
of the most crucial steps in MCDM. There are two general 
approaches to criteria weighting: subjective and objective. 
Objective methods use mathematical calculation to arrive at 
the weights, whereas subjective methods are based on DMs’ 
opinions (Tzeng et al. 1998).

Objective methods are based on established mathematical 
procedures to assess or reconcile differences in the impor-
tance of individual criteria. They may require significant 
computational capacity, limiting the ability of DMs to revisit 
their judgments in a dynamic decision-making environ-
ment. Even in very technical cases, applications of objec-
tive methods are troublesome, as decisions nearly always 
involve diverse concerns (Maggino and Ruviglioni 2009). 
Objective methods tend to be more time-consuming, more 
expensive, and harder to execute than subjective approaches 
(Kamal 2012).

Subjective methods are based on DMs’ making trade-
offs among the criteria based on a subjective sense of rela-
tive importance, and the weights are easily adjusted if the 
objective of the problem changes. Although they demand 
little time or computational capacity, subjective methods 
incorporate human judgment—and the attendant impreci-
sion and ambiguity—and must carefully attend to internal 
consistency (Önüt et al. 2009), to deliver accessible methods 
for criteria weighting with multifarious concerns. The idea 
of human judgment seems to align with the application of 
professional judgement made by architects and engineers 
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working in the built environment to address the interests of 
multiple stakeholders, for example client budgets and the 
health safety and welfare of the public.

2.3 � Preference elicitation methods

Subjective weighting usually employs surveys to elicit 
DMs’ preferences. Preference in this context means the 
relative importance of each criterion to the decision maker. 
MCDM does not recommend one method to establish cri-
teria weighting over others, and similar decision-making 
problems employ different decision-making approaches. For 
example, a 2002 study to evaluate renewable energy strat-
egies obtained criteria preferences directly (Polatidis and 
Haralambopoulos 2002), while another applied pairwise-
comparison criteria weighting to a very similar problem in 
which the objective was to rank different renewable energy 
projects (San Cristobal 2011); neither study comments on 
the selection of method. This paper evaluates two subjec-
tive criteria preference elicitation methods—Simple Multi-
Attribute Rating Technique (SMART) and Potentially All 
Pairwise RanKings of all possible Alternatives (PAPRIKA), 
to test their possible applicability to RSB design problems.

SMART is a straightforward weighting method that uses 
simple additive weight (SAW) technique to obtain weights 
for individual criteria (Edwards 1977; Edward and Barron 
1994). After identifying the decision criteria, DMs assign 
the highest score to the most important criterion and score 
the rest of the criteria relative to that. Results are then nor-
malized to unity to obtain criteria weights. This method is 
simple to administer and easy for DMs to complete, but in 
its abstraction does not have an analog to contingent and 
sometimes messy building design process.

PAPRIKA is a pairwise method that presents DMs with 
a series of hypothetical scenarios in which all but two crite-
ria are held equal. Those two criteria have different values 
in the two scenarios, and the DM is required to assess the 
tradeoffs and select the more desirable scenario. Each time 
a DM makes a choice, PAPRIKA assigns points to the pre-
ferred criterion and updates the previous point assignments 
to determine which comparison to present next. It then 
continues the process until the final weights are calculated. 
PAPRIKA surpasses conventional pairwise methods which 
merely ask which of two criteria is more important and can-
not include multiple levels for each criterion or scenario-
based tradeoffs. Developed in 2004, PAPRIKA is relatively, 
appearing in academic literature from 2009 onward (Nose-
worthy et al. 2009). This study offers the first comparative 
analysis of PAPRIKA to other survey methods in the context 
of a real-world problem.

Donald Schön in his book The Reflective Practitioner 
suggests that when confronted with complex, unique, and 
uncertain situations, professionals engage in “reflective 

conversations” that seek to fit a framework of generic knowl-
edge and prior experience to the problem at hand. By repeat-
edly responding to the “back-talks” of this fitting exercise, 
professionals refine these frameworks, until the unique and 
uncertain situation comes to be understood (Schön 1983). 
Schön cites design decisions made by architects and engi-
neers as examples of reflective practice, and the similari-
ties with the repeated scenario comparisons and tradeoffs 
suggest PAPRIKA may be an authentic model for eliciting 
DMs’ behavior in this domain.

2.4 � Cognitive burden on DMs

Subjective MCDM can impose a heavy cognitive load on the 
DMs (Narasiman and Vickery 1988). Cognitive load theory 
postulates that the cognitive capacity of people’s working 
memory is limited, and exceeding this threshold hampers 
performance—perhaps because of the presence of complexi-
ties and uncertainties (De Jong and Den Hartog 2010). As 
DMs’ roles vary in different MCDM methods, it is logical 
to assume the cognitive load on DMs varies as well. Tra-
ditional MCDM methods require the DMs to understand 
and value each criterion relative to other criteria or make 
tradeoffs among them, while considering the importance of 
all criteria simultaneously. An acute awareness of the cogni-
tive burden on DMs when evaluating the criteria motivates 
this study, with the hypothesis that a series of scenarios, 
although individually complex, may impose a smaller bur-
den and better reflect the process of making design decisions 
and tradeoffs for RSB.

DMs are usually considered reliable sources of informa-
tion in a complex environment, but because of their limited 
ability to comprehend all the complexities involved, psy-
chological pressure on DMs can adversely affect MCDM 
(Larichev and Nikiforov 1987). Measuring the cognitive 
load on the DMs while engaging in the MCDM is difficult, 
and DMs may not have a coherent view about it (Pomerol 
and Barba-Romero 2012). A handful of studies have focused 
on the difficulty of surveying methods for DMs as well as 
accuracy of capturing their preference weights. Buchanan 
and Daellenbach (1987) used different survey techniques to 
collect preference weights, and also asked decision makers 
about the difficulty. In the context of cost minimization and 
labor force utilization in the production of electrical compo-
nents of lamps, Buchanan and Daellenbach concluded that 
pairwise comparisons pose no problem for DMs. Similarly, 
Narasimhan and Vickery (1988) recorded preference weights 
for three criteria using SMART and pairwise comparisons 
and found no statistical difference in responses to the two 
methods. In contrast, in a study of production scheduling 
task, Wallenius (1975) found that users prefer unstructured 
methods to more sophisticated approaches. More recently, 
Aloysius et  al. (2006) administered two surveys to 153 
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individuals, one using a direct technique similar to SMART, 
and the other one using pairwise comparisons. They focused 
on the participants’ reflection on cognitive load and reported 
that users believe that pairwise comparisons cause more 
decisional conflicts, are less accurate, more effortful, and 
less desirable (Aloysius et al. 2006). However, the results 
in these fairly simple scenarios may not hold true in com-
plex settings requiring more criteria and criteria levels, 
such integrating sustainability and resilience in buildings, 
and the pairwise methods used were less sophisticated than 
PAPRIKA. Whatever the influence of the survey instrument 
on cognitive load, it will of course also vary by DM based 
on knowledge and experience (Pomerol and Barba-Romero 
2012).

2.5 � Ranking methods

The last step of an MCDM brings together criteria weights 
and values to rank the various alternatives. The various 
methods for alternative rankings lie outside the scope of 
this paper, which refers the interested reader to other stud-
ies for more detail on the following approaches: Analytical 
Hierarchy Process, or AHP (e.g., Saaty 1980); Preference 
Ranking Organization Method for Enrichment Evaluation, 
or PROMETHEE (e.g., Brans 1986); The Elimination and 
Choice Translating Reality, or ELECTRE (e.g., Roy and 
Bouyssou 1986); and Technique for Order Preference by 
Similarity to Ideal Solutions, or TOPSIS (e.g., Yoon 1987). 
Instead of enumerating already well-documented similari-
ties and differences among these methods, this study wishes 
to highlight the relevance that cognitive burden in decision 
making has on the process of eliciting criteria preferences.

3 � Sustainability, resilience, and decision 
making in buildings

MCDM has been applied in many fields to improve deci-
sion making in complex environments, including building 
design (e.g., Hsieh et al. 2004; Flager et al. 2009; Balcomb 
and Curtner 2000), and is a promising method to integrate 
resilience and sustainability in building design decisions. 
While concern for the environmental, social, and economic 
performance of buildings, generally summed up under the 
label of sustainability, has become widespread in research 
and practice (e.g., Lützkendorf and Lorenz 2006; Zuo and 
Zhao 2014) with many scholars defining the term in detail 
(e.g., Pater and Cristea 2016; Galvic and Lukman 2007), the 
notion of building resilience is only just capturing the atten-
tion of decision makers (Laboy and Fannon 2016; Burroughs 
2017). As with sustainability, a wide range of definitions of 
resilience exist, many of them stressing the need for sys-
tems to cope with disruption, maintain essential operations, 

return to normal operations after the disruption has ended, 
and elevate to a state of advanced performance following 
some exogenous shock (Alexander 2013; Linkov et al. 2014; 
Mirzaee et al. 2018). In the context of buildings, Alexan-
der (2006) argued that while building codes can regulate 
the design, construction, and maintenance of structures to 
protect occupants from disasters, the protection measures 
have not kept pace with the growing vulnerability of places 
with high risk to disasters. Common to both resilience and 
sustainability is the notion that there is no single criterion 
by which they can be evaluated, and that any application of 
these concepts for decision making must be cognizant of the 
boundary constraints—environmental, social, economic, and 
mental—within which alternative actions are compared to 
each other and judged.

Some prior work has applied MCDM to questions of 
building sustainability, including energy management 
(Kolokotsa et al. 2009) and selecting wall insulation to ret-
rofit existing buildings (Ruzgys et al. 2014). Jin et al. used 
pairwise comparisons to capture DMs’ preferences on ten 
sustainability criteria and then ranked ten green building 
technologies for existing buildings (Jin et al. 2016). Cegan 
et al. (2017) performed a broad literature review on the 
applications of MCDM in Environmental sciences and sus-
tainability domain and found a rapid growth in the use of 
MCDM in such problems from 2000 to 2015. MCDM has 
recently been used to improve sustainability (Invidiata et al. 
2018), and to find the best combination of design strate-
gies to construct net zero energy buildings (Harkouss et al. 
2018). To date, applications of MCDM to the burgeoning 
field of building resilience mostly focus on specific hazards 
and design responses, for example, identifying the best alter-
native for a structural seismic retrofit, whether concrete and 
masonry (Formisano and Mazzolani 2015), or steel-braced 
frames (Deierlein et al. 2011). These applications advance 
what has been called “engineering resilience,” which 
assumes an equilibrium model, and prioritizes the rapid 
return to function (Gunderson 2000; Holling 1996; Scheffer 
et al. 1993). While not wrong, engineering resilience tends 
towards narrow optimization (albeit with multiple objec-
tives) rather than the broad incorporation of relevant stake-
holders, objectives, and criteria characteristic of MCDM.

Although it can yield ranked lists of alternatives, MCDM 
does not employ an objective function nor provide a single, 
optimal solution for three reasons: (i) the decision alterna-
tives are fuzzy and tend to change during the decision pro-
cess; (ii) the decision maker is not a single person or entity, 
and members of a decision-making group may choose con-
flicting or even contradictory criteria; and (iii) the criteria 
preference weights elicited from DMs may be imprecise 
or badly formulated (Majumder 2015; Mota et al. 2013; 
Carlsson and Korhonen 1986; Zimmermann 1990). Real-
world decisions about building design often exhibit all three 
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reasons. Fuzziness of the decision environment means the 
goals and/or decision criteria are fuzzy in nature and their 
boundaries are not sharply defined, although this does not 
necessarily mean that the system itself is fuzzy (Belman 
and Zadeh 1970). Although building for sustainability and 
resilience relies on objective performance data, the com-
plex tradeoffs of balancing sustainability and resilience 
in buildings depend on human-in-the-loop interactions. 
Building projects inherently involve diverse stakeholders, 
sometimes with conflicting goals. Finally, eliciting accurate 
criteria preference weights from those DMs is challenging. 
The limited prior literature and our initial trials suggest that 
simple, direct ranking methods do not adequately capture 
the complexities of the decision space from diverse stake-
holders. However, more nuanced comparative methods risk 
over-specification, while demanding considerable time and 
effort to develop and administer. Robust decision outcomes 
must address all three of these challenges, by reducing the 
fuzziness of the decision environment, identifying critical 
stakeholders, and eliciting accurate criteria preferences.

4 � Method

This study grows out of an effort to develop an MCDM-
based tool to support design decisions about sustainable and 
resilient buildings, a process that encompasses multiple cri-
teria evaluated by multiple stakeholders. The present study 
compares methods to elicit preference weights, seeking 
reasonable accuracy and acceptable cognitive load. These 
results do not provide criteria values to increase resilience 
and sustainability of any particular project, but rather help 
design teams identify methods to collect such values. The 
focus on design decisions reduces the fuzziness of the deci-
sion space and the diversity of stakeholders, focusing only 
on decision makers who are design professionals from the 
Architecture, Engineering, and Construction (AEC) indus-
try. Of course, other stakeholders (e.g., owners, occupants) 
may weigh the same criteria differently. As detailed below, 
preference weights from 42 North-American AEC-industry 
design professionals regarding ten resilience and sustain-
ability criteria were collected using two different survey 
methods.

4.1 � Criteria selection

The absence of a common definition for concepts like build-
ing resilience complicates the selection of decision-making 
criteria: indeed, finding a suitable definition of resilience 
may itself constitute a decision problem. Although there 
are many possible metrics for both sustainability and resil-
ience, prior work identified commonalities and conflicts 
among resilience and sustainability standards and rating 

systems (Philips et al. 2017). Building on this literature, 
the present study used the Delphi method with discussion 
and knowledge sharing among a panel of subject-matter 
experts to identify important criteria for resilience and sus-
tainability in buildings. The panel experts included leading 
researchers and practitioners with expertise in structural 
engineering, architecture, environmental chemistry, LCA, 
high-performance buildings, urban resilience, and social sci-
ences. This step of our study has been particularly impor-
tant because people with diverse backgrounds often use the 
term resilience to mean different things so clearly establish-
ing an appropriate criterion, if not a definition, is essential 
in a climate of increasing uncertainty (Laboy and Fannon 
2016). The prompt, coupled with the particular expertise of 
this panel, led to identification of criteria in Table 1, which 
incorporated resilience criteria into the commonly used 
Triple Bottom Line (TBL) (Elkington 2013) categories, as 
well as adding a new “recovery” bottom line, resulting in 
a Quadruple Bottom Line (QBT). The criteria reflect the 
panel’s collective definition of resilience and sustainability, 
and acknowledge those criteria will be valued higher, lower, 
or not at all depending on stakeholder, context, and pro-
ject. For example, criteria 9 and 10 show a bias towards an 
engineering definition of resilience; however, economic and 
socio-technical definitions of resilience emerge in criteria 3, 
6, and 8. The criteria selection step is of great importance 
to the MCDM process, as a different set of criteria can shift 
the decision outcome. In this case, a constructive dialogue 
yielded ten criteria that cover the four categories of QBT as 
shown in Table 1.

4.2 � Survey design

Two surveys were designed to quantify DM’s preference 
weights among the ten resilience and sustainability criteria. 
The first—using the SMART method—asked DMs directly 
value the criteria relative to each other. The second used the 
PAPRIKA method, in which DMs select their preference 
through a series of nearly identical scenarios pairs. Both 
surveys were developed and administered using online tools: 
Qualtrics Survey platform (Qualtrics, Provo, UT) for the 
SMART survey, 1000 Minds for PAPRIKA (Hansen and 
Ombler 2008).

Qualtrics is an online tool for data collection that supports 
multiple question types. As shown in Fig. 1, the SMART 
survey was administered using slider bars with scales from 
0 to 100. The prompt asked decision makers to assign 100 
points to the most important criterion and value the remain-
ing nine criteria relative to that maximum.

1000minds.com is an online platform for PAPRIKA that 
elicits preferences from multiple actors by forcing them to 
choose between pairs of alternative solutions that slightly 
differ on specific criteria. The survey designer identifies 
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the quantitative and/or qualitative criteria of the problem, 
and at least two performance levels for each criterion. Dur-
ing the survey administration, the software automatically 
develops the necessary pairwise scenario comparisons 
needed to capture DMs’ preferences based on the total 
decision space, i.e., the responses to each question govern 
which question is presented next.

Prior studies in the realm of social, behavioral, and psy-
chological sciences evaluated the effect on responses when 
the same question is worded differently, and generally con-
clude that the way the researchers ask questions matters for 
the results (Moser and Kalton 2017; Walgrave et al. 2016). 
The primary requirement is clarity, such that the question 
has only one interpretation (Lee et al. 2016; Magelssen 
et al. 2016). To promote clarity in the PAPRIKA method, 
each criterion was associated with a uniquely phrased 
question and performance levels. This phrasing, shown 
in Table 2, avoided the redundancy and confusion from 
repeated performance levels such as “high, medium, low.”

With the ten criteria included in this study and at least 
two performance levels for each, comparing every criteria 
and level would require hundreds of pairwise comparisons. 
However, 1000 minds determines which pairwise com-
parisons are necessary to arrive at the final weights, thus 
optimizing to the fewest questions. This survey typically 
asked DMs approximately 40 questions. An example ques-
tion is presented in Fig. 2.

4.3 � An opinion‑based survey

Complementing the first two surveys about criteria prefer-
ence weights, participants were asked to complete a simple 
meta-survey about the experience based on a series of ques-
tions assessed using 5-point Likert-type scale. Likert scaling 
is a bipolar scaling system measuring positive and nega-
tive responses usually with neutral response in the middle. 
The survey is focused on four main dimensions presented 
in Table 3.

As shown in Table 3, self-reported cognitive load is used 
to compare the difficulty of the two methods. Web-based 
surveys often use self-assessed ratings of cognitive load to 
indicate participants’ perception of cognitive load, not least 
because they are dramatically easier to collect than other 
measures (Paas et al. 2003). While self-reported values 
always demand careful consideration, prior studies have 
found participants can quantify their mental load (Gopher 
and Braune 1984), and that self-reported cognitive load is 
meaningfully correlated with actual cognitive load (Gim-
ino 2002; Paas et al. 1994). In another example, Lin et al. 
(2013) asked participants to evaluate a task difficulty, and 
the participants were found to have over 74% accuracy on 
the self-reported cognitive load. Many studies successfully 
use self-reported mental effort on a Likert-type scale as 
a measure of cognitive load (e.g., Chang and Yang 2010; 
Kalyuga and Sweller 2005; Scharfenberg and Bogner 2013; 

Table 1   Ten criteria for sustainability and resilience organized into categories and subcategories

Category Sub-category No. Criterion Criterion Type

1 First costs

2 Operating and maintenance costsEconomic

3 Recovery cost

4 Life cycle impact
Environmental

5 Energy conservation

6 Beyond-Code Safety

7 Occupant comfort and satisfaction Q
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8 Impact on the neighboring community

9 Functional portion of the building after a disaster
Recovery

10 Time to recover after a disaster

Key:  Economic Criterion|  Environmental Criterion|  Social Criterion|   Resilience Criterion

9 Functional portion of the building after a disaster
Recovery

10 Time to recover after a disaster

Key:  Economic Criterion|  Environmental Criterion|  Social Criterion|   Resilience Criterion
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Antonenko and Neiderhauser 2010). Collectively, this body 
of prior work results indicates that self-assessment is a reli-
able and valid measure of the cognitive load (Chen et al. 
2016; Ayres 2006).

4.4 � Survey administration

As a pilot test, the surveys were administered to 10 research-
ers working in the field of building design and who were 
familiar with the principles of MCDM as well as concepts 
of sustainability and resilience. Results were reviewed with 
each respondent to solicit feedback about the survey design 
and survey method, as well as the language of questions. The 

responses were used only to refine the survey prior to wider 
deployment and are not included in the analysis presented 
below.

After pilot testing, a sample of 250 adults over 18 years 
of age and with a professional role in the building industry 
was identified. There was no selection criterion related to 
gender, ethnicity, or socio-economic level, as these personal 
data were irrelevant to the research. The survey solicitation 
consisted of an email with a link to an intake-landing page, 
which provided information about the relevant human sub-
ject protocols and collected basic demographic data about 
industry role, experience level, and educational attainment. 
As part of the intake, DMs were prompted to consider a 
recent project as a method to frame the otherwise-abstract 
decision weighting process, lending some specificity as the 
cost of potentially greater variance. The landing page then 
linked to the SMART survey, at the completion of which 
users were presented the PAPRIKIA survey, and finally 
presented the self-reporting meta-survey. The nature of the 
scenario-comparison questions precluded randomizing the 
otherwise-preferable randomization of the sequence of the 
two surveys, potentially introducing order-effects.

The surveys were distributed to 250 professionals in the 
AEC industry and 59 responded to both surveys, a 23.6% 
response rate. Of those respondents, 42 (72%) identified 
their role as design professionals (61% architects or design-
ers, 11% engineers), the target population for this study 
about design decision making. The remaining respondents 
indicated roles as owners and developers, product manufac-
turing, education or other related industries, and were not 
included in the analysis below. The 42 design profession-
als averaged 12 years of experience, ranging from 1 year 
to 37 years.

5 � Results and analysis

The following sections present two types of results: first are 
DM’s preference weights for the building sustainability and 
resilience criteria, which reveal the priorities of this sample 
of AEC design professionals. Recalling that the purpose of 
this study is to compare the two survey methods used to 
elicit such preferences, the second group of results analyzes 
the differences in weights between the two methods and the 
DM’s subjective responses about them.

5.1 � Comparison of mean criteria weights for SMART 
and PAPRIKA surveys

Surveys of decision makers to establish criteria weights for 
MCDM often use either the average or median of responses, 
and for small samples with possible outliers, the median 
better describes central tendency. Therefore, this study 

Fig. 1   SMART survey in Qualtrics environment showing the 0–100 
scale and sliders



446	 Environment Systems and Decisions (2019) 39:439–453

1 3

Table 2   Table of criteria, questions, and performance levels used in 1000 minds survey. Note the unique phrasing of the performance levels 
associated with each criterion

No. Criteria Question Performance levels

1 First cost First costs to design and construct the building 
are…

Higher than typical
About typical
Lower than typical

2 Operating and maintenance costs My operating and maintenance costs… I spend extra
About normal
I save some money

3 Recovery cost Recovering after a disaster… Costs a lot
Is not too expensive

4 Material sustainability Materials in the building are… Unsustainable
Typically sustainable
Very sustainable

5 Occupant satisfaction and comfort Occupants are… Slightly uncomfortable or dissatisfied
Generally comfortable and satisfied
Very comfortable and highly satisfied

6 Energy conservation Normal operation of the building… Demands extra energy
Demands about typical amount of energy
Demands less energy than a typical building

7 Recovery time After a disaster it takes… A long time to recover to previous conditions
A short time to recover to previous conditions

8 Functional portion of the building Immediately after a disaster most of the building 
is…

Safe to evacuate, but not able to be used for its 
intended purpose

Safe and fully functional for its intended purpose
9 Life safety Life safety design… Meets code requirements

Exceeds code requirements
10 Contribution to the surrounding 

neighborhoods
Contribution to the surrounding neighborhoods 

and communities…
Satisfies owner’s needs
Satisfies the owner’s needs while contributing to 

the surrounding neighborhood and community 
(e.g., providing public space, or serving as a 
disaster shelter)

Fig. 2   An example of a 
scenario-comparison question 
generated by 1000minds.com 
based on the criteria and perfor-
mance levels
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compares the median weights to test for significant differ-
ences between the two surveys, as summarized in Table 4. 
Six out of ten criteria show significant differences in prefer-
ence between the two survey methods: first cost, operational 
cost, percent functional of the building, energy conservation, 
life cycle impact, and beyond-code safety. The remaining 
four criteria—recovery cost, recovery time, occupant com-
fort, and neighborhood impact—do not show statistically 
significant differences between survey methods. Energy and 
life cycle are valued low when they are asked about directly. 
However, DMs trade other criteria off for these two, valu-
ing them more highly in scenario comparisons compared to 
direct questions. Beyond-code-safety and first cost are highly 
valued in direct questions; however, respondents value them 
less in scenario comparisons, and trade them away for other 
criteria. In general, when asked directly, respondents place 
high value on economic/financial criteria. However, when 
presented with the forced choice of scenarios, respondents 
trade-off profit for greater environmental sustainability 
and increased resilience. Neighborhood impact and occu-
pant comfort, which are categorized as social criteria, 
appear highly consistent across respondents, while beyond-
code safety, which is in the same category, is valued quite 
differently.

The percentage change describes the increase or decrease 
in median preference values as captured through PAPRIKA 
compared to the SMART median value as baseline. 

Beyond-code safety and first cost showed the largest differ-
ence between survey methods, with changes of 6.2 points 
and 4.7 points, respectively, from the median collected 
with SMART to the median collected with PAPRIKA. The 
greatest change on a percentage basis was also beyond-
code safety: its median value of preference in PAPRIKA is 
81% less than its median value in SMART. The next largest 
change was for first cost, which showed a difference of 57% 
between the two methods.

Because the sample size is the same in all the cases, it 
is possible to compare the t- and p-values with each other. 
T-values are an indication of the difference in means in the 
two groups and measure the size of the difference relative to 
the variance of the data. In Table 4, the three largest absolute 
t-values correspond to the three lowest p-values, eliminating 
the possibility that these significant differences are based 
on chance. These three criteria are, first cost, beyond-code 
safety, and energy conservation.

The differences in medians of the weights for each cri-
terion as determined by the two surveys are illustrated 
in Fig. 3. The median of the criteria weight responses in 
PAPRIKA was subtracted from the median value of the 
SMART survey, so values greater than zero indicate sur-
vey subjects gave greater preference to those criteria when 
assigning values directly in the SMART than they evinced 
through their choices in scenarios. Conversely, negative 
values indicate criteria that DMs preferred when choosing 

Table 3   Table of opinion-based survey questions and ranges of response options

Question From (value 1) To (value 5)

Ease of navigating through each survey Not challenging at all Extremely challenging
Satisfaction about how the questions reflected real-life tradeoffs Not very realistically Very realistically
The effort that was needed to complete each survey Very easy Very difficult
Confidence on the reflection of their actual preferences in each method Not accurately at all Very accurately

Table 4   Median preference values observed using each survey, their differences, and measures of statistical significance

Shaded criteria show statistically significant differences

Criteria Median weights (normalized) Statistical tests of difference

– SMART​ PAPRIKA Difference % Change t value p value df

First costs 0.082 0.035 0.047 − 57 4.97 4.61·10− 6 69.105
Operation and maintenance costs 0.124 0.083 0.041 − 33 3.82 2.62·10− 4 79.137
Recovery costs 0.074 0.081 − 0.007 1 1.95·10− 3 9.98·10− 1 78.484
Life cycle impacts 0.107 0.141 − 0.034 32 − 4.49 2.90·10− 5 67.082
Energy conservation 0.133 0.156 − 0.023 17 − 4.02 1.38·10− 4 72.881
Beyond-code safety 0.076 0.014 0.062 − 81 5.23 1.61·10− 6 71.746
Occupant comfort and satisfaction 0.129 0.139 − − 0.01 7 − 1.06 2.94·10− 1 64.196
Impact on the neighboring community 0.093 0.083 0.010 − 11 1.07 2.75.10− 1 79.981
Portion of the building functional after a disaster 0.079 0.094 − 0.015 19 − 2.11 3.80.10− 2 83.205
Time to recover after a disaster 0.098 0.096 0.002 2 − 0.70 4.84.10− 1 74.064
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between scenarios but had directly assigned lower scores. 
The significance levels of the differences are shown on each 
bar using star marks and the category of each criterion is 
both color-coded and named on each bar. The category-
based color-coding reveals suggestive trends, namely that 
economic criteria seem to be valued more highly in direct 
assessment, while environmental and resilience criteria 
appear to be valued more highly when DMs are making 
tradeoffs in scenarios. These trends suggest that a user’s 
valuation not only varies depending on the method of survey, 
but also that those changes in weighting may be non-uniform 
across various criteria, and perhaps criteria groups.

5.2 � Comparison of preference value distributions 
for each criterion

As described above, respondents as a group valued criteria 
differently when asked to directly assign a score vs. when 
selecting those criteria in a scenario. To better understand 
the responses from individuals that result in these group pat-
terns, each subject’s scenario responses are plotted as a func-
tion of their direct weighting for each criterion. These plots 
are shown in Fig. 4. Each dot represents the opinion of one 
individual, with the weight in response to direct questions 

on the horizontal axis and the weight determined through 
scenario-comparison choices on the vertical axis. A per-
fectly consistent respondent would have the same value on 
both axes.

Beyond revealing the consistency (or lack thereof) for 
individual subjects across the two surveys, these distribu-
tions also suggest criteria in which respondents are generally 
consistent, or for which a small number of dramatic changes 
overwhelm a generally consistent set of responses. To aid 
in this comparison, black lines represent a linear regression 
of the distribution, and the gray-toned area defines the 95% 
confidence interval. The white lines illustrate an idealized 
distribution in which all the DMs are perfectly consistent, 
providing the same preference about each criterion in both 
surveys. Although the graphs visually suggest some criteria 
are more consistent than others, the low R-squared values in 
all cases indicate that there is no strong trend in responses to 
compare to the ideal. Graphs in which most data points are 
concentrated above or below the white line also highlight 
those criteria—identified in the previous section—which 
generally score highly on one survey method but not the 
other, for example beyond-code life safety.

Respondents highly value first cost and beyond-code 
safety when they are asked about them directly but trade 

Fig. 3   Differences in median weight for each criterion from SMART 
and PAPRIKA surveys. Differences that are not statistically signifi-
cant are marked with (−), while *, **, *** indicate significance at the 

p = 0.5, 0.001, and 0.0001 thresholds, respectively. The colored ver-
sion of this figure indicates category groupings
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them away for other criteria when presented in scenario 
comparisons. The logic holds true for operating cost, 
although not as intensely. The converse behavior is also pre-
sent; respondents report less concern about energy conserva-
tion when they are asked to value the sustainability criteria 
directly. However, the same respondents often choose the 
more sustainable option in scenarios, trading away other 
criteria to improve energy conservation. For other criteria, 
the data are quite obscure and responses inconsistent; none 
of the linear regressions representing the response data for 
other criteria fit perfectly, and there are many outliers where 
the same criterion is weighted very differently in the two 
surveys.

Figure 5 shows box plots of the distribution of responses 
to all ten criteria in both SMART and PAPRIKA surveys. 
These plots illustrate how central trends used for MCDM 
may not reflect the complexity of preference weights across 
two surveys. For example, the mean value for Life Cycle 
assessment in the scenario comparisons aligns with the 
fourth quartile of the direct measurements, because the long 
tail of high values in PAPRIKA indicate a handful respond-
ents are highly valuing this criterion through that survey 
method. This is visible in Fig. 4 as well, because while most 
results fall close to the trend line, a few responses well above 

the line pull the linear fit away from the idealized curve, 
perhaps because direct rating tends to encourage central ten-
dency bias. In another cases, such as beyond-code safety, 
responses are skewed towards lower values when evaluated 
in scenarios. Overall, the results show that DMs do not con-
sistently weigh the criteria in the two surveys.

5.3 � Comparison of self‑reported accuracy 
and cognitive load

In addition to comparing the criteria-weighting methods 
based on responses to the two surveys, the third meta-sur-
vey collected respondents’ subjective experience of the two 
methods. Their responses to the four questions about the 
questions are illustrated in Fig. 6.

Figure 6a shows that the DMs find navigating through 
scenario-comparison questions harder than the direct 
weighting. Figure 6b shows that DMs find the direct ques-
tions more realistic compared to scenario comparisons. Fig-
ure 6c illustrates that the DMs exert more effort to answer 
the scenario-comparison questions. Finally, Fig. 6d shows 
that, in DMs’ opinion, both methods capture their prefer-
ences equally well.

Fig. 4   Distributions of individual responses for each criterion, show-
ing the scenario (PAPRIKA) weightings as a function of the direct 
(SMART) valuations. Perfectly consistent respondents would score 
each criterion identically in both surveys, yielding the hypothetical 

trendline with a slope of 1 and intercept of 0, as shown in white. A 
best-fit linear trend for the actual responses is shown in black, with 
the shaded zone indicating the 95% confidence interval. The univer-
sally low R2 values indicate poor fit and low consistency
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Mean values were calculated for each Likert response, 
and are shown in Table 5. The numeric results suggest that, 
on average, DMs believe the direct questions better reflect 
the tradeoffs present in real projects, demand less effort, are 
easier to navigate, and more accurately capture their prefer-
ences. These findings are consistent with Aloysius et al. in 
that DMs find direct measurement of criteria less confus-
ing, less difficult, and more accurate (Aloysius et al. 2006). 
These findings also align with Kotteman and Davis (1998), 

Fig. 5   Box plots of the distributions of responses to all ten criteria in 
both SMART (marked here as direct) and PAPRIKA (marked here 
as Scenarios). The boxes show the first and third quartiles as well as 
the median value as a horizontal line and mean values with a white 

circle. Points beyond the whisker represent outliers beyond 1.5 times 
the interquartile range above the upper quartile and below the lower 
quartile

Fig. 6   Respondents’ self-reported assessment of the survey methods. 
From the left, graph a shows the difficulty of navigating through sce-
nario questions versus navigating through direct questions. Graph b 
shows the responses to the level of effort needed to answer questions 

in scenarios versus direct questions. Graph c shows the responses to 
how realistic the tradeoffs are in scenarios versus direct questions. 
Graph d shows the DM’s opinion on how accurately the two methods 
reflect their preference weights

Table 5   The mean and median value of the DMs’ self-reported 
assessment of survey methods

Question Mean values

Direct Scenarios Difference

Navigation difficulty 1.79 2.17 − 0.38
Level of effort 2.60 3.26 − 0.66
Reflection of realistic tradeoffs 3.24 2.15 1.09
Accurately capturing preferences 3.71 3.45 0.56
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in that DMs prefer less-sophisticated weighting methods. 
However, in the context of building design and construc-
tion, the assessment is quite surprising given that decisions 
about building design seldom ask for numerical or even 
ranked preferences across multiple criteria simultaneously. 
Instead, DMs must evaluate complex, multifarious alterna-
tives, which would seem to be better simulated using the 
PAPRIKIA method. The high scores for accuracy across 
both methods are particularly surprising given the low con-
sistency in responses by most DMs discussed in the previous 
two sections.

6 � Conclusions

This study evaluated DM’s preferences among decision 
criteria as revealed through two MCDM survey techniques 
and compared the two survey methods. Forty-two design 
professionals who participated in the project indicated their 
preferences for ten resilience and sustainability criteria using 
both the direct scoring SMART technique, and the scenario-
comparison-based PAPRIKA method. For both individuals 
and the group, criteria weights varied significantly depend-
ing on the method used to elicit preference, and these differ-
ences would inevitably affect the final ranking of alternatives 
in MCDM. Respondents also assessed the effort, cognitive 
load, and estimated the accuracy of the two methods, report-
ing both as accurate but preferring the direct method. Over-
all the results indicate substantial challenges in selecting a 
method to elicit criteria preferences for MCDM in problems 
of resilience and sustainability in buildings.

The method of elicitation affects the evaluation of build-
ing design criteria. Economic criteria consistently scored 
highly in direct ranking, suggesting a primacy of financial 
considerations when viewed simultaneously with all other 
criteria. However, confronted with choices between two 
alternative scenarios, DM’s choose greater sustainability 
and resilience even at increased economic cost, resulting 
in higher values for environmental and social criteria. It is 
impossible to discern motivations from the bare data, but 
one possible explanation for these results is that the direct 
ranking reflects design professionals’ perception of their 
clients’ priorities, while the indirect results from scenario 
choices reveal unconscious personal preferences or profes-
sional obligations to the public, albeit at some cognitive 
load. Alternatively, the scenarios may represent the psy-
chological response to an urgent choice, while the SMART 
ranking represents an abstracted, top-down plan.

It is not clear whether or how the differences in prefer-
ences observed in these data affect the actual design process, 
complicating any application of MCDM to building design. 
Applying MCDM to real decisions requires understanding 
the decision process in that context. Although designed to 

emulate the kind of decisions made in practice, the scenario 
comparisons remain abstract hypothetical models of real 
decisions. Even still, the scenario-comparison survey pre-
sents situations that direct questions simply cannot, reducing 
the cognitive load but also affecting the results. While dif-
ficult, additional research to determine criteria preferences 
empirically from the design of real buildings would validate 
the relationship between preference values and design deci-
sion making in the complex contingency and complexity of 
practice.

Regardless of method or context, the validity of criteria 
weightings is difficult to determine, as there is no inher-
ently true or actual value. The difference in self-assessed 
accuracy between the two methods is very small, indicat-
ing that respondents are confident that both surveys reflect 
their actual preferences. This result contrasts sharply with 
significantly different results for the median value of six of 
ten preference values captured through the two surveys and 
the low reliability of individual scores. These findings chal-
lenge the DMs’ confidence in their responses, and compli-
cate efforts to collect meaningful criteria weights for use in 
MCDM.

Subjective criteria collection requires humans in-the-
loop, rather than humans-as-inputs. To avoid influencing the 
meta-survey, study subjects were not provided the weights 
calculated by PAPRIKA. We hypothesize that the lack of 
feedback and increased survey time frustrated some respond-
ents, because the nature of this study precluded individu-
als from reflecting on any inconsistencies in their answers. 
Further, the findings show that in complex decision environ-
ments with more than a handful of criteria, cognitive load 
may affect DMs’ responses. An iterative procedure could 
address these limitations, but simply presenting the calcu-
lated preference criteria for respondents to modify would 
effectively replicate the direct survey. We propose presenting 
final ranked alternatives to the DMs and allowing them to 
indirectly evaluate their preferences based on insight into 
the outcome of their preference values. This could be cou-
pled with a collaborative or benchmarking approach might 
improve the quality of preference weights collected.

The sample in this study is neither sufficiently large nor 
representative to support conclusions about design profes-
sionals’ preferences as a population. Future work to increase 
the sample size and diversity would enable such findings, 
perhaps also identifying inter-population differences, for 
example based on role. Further analysis of intra-personal 
differences and testing for personal consistency would also 
yield promising insights in the development and application 
of decision support tools. Testing these tools in practice on 
specific projects would offer unique and situated insight into 
the validity, reliability, and utility of these preference elicita-
tion methods in the context of the design of RSB. Applying 
of MCDM to the design of buildings requires further study 
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and careful design to support decisions that increase the 
resilience and sustainability of the built environment.
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