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Abstract Within the electronics industry, counterfeit

electronic components entering the supply chain have

steadily become an increasing threat accounting for more

than 8 % of global merchandise trade and an annual $600

billion enterprise. Currently, there are not many cost-

effective and nonintrusive solutions for counterfeit detec-

tion of electronic parts. In this paper, the authors present a

statistical approach for detecting counterfeit components

based on infrared (IR) analysis by the use of independent

component analysis (ICA). As a prominent higher-order

statistical analysis technique, ICA is capable of extracting

relevant features from IR data. The latest applications and

the extended algorithms of ICA have been elucidated for

the purposes of classification and identification of coun-

terfeit electronic parts. The theoretical framework of ICA

is presented along with extensive experimental results to

illustrate its feature extraction function in counterfeit

electronic parts detection.

Keywords Infrared analysis �Counterfeit detection �
Supply chain validation � Independent component

analysis

1 Introduction

Supply chain risk management (SCRM) is an increasingly

important aspect of business today. In 2009, President

Obama accepted the recommendations of the Cyberspace

Policy Review which built upon the Comprehensive

National Cybersecurity Initiative National Security Coun-

cil (National Security Council 2009). There are twelve

initiatives, which are designed to strengthen the United

States’ security in cyberspace. The eleventh initiative is to

develop a multipronged approach for global SCRM

(National Security Council 2009). Globalization has

allowed companies the opportunity to expand their enter-

prises outside of the United States, yet this has escalated

risks due to their complex supply chain. The range of

negative exposure of a company’s supply chain goes from

the increased unreliability of counterfeit electronics parts,

to the susceptibility of fraudulent parts, to data exfiltration

and adversary-controlled Trojan horses embedded in elec-

tronic chips and parts (McFadden and Arnold 2010).

There are many ways to describe a counterfeit part. In

the electronics manufacturing industry, a counterfeit is a

substitute or unauthorized copy, a part in which the

materials used or its performance has been changed with-

out notice, or a substandard component misrepresented by

the supplier. In the electronics distributor industry, coun-

terfeits are items that are produced or distributed in vio-

lation of intellectual property rights, copyrights, or

trademark laws. There are also fraudulent parts, which,

according to the SAE International Aerospace Standard

(AS) 5553, are items that are deliberately altered in such a

way as to misrepresent the actual quality of the item with

intent to defraud or deceive the purchaser. The U.S.

Department of Energy defines a counterfeit as a substitute

without legal right or authority to do so, or one whose
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material, performance, or characteristics are knowingly

misrepresented (Hughitt 2008). The many definitions of a

bogus part show how enormous the problem is becoming in

the electronics industry. High-tech products, such as bat-

teries, computer hardware (H/W), and electronic games,

accounted for three of the top ten products seized by the

U.S. Customs and Border Protection in 2004 (Pecht and

Tiku 2006). In 2011, consumer electronics made up the

bulk of counterfeit goods imported into the United States

accounting for 22 % of total seizures and an estimated

retail value of $101.2 million (Dickler 2012). The value of

counterfeit parts entering into the United States is in the

hundreds of millions, and recent data show that the number

will continue to grow. To combat this issue, there are many

organizations in the government as well as private industry

currently developing methods to identify and eliminate

counterfeit parts from entering their supply chains.

The U.S. Missile Defense Agency (MDA) has taken

measures to mitigate the amount of counterfeit parts

entering their supply chain. The MDA’s number one rule

on counterfeit parts avoidance is to always buy a product

from authorized or trusted sources whenever possible

(Johnson 2012). The methods proposed to ensure compli-

ance to rule number one are to manage obsolescence, use

an independent distributor (ID) only as a last resort,

knowing how to find an authorized source, and requiring

management approval for purchases from unauthorized

sources. Rule number two of counterfeit parts avoidance is

to assess unauthorized sources on-site (Johnson 2012). This

is done by creating a decision matrix and then assigning a

rank to the attributes that are most important to the com-

pany. Rules number one and two go hand in hand. Properly

vetting a distributor can save both time and money. The

U.S. MDA uses thorough checks into a company’s past

history to ensure that the parts they are selling are guar-

anteed quality. A third rule in counterfeit parts avoidance is

to require minimum inspection and test for all open market

purchases (Johnson 2012). This involves a series of visual

inspections, X-ray fluorescence, X-ray analysis, die verifi-

cation, scanning acoustic microscopy, and various other

tests to ensure counterfeits are detected. Though testing is

an important part in keeping counterfeit parts out of the

supply chain, these tests are costly, inconvenient, and

sometimes destructive. The U.S. MDA’s last stated rule of

counterfeit parts avoidance is flow down bogus parts

requirements to their suppliers (Johnson 2012). This means

that all contractors and subcontractors shall have proce-

dures in place to meet the agency’s minimum standards.

This is very similar to the National Aeronautics and Space

Administration’s (NASA’s) contractor and subcontractor

supply chain requirements. The goal is to only work with

reputable companies with strict guidelines with regard to

what flows through the supply chain.

Production of integrated circuits (ICs) in the United

States has decreased at least 11 %, whereas in Asian

countries, it has increased almost 20 % (Birdsong 2012).

This is in part due to small businesses in the United States

locating thousands of parts numbers from brokers’ lists

assumed to be legitimate, and purchasing unknowingly

counterfeit items which then enter the supply chain through

the distribution phase. Other contributing factors to the

lowered production of ICs in the United States are uncer-

tainties of the definition of ‘‘counterfeit,’’ where these

erroneous electrical components are obtained, electronic

waste (eWaste), and the current means of preventing

entrance of the ICs into the supply chain.

Even with preventive measures in place, counterfeits are

still making their way into the supply chain. Our SCRM

approach to this problem is to employ imaging as a non-

destructive and noninvasive means of detecting counterfeit

electronic components. Our solution uses infrared (IR)

cameras in a fixed position to capture overhead perspective

of a printed circuit board (PCB) which is mounted on a

movable platform. The camera captures full 360� video

footage of the PCB and records the IR signatures of each

component on the board. By using a source separation

method, specifically independent component analysis

(ICA), the authors are able to differentiate between the IR

signatures and performance characteristics of each com-

ponent on the board. These signatures are then compared to

the signatures of legitimate components to determine

authenticity. This research would be effective in assisting

customers in their SCRM.

The supply chain consists of six (6) major phases, which

include design, fabrication, assembly, distribution, main-

tenance, and disposal (McFadden and Arnold 2010), where

design, fabrication, and assembly are generally referred to

as the production phases. As stated in Bumgarner et al.

(2010), ineffective and inefficient inventory management

practices and procedures have put the Department of

Defense’s (DoD’s) supply chain at risk.

The SAE International Standard for counterfeit parts

(AS5553) offers multiple examples of what is considered a

counterfeit part including parts that do not contain the

proper internal construction, have been used, refurbished or

reclaimed but represented as new, or sold with modified

labeling or markings intended to misrepresent. As previ-

ously stated, there is a difference between fraudulent and

counterfeit. Yet, the U.S. MDA considers the term

‘‘counterfeit parts’’ to include both fraudulent and coun-

terfeit products as to ensure the inclusion of all illegal

practices. With this definition in mind, there are brokers

who either knowingly or unintentionally obtain counterfeit

parts from illegitimate sources. To counterbalance this, one

must verify that parts are obtained from credible sources

through verification with the original component
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manufacturer (OCM), an aftermarket manufacturer (AM),

authorized ‘‘Franchised’’ distributors (AD), or an ID. An

OCM is an organization that ‘‘designs and/or engineers a

part and is pursuing the intellectual property rights to that

part (Birdsong and Schipp 2012).’’ The AM is a manu-

facturer who is authorized by the OCM to produce and sell

replacement parts, produces parts using dies or wafers

manufactured by and traceable to an OCM, or reverse-

engineers obsolete parts without violation of intellectual

property rights (Birdsong and Schipp 2012). An AD is a

distributor with which the OCM ‘‘has a contractual

agreement to distribute its product,’’ and an ID purchases

parts with ‘‘the intention to sell and redistribute them back

into the market (Birdsong and Schipp 2012)’’ without

having contractual agreements or obligations with OCMs.

Although these organizations tend to employ traceability

with their products, the possibility that they sell a product

which they purchased from an unauthorized source still

exists. In this case, the organization is treated with caution

as an ID or broker distributor.

2 Current approaches to counterfeit parts detection

China receives 90 % of the Asian recycling market

(Birdsong and Schipp 2012); eWaste must be tested for

‘‘high-risk’’ counterfeit ICs (processors/controllers, mem-

ory, operational amplifiers, switches, and field program-

mable gate arrays). eWaste is largely comprised of

unwanted parts that were mishandled, sanded, or uncon-

trollably heated during part removal. Due to these inef-

fective handling, the die cracks or becomes delaminated

and these mistreated parts tend to have immediate or latent

electronic discharge (ESD) failures. Higher or lower tem-

perature tests, tighter production parameters and perfor-

mance specifications, vibration or shock resistance, and

radiation hardening are all tests used to detect any likely

failures, but also dramatically impact part price (Birdsong

and Schipp 2012). The current methods in place to prevent

counterfeits entering the supply chain vary based on

company standards and practices. One may consult the

Electronic Resellers Association International (ERAI),

which is a privately held global trade association that

monitors/mediates issues affecting the global supply chain

of electronics including the supply of counterfeit and

substandard parts (Birdsong and Schipp 2012). The chal-

lenge with this method is that not all companies confer with

the ERAI when counterfeits are found in their supply chain,

thus leading to an incomplete knowledge base of the most

accurate and recent counterfeit statistics. Another resource

available is the DoD’s Government-Industry Data

Exchange Program (GIDEP). This useful program seeks to

reduce expenditures of resources by sharing essential

information during all supply chain phases of systems and

equipment. Participating members are allowed access to

information on failure experience, suspect counterfeits,

diminishing manufacturing sources, and material shortages,

reliability, and maintainability as long as they also provide

technical information to add to the database for other

members (Birdsong and Schipp 2012). A more manageable

method is for a company to regulate ‘‘obsolescence’’ by

increasing design awareness through using components

with multiple OCMs or choosing multisourced parts

whenever possible. Confirming which distributors are

authorized through the OCM’s Web site, checking for

ERAI and qualified suppliers list-distributors memberships,

AS certifications, a lack of ERAI reports or complaints, and

site testing are other proven methods to prevent counterfeit

supply chain entrance (Stein 2012).

Currently, there are not many cost-effective solutions

for counterfeit detection at the PCB level using IR analysis.

However, there are techniques in which individual ICs are

analyzed, eventually resulting in the examination of an

entire PCB. Present-day counterfeit detection techniques

include general optical scans (any of the various ways to

visually detect counterfeit markings), confocal scanning

acoustic microscopy, surface profilometry, Raman spec-

troscopy, X-ray photoelectron spectroscopy, and a number

of other techniques. Along with the aforementioned tech-

nologies, procedures are needed in order to prevent coun-

terfeits from initially entering the supply chain including

quality system audits and procurement requirements. Pro-

cedural examples are requesting valid manufacturer certi-

fications and ensuring supply chain traceability which

assures the tracking of the supply chain back to the man-

ufacturer of all electrical, electronic, and electromechanical

components and devices (Hughitt 2008). Although these

counterfeit detection techniques and parts authentication

tools are available for both commercial and government

use, they are not viable due to their cost per use and

manufacturing and maintenance costs as well as the fact

they destructive in nature to the devices being tested and do

not test for a broad range of counterfeit triggers.

Since the supply chain is susceptible to counterfeit

intrusion, it is beneficial to know how to identify a

potential threat by understanding the AS characterization

of both fraudulence and counterfeit and how to prevent

them from entering the supply chain all together. With this

background knowledge of how supply chains operate when

dealing with counterfeit devices, the remainder of the paper

will focus on the development of a novel analysis for

counterfeit PCB detection employing IR.

The utilization of blind source separation (BSS) method

along with the ‘‘Golden Standard’’ approach is one

approach which has yet to be utilized for the purpose of

detecting fraudulent ICs. This technique will allow for
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counterfeit detection at the board level nondestructively.

The authors show it is possible to test multiple ICs at the

board level from various angles, compare the various sig-

natures (through the use of spatiotemporal analysis) of the

individual ICs, and determine the likelihood that counter-

feits were used while factoring testing apparatus manu-

facturing/procurement costs, ease of use, and maintenance

costs. Specifically, we initially demonstrate that individual

ICs produce unique thermal signatures that can be ascer-

tained and analyzed at the board level through the BSS

method and then be compared to a benchmark (i.e., Golden

Standard) device to test for counterfeit, while maintaining

cost efficiency.

Due to the increasing threat of counterfeit merchandise

trade and industry, the authors’ proposed research focus of

using BSS along with the Golden Standard approach is one

that can assist in the prevention of counterfeits from

entering the supply chain. This prevention will save

industries, such as DoD, estimated billions of dollars lost

annually due to the current infiltration of bogus parts into

the supply chain.

3 Blind source separation counterfeit parts detection

approach

The research focus is to view thermal or IR signals emitted

from both the previously discussed ‘‘Golden Standard’’ and

confirmed counterfeit PCBs for comparative evaluation. To

reiterate, a ‘‘Golden Standard’’ or benchmark device is one

that is proven to be legitimate either via product verifica-

tion through the manufacturer or certified brokers, or by

way of passing previously run counterfeit detection tests

that are to be used in conjunction with our approach during

the supply chain’s assembly, distribution, or maintenance

stages. When examining the signals, it is important to know

how to elucidate specific patterns. Our novel approach that

incorporates BSS, more specifically ICA, is used to analyze

specific signal compositions within a general mixed signal.

BSS is a statistical approach to separate and analyze

individual signals from an observed mixture of a group of

signals (Jadhav and Bhalchandra 2008), often while mul-

tiple interfering components and additional noise are

present. This technique was first introduced in 1986 by

Herault and Jutten (1987) and was expanded upon eight

(8) years later by Comon (1994). In Comon (1994) is when

it was originally referred to as ICA, an extension of prin-

cipal component analysis (PCA). Comon designed a prac-

tical optimization criterion to search a linear transformation

that minimizes statistical dependence between components.

This new application could include blind identification and

deconvolution (Herault and Jutten 1987). This broader

range of the application is one of the many benefits of BSS

over other common image-processing techniques such as

PCA.

Another application of BSS that would otherwise be off

limits to PCA is the detection and localization of sources,

not limited to signals or images. In statistics, it is recog-

nized that for non-Gaussian signals, uncorrelated signals

are not necessarily independent. To disassociate these types

of signals, one only needs to consider the second-order

statistics. Yet, higher-order statistics (HOS) are needed

(Jadhav and Bhalchandra 2008) to decompose a signal as

independent. This fact points to the relationship between

PCA and ICA. PCA is able to extract features from a

signal; ICA is capable of initiating complete independence

of previously mixed signals.

With the proposed problem of detecting counterfeit elec-

tronic devices at the board level, the authors realize the

extension of PCA not only saves time and costs when needing

to separate mixed thermal signals from an entire PCB, but

ultimately will allow for increased effectiveness in analyzing

results. Additionally, BSS is capable of taking into account

various assumptions, such as all signals are independent of

each other. Therefore, the source signals are treated equally

before the algorithm is run (or is considered ‘‘centered’’), white

sources and white mixed signals are considered to be noise, and

the information is orthogonal (the transpose of the matrix is

equal to its inverse) as well as any unknowns, which are pre-

valent when analyzing a PCB at the board level. Our process

allows us to accurately extract individual signals and evaluate

and compare them independently. This novel approach is more

efficient and beneficial than other techniques.

BSS is a method for analyzing individual components

while multiple interfering components and additional noise

are present. This method is represented using the equation:

X ¼ ASþ N ð1Þ

where X represents an observed m-dimensional random

vector, A represents an unknown full-rank real matrix, S

represents unknown n-dimensional source signals, and N

represents an initially unknown noise factor (often assumed

to be white Gaussian). The overall goal of this general-case

(BSS) equation is to recover unknown A and S given only X.

In the case of analyzing multiple thermal signatures given

off by multiple ICs on a single board, S represents the

individual signals from ICs on the board being evaluated, A

represents abundance of information per pixel, and X

represents signature of the board as a whole (Parra 2002).

Thus, Eq. (1) using ICA assumptions can be used for any

specified number of ICs and can be rewritten as:

X ¼
Xn

i¼1
aiSi ð2Þ

BSS is typically based on the assumption that the

observed signals are linear superpositions of underlying

hidden source signals. Let us denote the n source signals by
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s1 tð Þ. . .; sn tð Þ, and the observed signals by x1 tð Þ. . .; xm tð Þ.
Let aij denote the coefficients in the linear mixing between

the sources sj(t) and the observed signal, xi(t). The source

signals can be collected in a vector as shown in Eq. (3)

s tð Þ ¼ s1 tð Þ. . .; sn tð Þð ÞT ð3Þ

and similarly for the observed signal vector illustrated in

Eq. (4):

x tð Þ ¼ x1 tð Þ. . .; xn tð Þð ÞT ð4Þ

Now, the mixing matrix can be written as

x tð Þ ¼ As tð Þ;

where the matrix

A ¼ aij

�� �� ð5Þ

collects the mixing coefficients. No particular assumptions

on the mixing coefficients are made. Some weak structural

assumptions are often made; for example, it is typically

assumed that the mixing matrix is square (ergo the number

of source signals equals the number of observed signals,

n = m). The challenge of BSS is how to estimate both the

source signals si(t) and the mixing matrix A, based on

observations of the xi(t) alone (Jutten and Herault 1991).

The word ‘‘blind’’ refers primarily to the impossibility of

directly observing the source signals. If the source signals

could be partly observed, the problem could be solved by

basic linear regression techniques. However, more

sophisticated methods are required, which are based on the

statistical properties of the source signals.

In most methods, the source signals are assumed sta-

tistically independent. Then, the model can be estimated if

the source signals fulfill some additional assumptions. We

list two of the most commonly used ones for our imple-

mentation of the technique. First, if all the components,

except perhaps one, have non-Gaussian distributions, then

the ensuing model is called ICA, and many techniques are

available for estimation of the model. Second, if the

components have nonstationary, smoothly changing vari-

ances, then the model can be estimated as well. Based on

the distribution of IR radiation spectrum, an IR sensor can

be classified as one of the following categories according to

its wavelength (Holliday and Kay 2005):

• Short-wave IR (SWIR): 0.7–3 lm

• Midwave IR (MWIR): [3–6 lm

• Long-wave IR (LWIR): [6–15 lm

• Far IR (FIR): [15–1,000 lm

IR energy is emitted by all materials above 0� K as

thermal radiations. The upper limit of FIR occurs in a

region where it is difficult to envision the output from a

source as heat (peak radiation occurs at 3� K). At normal

temperature, an electronic component radiates most

strongly in the IR range at about ten (10) lm, which

apparently corresponds to the LWIR. As a result, LWIR

sensors were used for this research. In the next section, we

demonstrate our novel approach.

4 Independent component analysis algorithm

First, we will present the preprocessing performed by the

ICA algorithm before actually applying ICA.

4.1 Whitening the data

The initial step in the ICA algorithm is to whiten the data,

i.e., the removal of any correlations in the data. The geo-

metrical interpretation is that it restores the initial ‘‘shape’’

of the data and that the ICA algorithm must only rotate the

resulting matrix (Gilmore 2011).

4.2 The ICA algorithm

Intuitively, you can imagine that ICA rotates the whitened

matrix back to the original signal space. It performs the

rotation by minimizing the Gaussianity of the data pro-

jected on both axes (ergo fixed point ICA). By rotating the

axis and minimizing Gaussianity of the projection, the ICA

is able to recover the original sources that are statistically

independent (Note: this property comes from the central

limit theorem which states that any linear mixture of two

(2) independent random variables is more Gaussian than

the original variables) (Gilmore 2011).

To illustrate the ICA algorithm, we provide a simple

example here to convey the concept. As previously men-

tioned, ICA is a technique to separate linearly mixed

sources. For instance, we try to mix and then separate two

sources. Figure 1 depicts the time courses of two (2)

independent sources.

Then, we linearly mix these two original sources from

Fig. 1 as shown in Fig. 2. In Fig. 2, we can arbitrarily

define the top mixed signal,

ms1 tð Þ ¼ s1 tð Þ � 2s2 tð Þ ð6aÞ

and the second mixed signal

ms2 tð Þ ¼ 1:5s1 tð Þ þ 3:5s2 tð Þ: ð6bÞ

In our approach, this represents IR signals obtained from

the PCB board.

Inputting arbitrary Eq. (6a) and (6b) into the ICA

algorithm allows for the recovery of the original signals as

shown in Fig. 3. More specifically, using the procedure

outlined previously, we can estimate the weights aij, i.e.,

the individual source signal contributions, based on the
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information of their independence. This technique allows

us to separate the two (2) original source signals, s1(t) and

s2(t), from their mixtures, x1(t) and x2(t). For the authors’

approach, which will be demonstrated in the simulations,

we seek to recover the individual, unique thermal signa-

tures for the components on a PCB for comparison with a

benchmark based on known authentic electronic parts.

5 Experimentation setup

We conducted a series of simulations in an attempt to

validate the theoretical methodology and technical

approach described above. Two PCBs were used for

experimental evaluation, one authentic PCB and one

counterfeit PCB. It should be noted that the PCBs were

visually similar and consisted of similar design, i.e., com-

ponent types, layouts, etc. In essence, each test board was

indistinguishable both visually and its physical character-

istics. The PCBs consisted of a circuit with a Hummingbird

field programmable gate array (FPGA). The test boards

supplied for the purposes of our evaluation and findings

were provided courtesy of the U.S. Naval Surface Warfare

Center Crane Division.

The simulations consisted of multiple LWIR video test

data with an application of the FastICA algorithm using

kurtosis. FastICA is closest to the double-blind method of

the BSS based on independence and described above. In

each simulation, several LWIR videos were acquired each

consisting of approximately 5 min in length. Additionally,

these test videos were recorded precisely 10 min after

initial powering of the boards to prevent any transients

from being captured in the data set. Furthermore, it should

be noted that all experimental analyses were conducted in

an off-line manner.

Twenty-four-bit Red–Green–Blue (RGB) images were

acquired using a FLIR Systems ThermoVision A320� IR

camera at a rate of 30 frames per second (fps) and a resolution

of 160 9 128 pixels. For the purpose of our experiment, the

camera lenses were placed approximately 7 inches vertically

above the PCB-mounted breadboard with the focus placed

mainly on the boards’ processor. Figure 4 showcases a

sample RGB and grayscale image. LWIR was used which

covers the most common thermal range of 7 or 8 microns to

14 microns. This range was desired because it is the largest

coverage of IR camera spectral ranges and can be used on a

wide variety of testing boards. This research employed the

MATLAB 2011b software (S/W) for signal analysis, Visual

C?? (2010) with Open Source Computer Vision (OpenCV)

specifically for further real-time signal analysis running

within a Windows Operating System (O/S) environment.

The program execution time was approximately 3 s for each

experimental run.
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Fig. 1 A pair of independent source signals

0 100 200 300 400 500 600 700 800 900 1000
-4

-2

0

2

4

0 100 200 300 400 500 600 700 800 900 1000
-10

-5

0

5

10

Fig. 2 Mixed signal representations from independent source signals

0 100 200 300 400 500 600 700 800 900 1000
-1

-0.5

0

0.5

1

0 100 200 300 400 500 600 700 800 900 1000
-1

-0.5

0

0.5

1

Fig. 3 Recovery of original source signals via ICA
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6 Simulation results

Based on Eq. (3), each of the recorded signals is a weighted

sum of the video signals emitted by the chip components

on the PCB, which we denote by s1(t) and s2(t). Therefore,

incorporating Eq. (4) provides the following linear

equations:

x1 tð Þ ¼ a11s1 þ a12s2 ð7aÞ
x2 tð Þ ¼ a21s1 þ a22s2 ð7bÞ

where a11, a12, a21, and a22 are parameters that are

dependent upon the distance of the cameras from the board

components. From this model, we estimate the unique

thermal contributions from the electrical components

s1(t) and s2(t), using only the recorded signals x1(t) and

x2(t). Obviously since the parameters aij are unknown, this

problem is considerably difficult. For simplicity, we

omitted any time delays or other extraneous factors from

our simplified mixing model and assume that signals

s1(t) and s2(t) are statistically independent. As an illustra-

tion, Fig. 5 depicts a signal of the total thermal emissions

from one of our PCBs, i.e., the aforementioned mixed

signal. Using mixed signals representative of those depic-

ted in Fig. 5, ICA was used to estimate the aij based on the

information of their independence, which allows us to

separate the two original source signals s1(t) and s2(t), i.e.,

the unique thermal signatures for the PCB components,

from the mixtures x1(t) and x2(t), i.e., the overall thermal

emission signals.

Finally, we investigate the performance of the ICA as a

means of not only separating the unique thermal contri-

butions of each PCB component. We first generate a ‘‘Gold

Standard’’ via ICA using our authentic test board. Figure 6

depicts the primary independent component for the FPGA

on our authentic evaluation board compared to another

independent component obtained from test data. As shown,

the signature obtained from the test board matches the

benchmark component. Thereby, our technique verifies the

test board is authentic, at least from the perspective of its

thermal signature.

Finally, we tested our approach against IR video

acquired from additional test data of suspected counterfeit

or altered PCB components. Figure 7 shows a comparison

between the independent components generated from the

suspected counterfeit PCB and our ‘‘Gold Standard’’ gen-

erated from a known authentic PCB. The illustrations

demonstrate that the FPGA from the suspected counterfeit

or altered board exhibits a different independent compo-

nent and does not match that of our gold standard.

This experiment was conducted with approximately two

dozen data sets with the same data characterization

described above. Figure 8 graphically depicts our findings

Fig. 4 a Twenty-four-bit RGB IR image of test evaluation board,

b 8-bit grayscale IR image of the test evaluation board. Images

acquired using FLIR A320 camera at a 30 frames per second (fps)

sample rate, and a resolution of 160 9 128 pixels
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Fig. 5 Thermal emission image in lexicographical order, which

represents the mixed observation and input to the developed ICA

algorithm
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from a second simulation run where a suspected counterfeit

board is gauged against our benchmark. Similarly to the

previous example, this illustration demonstrates that the

FPGA from our suspected counterfeit board also exhibits a

different independent component and does not match that

of our benchmark PCB. Therefore, it can also be recog-

nized as not authentic, i.e., counterfeit or altered.

7 Conclusion

In this paper, we have proposed a framework for separating

thermal signals obtained from PCB to ascertain whether the

electrical component may be counterfeit. We assumed that

each individual electronic component on the board has the

same kind of temporal dependencies as well as they have

nonstationary smoothly changing variances. This made it

possible to propose a cumulant-based contrast function that

was shown to separate the unique thermal or IR signatures

without necessitating estimation of a model of the source

dependencies. Additionally, these unique signatures were

able to be compared to a ‘‘Gold Standard’’ generated from

known authentic electronic parts.

The methodology presented was dependent upon

acquiring the IR imagery off-line prior to applying the ICA

algorithm, and it was required to separate mixtures of sub-

Gaussian, skewed, near-Gaussian, and super-Gaussian

source signals to obtain the desired source signals. Future

research will focus on an adaptive approach where the IR

imagery can be captured in near real-time versus off-line.

Also for forthcoming work, we will investigate an adaptive

ICA algorithm based on fully multiplicative orthogonal

group. This type of process can instantaneously separate

mixtures of sub-Gaussian and super-Gaussian source signals

as well as separate skewed and/or near-Gaussian signals,

which are common in the IR imagery of our application.
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