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Abstract
This study seeks to develop a closed-loop network for managing the pistachio Supply Chain 
(SC) under uncertainty. Then, a Mixed-Integer Linear Programming model is suggested to 
achieve optimal costs of the SC such transportation, production costs and  CO2 emissions 
tax. It is assumed that the demand for the product depends on the freshness and price of the 
product and, to deal with uncertainty, a robust optimization approach is used. Furthermore, 
GAMS software as an exact solution method and four meta-heuristics algorithms including 
Whale Optimization Algorithm, Particle Swarm Optimization, Rat Swarm Optimizer and 
a new hybrid algorithm are used as the solution approach. The accuracy of the planned 
model is examined using a case study and to more measurement, a sensitivity analysis is 
performed. Finally, the computational time of the mentioned algorithms and their obtained 
results are compared. The numerical analysis showed that the hybrid algorithm, although 
having more computational time, is superior to others, which the results had a difference 
between 0.9 and 2.7% with the exact method. Therefore, it is showed that the hybrid 
approach is a valid approach to solve large-scale problems. Our findings are helpful for 
pistachio-producing countries.

Keywords Agricultural supply chain optimization · Mathematical modeling · Meta-
heuristics · Robust optimization

1 Introduction

Nowadays, the agriculture industry has attracted the attention of many governments 
because of its essential role in nutrition, health, and improving the economy of develop-
ing countries (Yaseen et al., 2023; Abbas et al., 2020). In addition, the Agricultural Supply 
Chain (ASC) is considered an attractive research field among researchers due to unique 
attributes such as the sensitivity of product quality, fluctuations in their demand and prices, 
and the effects of climate change. (Abbas & Dastgeer, 2021; Abbas et al., 2021). Among 
all agricultural products, pistachio is one of the most valuable garden products that play 
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a crucial role in improving the economy of pistachio-producing countries (Taghizadeh-
Alisaraei et  al., 2017). World pistachio production in 2014 reached more than 638,000 
tons (with its soft shell), which showed an increase by 37% and 50% compared to 2013 
and 2004, respectively (Dolatabadi et al., 2021). In 2018, the top three pistachio farmers 
in the world were Iran, the USA, and Turkey, which their annual production is 551 ×  103, 
447 ×  103, and 240 ×  103 tons, respectively (see Fig. 1) (www. fao. org).

Annually, a huge large quantity of wastes is produced in pistachio processing centers 
(terminals), which can be used in many other industries instead of destruction (see Fig. 2). 
In addition to economic benefits, optimal use of pistachio wastes will have positive envi-
ronmental impacts. For example, approximately 135,000 tons of pistachio waste is pro-
duced annually just in Iran. These wastes, such as the soft shell of pistachio, have great 
potential for biofuel production in bio-refineries (Taghizadeh-Alisaraei et al., 2017). The 
soft shell of pistachio also can be recycled to produce large amounts of compost, which is 
used as fertilizer by farmers (Esmaeili et al., 2020). Therefore, reverse logistics utilization 
in the pistachio case and the optimal use of waste from its processing is essential for pro-
ducing countries, which has rarely been considered by researchers.

Moreover, uncertainty in decision-making is one of the most important challenges that 
pistachio farmers face every year. The demand for this products is sensitive to the price and 
the farmer’s yield could experience a significant fluctuation rate (Gilani & Sahebi, 2021). 

Fig. 1  Pistachio production between 1994 and 2019 (FAO)

Fig. 2  From left to right: raw pistachios, processing center, pistachio nuts, and the soft shell of pistachio

http://www.fao.org
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Robust optimization is a proper technique to predict future conditions in the unstable 
environment of pistachio Supply Chain (SC), but literature review shows that this approach 
has rarely been considered by researchers.

Environmental concern, and the importance of the circular economy have motivated 
this research group to focus on a Closed-Loop Supply Chain (CLSC) network design in 
the ASC sector. To fill the abovementioned research gap, a CLSC network is designed 
for the pistachio SC, and then a new Mixed-Integer Linear Programming (MILP) model 
is formulated to minimize the chain’s costs. A robust optimization approach is used to 
handle uncertainty of demand and production capacity of farmers. Also, GAMS software 
and some metaheuristic algorithms including Whale Optimization Algorithm (WOA), 
Particle Swarm Optimization (PSO), Rat Swarm Optimizer (RSO), and a new hybrid 
approach based on RSO and PSO (is called RSO-PSO) were used to solve the model, and 
then their results were compared. Then, the algorithm parameters are adjusted by applying 
the Taguchi method for achieving better results. Finally, the validation of the model is 
confirmed by analyzing the obtained results from a case study in Iran.

Therefore, the most important innovations of this research are as follows:

• Designing a CLSC network for pistachio under uncertainty.
• Proposing a new optimization model with a price and freshness-dependent demand.
• Presenting a new hybrid algorithm based on both RSO and PSO to solve the planned 

model.

The main purposes of this article are to solve the following problems:

1. How can mathematical modeling help in better distribution of agricultural products and 
recycling of their waste with the aim of reducing costs?

2. How to get better results in solving SC optimization problems in high dimensions by 
combining meta-heuristic algorithms?

3. How can the robust optimization approach be used in the decision-making and modeling 
processes in uncertain environments?

The current article has been written in 6 sections, which other sections are organized 
as the following: Sect. 2 has a complete literature review. The mathematical formulation 
of the problem is presented in Sect.  3. The optimal solution finding approach and the 
meta-heuristic algorithm are described in Sect. 4. A real case study is implemented on the 
proposed model to show efficiency, which is described in Sect. 5. The parameters of the 
meta-heuristic algorithm are adjusted in this section. Moreover, a comparison between the 
computational results is performed after obtaining individual results, and then a sensitivity 
examination is conducted to achieve a further evaluation of the model. Finally, in Sect. 6, 
the obtained results are concluded, and new research lines for future studies are described.

2  Literature review

In the recent past decades, several studies have been conducted to evaluate and expand 
pistachio production and obtain proper use of its wastes due to the high importance of 
the economic aspect of pistachio for its producing countries (Taghizadeh-Alisaraei et al., 
2017). According to our best knowledge, only a few articles have used mathematical 
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models to optimize the pistachio SC. Therefore, some studies related to SC optimization 
for other agricultural products are described to get to the research gap. This section aims to 
review and analyze these papers in three subsections, namely ASC optimization, applying 
meta-heuristic algorithms and considering uncertainty in this field.

2.1  ASC optimization

There are several studies in the scope of ASC optimization (Abbas et  al., 2018). As a 
pioneer of this field Ahumada and Villalobos (2009) considered different agricultural 
products, including both perishable and non-perishable, and as well as vegetables. 
Following this research, a model developed by Bohle et  al. (2010) for red grape 
via considering correctly determining the amount of harvested crop in each period, 
transporting way to the final product processing site, and planning the factory processing 
regarding the products, and packaging into the formation of a mixed integer programming 
model. For considering possible delays in the SC, both costs of harvesting and reducing 
product quality were included in the objective function of the model.

Asgari et al. (2013) studied a linear programming model for investigating the optimal 
quantity of wheat between farmers and consumers, and Lingo optimization software was 
applied for resolving the presented model. For large-scale problems, a genetic algorithm 
was also developed. A comparison between the obtained solutions from Lingo software 
and the obtained results from the genetic algorithm showed that the developed genetic 
algorithm is more effective by considering the computational time and quality of the 
obtained results. For SC management of imported fruits and perishable vegetables, 
Teimoury et  al. (2013) also proposed a multi-objective model. The system dynamics 
approach was used to analyze the impact of fruit imports in the SC. Subsequently, Nadal-
Roig and Plà-Aragonés (2015) formulated a transport programming model to optimize 
fruit logistics to meet demands in off-harvest seasons.

Banasik et  al. (2017) studied a multi-objective MILP model by considering different 
recycling technologies for reproduction in the CLSC network of the mushroom product. 
Their results showed that using such technologies in the CLSC could increase the overall 
profit by up to 12% and reduce emissions by about 28%. Sazvar et  al. (2018) studied a 
multi-objective linear mathematical programming model for providing a sustainable SC 
of perishable agricultural products, which were produced by organic and non-organic 
methods. In this research, the epsilon constraint approach was applied for solving  the 
model to achieve specific goals, including  maintaining an  equilibrium of production 
and consumption of non-organic and organic foods and  reducing prices, reduction 
of environmental impacts, and improve consumers’ health.

Chávez et al. (2018) investigated the waste of Colombian coffee to produce biofuels in 
a multi-objective problem. Their multi-period model’s objective functions maximized net 
present value, minimized the cost of carbon pollution and maximized the positive social 
effects.

2.2  Utilizing meta‑heuristic algorithms in ASC

Meta-heuristic algorithms are utilized to resolve the Np-hard optimization problems. 
These algorithms are applied by several scientists in the field of ASC optimization 
(Cheraghalipour, 2021). For instance, Cheraghalipour et  al., (2018) proposed a CLSC 
network and a multi-objective model for optimizing citrus fruits chain costs and the 
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responsiveness of customers’ demand. Several multi-objective evolutionary algorithms, 
such as NRGA, MOSA, MOKA, and NSGA-II, were also applied in this research to solve 
the planned model. Their results were compared to each other.

In other research, Cheraghalipour et  al. (2019) formulated a two-level optimization 
model to optimize total costs in the rice SC. Several meta-heuristic algorithms, including 
the Genetic Algorithm (GA) and PSO, as well as two unique hybrid algorithms based on 
them, were used in this study to solve the proposed model. Roghanian and Cheraghalipour 
(2019) proposed a multi-objective model for the citrus fruit SC network for minimizing 
total costs, maximizing the responsiveness of demand, and minimizing  CO2 pollution. 
Some Pareto-based meta-heuristic algorithms were used as the solution methods, i.e., 
TGA, NRGA, and NSGA-II. The "ideal filter / ideal displacement" method was used to find 
the best algorithm. Finally, MOTGA was selected as the best algorithm. Recently, a multi-
objective optimization model was developed by Sahebjamnia et al. (2020) for minimizing 
total costs and maximizing total profits in the ASC. Some evolutionary algorithms such 
as NSGA-II, MOPSO, and MOICA were also used to solve the suggested model. Salehi-
Amiri et  al. (2021) designed a CLSC network for walnut industry. They formulated a 
novel optimization model for optimizing logistics costs. They used some meta-heuristics 
algorithm and exact methods for solving the planned model. Rajabi-Kafshgar et al. (2023) 
considered the environmental impacts of agricultural wastes, and proposed a MILP model 
for an ASC network to minimize total costs. Some hybrid meth-heuristics algorithms such 
as KASA and GASA were used to find optimal solutions.

Gharye et  al., (2023a) designed a dual-channel SC network for tea industry, and 
considered the role of traditional and digital advertising rates on demand focusing on 
social factors. They used some multi-objective algorithms such as MOSA, MOGWO and 
MOWOA to solve their model. Gholian-Jouybari et al., (2023) proposed a new sustainable 
MILP model to optimize the total net profit while monitoring  CO2  emissions and the 
satisfaction of customers for the soybean industry. Some multi-objective optimizers such as 
MOGWO and MOHHSA were utilized to solve their model.

2.3  Considering uncertainty in ASC optimization models

Since the production of agricultural products is affected by climatic conditions, and the 
market for agricultural products is susceptible to economic fluctuations, ASC managers 
should consider the uncertainty in decision-making process. In many studies in the field of 
ASC optimization, uncertainty in the model has been considered. For example, Motevalli-
Taher et al. (2020) presented a new model for optimizing wheat production under demand 
uncertainty. Cost and water consumption minimization, and job opportunity maximization 
were considered as the objective functions. In addition, the simulation approach was used 
to estimate demand under uncertainty. In this research, a robust probabilistic optimization 
approach, and epsilon constraint method were used to handle uncertainty and to solve the 
model, respectively.

Gilani and Sahebi (2021) proposed a bi-objective mathematical model for optimizing 
the profit and the amount of pollutants in the pistachio SC under both demand and cost 
uncertainty. Clavijo-Buritica et  al. (2023) considered a resilience agro-food SC network 
during disruptions, and combined optimization and simulation schemes to address 
the uncertainty. Gharye et  al. (2023b) investigated weather conditions and economic 
fluctuations in different scenarios in date fruit SC using a robust MILP model.
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3  Research gap and innovation

Table 1 shows a summary of related articles to shed light on the research gap. All of these 
articles are related to the field of ASC optimization. By reviewing the articles, it can be 
concluded that mathematical models have been studied in very few articles to achieve an 
optimized solution for the pistachio SC network. Also, considering uncertainty in ASC 
optimization model is rarely seen. In addition, the use of reverse logistics in the ASC is 
infrequent.

In the current research, an innovative mathematical model is introduced to fill the 
research gap by optimizing the CLSC of pistachio under uncertainty. A robust optimization 
approach is used to deal with uncertainty. Also, it is assumed that the demand for the 
product depends on the freshness and price of the product. GAMS software and meta-
heuristic algorithms are used as solution methods to solve the proposed model. During 
each period, our model aims to find the best location for the construction of new facilities, 
determine the optimal flow of the product and its waste between the facilities, and the level 
of inventory of processed product (pistachio nuts) in each warehouse. The structure of the 
suggested logistics network and the mathematical model are described in the following 
chapters.

4  Problem definition

A pistachio CLSC network is presented in this work. The network is developed to be 
a multi-period type, is composed of farmers (producers), distribution (processing) centers, 
factories, customers areas, recyclers (compost production centers), and compost custom-
ers (pistachio farmers) as shown in Fig. 3. In the forward flow, the raw products are sent 
from the farmers to the processing centers for peeling, washing, separating, sorting, and 
packaging. Because the maximal harvest and processing duration of raw pistachios are two 
months, forward and reverse flows in the pistachio logistics network are only arranged in 
two periods. Then, the processed pistachios (pistachio nuts) are packed and transported to a 
warehouse with a maximum storing time of twelve months. In the next step, the goods are 
sent from the warehouse to customers to meet their demand.

In the reverse flow, the waste from pistachio processing (i.e., its soft shell) is sent 
from processing centers to bio-refineries and recyclers to produce biofuels and compost, 
respectively. Finally, the produced compost in the reprocessing centers is sent to its relevant 
customer (pistachio producers). Since, farmers (gardeners) are the customers of fertilizers, 
the network can be regarded as a CLSC.

4.1  Demand function modeling

In our study, the demands of customers are assumed to be sensitive to the price and 
freshness of product, as follows:

(1)dmmt = � × pr
−�
mt × f (t)

(2)f (t) = e−
√
t
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In these equations, prmt is the price of product in market m in period t, � is a constant 
parameter, and � is the price elasticity of demand. Moreover f (t) = e−

√
t indicates the 

freshness of the product, which decreases with time period.

4.2  Model assumptions

• The designed CLSC network is multi-period, and has four levels.
• Transportation costs between network facilities are considered per unit of product.
• The location of farmers, processing centers, bio-refineries, existing recyclers and 

customer zones is predetermined and constant. Some points are potential centers for 
opening new recyclers.

• All centers have a limited capacity.
• The demand for the product depends on the freshness and price of the product.
• The demand and production capacity of farmers are assumed to be uncertain.
• A time horizon of 1 year is considered.

Fig. 3  The presented CLSC network of pistachio
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5  Sets and indicators

I Set of farmers indexed by i ∈ I

J Set of processing centers indexed by j ∈ J

W Set of warehouse points indexed by w ∈ W

B The set of Bio-refinery points indexed by b ∈ B

M Set of customers points (markets) indexed by m ∈ M

T Set of period indexed by t ∈ T =
{
1, 2,… , t�,… ,T

}
 and t�(harvest period) ⊆ T

T ′ Set of harvest period indexed by t� ∈ T � = {1, 2} ⊆ T

C1 Set of existing recyclers indexed by c1 ∈ C1

C2 Set of new recyclers indexed by c2 ∈ C2

C Set of all recyclers indexed by c ∈ C = C1 ∪ C2

5.1  Parameters

fcc2 Constant cost of opening recyclers c2
cpai Producing cost for one unit of a product for farmer i
txiit Co2 emission tax per unit of product for farmer i  in period t
cpc

c
Producing cost per unit of a compost by recycler c

pr
mt

The price of product in market m in period t
txc

ct
CO2 emission tax per unit of compost for recycler c in period t

capww Holding capacity of warehouse w
capjj Holding capacity of processing center j
capcct Compost manufacturing capacity of recycler c at time t
chwwt Holding cost of one unit product for warehouse w in the period of t
ctaij Transporting cost of one unit of product between farmer i  and processing center j
ctbjw Transporting cost of one unit of product between processing center j and warehouse w
ctcwm Transporting cost of one unit of product between warehouse w and market m
ctdjb Transporting cost of one unit of product between processing center j and bio-refinery b
ctejc Transporting cost of one unit of product between processing center j and recycler c
ctfci Transporting cost of one unit of product between recycler c and farmer i
mincapit′ Minimum of production by farmer i  in the period of t′

� The conversion rate of raw pistachio to waste
1 − � The conversion rate of raw pistachio to the processed product
� The conversion rate of waste pistachio to compost
dcct′ Demand for compost by recycler in the period of t′

diit Demand for compost by farmer i  in the period of t
dbbt′ Demand for compost by bio-refinery b in the period of t′

M A large positive number
cpjj Processing cost of one unit of product for processing center j
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5.1.1  The uncertain parameters

c̃apit′ Production capacity for farmer i  in the period of t′

d̃mmt
The demand for the processed pistachio by the customer (market point) m in the period t

5.1.2  Positive decision variables

Xhwwt The amount of stored product in warehouse w in the period of t
Xaijt′ The amount of the transported product from farmer i  to processing center j in the period of t
Xbjwt′ The amount of the transported product from processing center j to warehouse w in the period 

of t′

Xcjbt′ The amount of the transported pistachio waste from processing center j to bio-refinery b in the
period of t′

Xejct′ The amount of the transported pistachio waste from processing center j to recycler c in the 
period of t′

Xgwmt′ The amount of the transported pistachio from warehouse w to market m in the period of t′

Xfcit The amount of the transported compost from recycler c to farmer i  in the period of t

5.1.3  Binary decision variables

The objective function of the model (3) aims to optimize all related costs to the SC network. 
These costs include fixed opening cost, transportation cost, maintenance cost for processing 
centers, production and Co2 emissions tax for farmers, processing and Co2 emissions tax for 
processing centers, and reprocessing cost for recyclers.

Vc2
=

{
1 if new recycler c2 is opened

0 O.W

(3)

Min Costs =
∑

c2∈C2

fcc2 × vc2 +
∑

t�∈T

∑

i∈I

∑

j∈J

ctaij × Xaijt� +
∑

t�∈T

∑

j∈J

∑

w∈W

ctbjw × Xbjwt�

+
∑

t∈T

∑

w∈W

∑

m∈M

ctcwm × Xgwmt +
∑

t�∈T

∑

j∈J

∑

b∈B

ctdjb × Xcjbt� +
∑

t�∈T

∑

j∈J

∑

c∈C

ctejc × Xejct�

+
∑

t∈T

∑

i∈I

∑

c∈C

ctfci × Xfcit

∑

t�∈T

∑

i∈I

∑

j∈J

[
cpait� + txiit

]
× Xaijt� +

∑

w∈W

∑

t�∈T

chwwt × Xhwwt

+
∑

i∈I

∑

j∈J

∑

t�∈T

cpjj × Xaijt� +
∑

t∈T

∑

i∈I

∑

c∈C

[
cpcc + txc

ct

]
× Xfcit +

∑

t∈T

∑

w∈W

∑

m∈M

pr
mt
× Xgwmt
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5.2  Constraints

5.2.1  Capacity constraints

5.2.2  Balancing constraints

5.2.3  Demand constraints

(4)mincapit� ≤
∑

j∈J

Xaijt� ≤ c̃apit� ∀i ∈ I, t� ∈ T

(5)
∑

i∈I

Xfc1it ≤ capcc1t, ∀c1 ∈ C1,∀t ∈ T

(6)
∑

i∈I

Xfc2it ≤ capcc2t ⋅ Vc2
, ∀c2 ∈ C2,∀t ∈ T

(7)
∑

i∈I

Xaijt� ≤ capjj, ∀j ∈ J, t� ∈ T

(8)Xhwwt ≤ capww, ∀w ∈ W,∀t ∈ T

(9)(1 − �) ⋅
∑

i∈I

Xaijt� ≥
∑

w∈W

Xbjwt� ∀j ∈ J, t� ∈ T

(10)(�) ⋅
∑

i∈I

Xaijt� ≥
∑

b∈B

Xcjbt� +
∑

c∈C

Xejct� , ∀j ∈ J, t� ∈ T

(11)Xhwwt� = Xhwwt�−1 +
∑

j∈J

Xbjwt� −
∑

m∈M

Xgwmt� , ∀w ∈ W, t� ∈ T

(12)
∑

j∈J

∑

t�∈T

Xejc2t� ≤ M × Vc2
, ∀c2 ∈ C2

(13)� ⋅

∑

t�∈T

∑

j∈J

Xejct� =
∑

t�∈T

∑

i∈I

Xfcit� , ∀c ∈ C

(14)
∑

t�∈T

∑

j∈J

Xbjwt� =
∑

t∈T

∑

m∈M

Xgwmt, ∀w ∈ W

(15)
∑

w∈W

Xgwmt ≥ d̃mmt� ∀m ∈ M, t� ∈ T �

(16)
∑

j∈J

Xcjbt� ≥ dbbt� , ∀b ∈ B, t� ∈ T �
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5.2.4  Decision variables types

Constraint (4) is considered to ensure that the harvest of each farmer is between the 
minimum and maximum of predicted production. Constraint (5) illustrates that the amount of 
transported compost to pistachio farmers is smaller than or equal to the production capacity of 
recyclers. Constraint (6) indicates that the amount of transported pistachio to the warehouse 
should be smaller than or equal to the holding capacity of each warehouse. Constraint (7) 
shows that the amount of transported raw pistachio to processing centers should be smaller 
than or equal to the holding capacity of each processing center. Constraint (8) indicates that 
warehouse inventory in each period must be smaller than or equivalent to its storage capacity.

Constraint (9) is considered to balance the flow of processing centers. So, all raw pistachios 
received from farmers multiplied by the conversion rate to the processed pistachio is greater 
than or equal to the total processed pistachio in warehouses. Constraint (10) is similar to 
constraint (9), which is considered the amount of raw pistachio in each processing center 
multiplied by the conversion rate to waste is greater than or equal to the amount of transported 
waste to recyclers and bio-refineries. Constraint (11) illustrates the balance of the processed 
pistachio inventory in the warehouse. This constraint states that the amount of inventory in 
each warehouse in each period is equivalent to the inventory level for the previous period plus 
the amount of processed pistachio received from processing centers minus the amount of the 
delivered product to consumers. Constraint (12) ensures that the waste of pistachio processing 
is transported to the new recycler only if the new center is opened. Constraint (13) is defined 
to ensure that all received pistachio waste from processing centers multiplied by the compost 
conversion rate equals the total delivered compost to the farmers. Constraint (14) balances the 
flow of warehouses.

Constraints (15), (16), (17), (18) and (19) indicate that the demand for each facility in each 
period must be met and, finally, constraint (20) defines the type of decision variables and their 
non-negativity.

5.3  Robust counterpart

Here, to deal with the uncertainty of parameters, a robust optimization proposed by Ben-Tal 
and Nemirovski (1998) is employed. In this approach, it is assumed that each of the uncertain 
parameters changes in an interval uncertainty set, as follows:

(17)
∑

j∈J

Xejc1t� ≥ dcc1t� , ∀t� ∈ T , c1 ∈ C1

(18)
∑

j∈J

Xejc2t� ≥ dcc2t� ⋅ Vc2
, ∀c2 ∈ C2, t

� ∈ T

(19)
∑

c∈C

Xfcit ≥ diit, ∀i ∈ I,∀t ∈ T

(20)

Xaijt� ,Xbjwt,Xcjbt� ,Xgwmt,Xejct,Xfcit� ,Xhwwt ≥ 0,

∀i ∈ I,∀t ∈ T ,∀c ∈ C,∀m ∈ M,∀w ∈ W

∀j ∈ J,∀b ∈ B,∀c2 ∈ C2,Vc2 ∈ {0, 1}
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In this set, � is the nominal values, 𝜏 is a constant deviation and |�| ≤ � is the scale of 
uncertainty in which � is the radius bound.

Considering the mathematical model with uncertain parameters, including ã, b̃, c̃ and d̃:

To convert mathematical modeling (Eq.  (23)) and solve it, the following structure is 
suggested:

Here, the deterministic programming model is formulated based on the robust model to 
embed the uncertainty of demand and production capacity of farmers. The boundaries for 
uncertain parameters, according to Eq. (21), are defined as follows:

The objective function doesn’t include uncertain parameters, so the following 
constraints are added:

6  Solution approach

A MILP model is presented to optimize the pistachio logistics network costs in this 
research. To solve this model, GAMS software was used as an exact solution method and 
some metaheuristic algorithms with priority-based encoding were used as the proposed 
approach, respectively. In this section, the proposed solution approach is described through 
several separate subsections including Structure and display of initial solution, WOA, PSO, 
RSO and, RSO-PSO algorithm. In addition, it is showed that this approach can satisfy the 
model’s limitations.

(21)𝜏 = 𝜏 + 𝜑𝜏∀𝜏 ∈ R

(22)Max c̃x + d̃

(23)s.t. ãx ≤ b̃

(24)x ≥ 0

Max �

(25)𝛾 − cx +
[
𝜎
{
ĉx + d̂

}]
≤ d

(26)ax +
[
𝜎
{
âx + b̂

}]
≥ b

(27)d̃mmt = dmmt + �mmtdmmt ∀m ∈ M, t ∈ T

(28)c̃apit = capit + �iitcapit ∀i ∈ I, t ∈ T

(29)
∑

w∈W

Xgwmt + � × d̃mmt ≥ dmmt ∀m ∈ M, t ∈ T

(30)
∑

j∈J

Xaijt� + � × c̃apit ≥ capit ∀i ∈ I, t ∈ T
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6.1  Structure and display of the initial solution (encoding)

In this study, the priority-based encoding method introduced by Gen et  al. (2006) is 
applied to display a candidate answer. To use this method to two-level SC optimiza-
tion problems with I origins and J destinations, the structure of a solution will be a 
string of numbers with the length of I + J. Also, I + J random numbers are generated and 
sorted according to their priority. Then, the minimum amount is transported between 
the origin’s capacity and the demand of the destination from the origin and destina-
tion with the highest priority. For more details on this method, see (Gen et al., 2006). 
The decoding method of the solution for the model of this current research is described 
here. Also, the structure of the initial solution is more complex due to several peri-
ods and several levels of the proposed logistics network, so a small-scale example is 
described for better understanding. Assume that the total numbers of farmers, process-
ing centers, warehouses, buyers, bio-refineries, and recyclers are 2, 2, 2, 1, 1, and 2, 
respectively. As shown in Fig.  4, the proposed solution is a matrix with twelve rows 
and 2*i + 3*j + 2*k + l + m + c columns. The cells of this matrix are packed with random 
numbers between 0 and 1, and these cells are sorted according to their priority in the 
next step. The sorting procedure of the numbers is performed separately for each sec-
tion, which the first part of the proposed array is shown in Fig. 5 for better understand-
ing. This section corresponds to the product amount transported from farmers (I) to pro-
cessing centers (J). The constraints of 7, 9 and 10 are satisfied due to the encoding of 
the first part as shown in Fig. 6. In addition, the demands of bio-refineries and recyclers 
are met using the decoding of the second part. Moreover, inventory can be controlled by 
using the third part of the encoding. Other constraints can be met by the encoding of the 
rest of the sections, which are described in Fig. 23 in appendix.

6.1.1  Whale optimization algorithm

One of the most common and recent population-based algorithms was proposed by 
Mirjalili and Lewis (2016) called WOA, which designed based on the social behavior 
of humpback whales. In WOA, a series of random candidate solutions (population) and 
three rules is used to update and enhance the location of candidate solutions in each 

Fig. 4  A schematic diagram of proposed arrays

Fig. 5  The proposed array, which is composed of random numbers for the first segment
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step that is common in other population-based algorithms. Indeed, these three rules are 
including encircling prey, spiral updating location and searching for prey. A list of them 
is presented in the following:

• Encircling prey: if (p < 0.5 and |A|< 1).

The position of the candidate solution �⃗X(t + 1) is updated according to Eqs. (31) and 
(32):

(31)D⃗ =
|||C.X⃗ ∗ (t) − X(t)

|||

Fig. 6  The process of the priority-based decoding procedure for segment 1
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where �⃗X(t + 1) is used to show the best candidate solution for the current generation. 
A⃗ and D⃗ are calculated according to Eqs. (33) and (34):

where a linearly decrease from 2 to 0, and r is a random vector in [0,1] interval.

• Search for prey: if (p < 0.5 and |A|< 1)

Both searching for prey and encircling prey are very similar, but instead of using �⃗X∗ , in 
searching for prey, a random candidate solution ����������⃗Xrand is chosen. The process is showed by 
Eqs. (35) and (36).

Searching for prey is applied during performing of the exploration phase, in which 
WOA is enabled to conduct a full global search (Mirjalili & Lewis, 2016).

• Spiral updating position: if p < 0.5

During the WOA’s exploitation process, two methods including encircling prey and 
spiral updating position are also used. Individual  positions are modified by the spiral 
updating position, according to Eq. (37):

where D⃗ =
||| X⃗ ∗ (t) − X(t)

||| is specified to show the distance among ith candidate solution 
and the best solution in the current iteration. Figure 7 shows the pseudo-code of the WOA 
algorithm.

6.2  Rat swarm algorithm

RSO was introduced by Dhiman et al. (2020) which is a population-based algorithm that 
mimics the mechanism of social behavior of rats in nature, such as chasing. Chasing prey 
and aggressive behavior of rats caused the death of some animals which is simulated as 
follows:

6.2.1  Chasing prey

Prey is chased by a group of rats. To model this mechanism, it is assumed that the best 
search agent knows the location of the prey and that other rats update their position relative 
to it. The following formulas are used to model this behavior:

(32)�⃗X(t + 1) = �����⃗X ∗ (t) − ��⃗A.D⃗

(33)A⃗ = 2a⃗ ∗ r − a⃗

(34)C⃗ = 2 ∗ r

(35)D⃗ =
|||C.X⃗rand(t) − X(t)

|||

(36)�⃗X(t + 1) = ����������⃗Xrand (t) − ��⃗A.D⃗

(37)X⃗(t + 1) = D⃗∗ebt*cos(2𝜋l) + X⃗(t)
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where P⃗i(x) and P⃗r(x) represent the position of the rats and the best answer, respectively. In 
this equation, parameters A and C are defined as follows:

where R and C are random numbers between [1, 5] and [0.2], respectively. These 
parameters are used for better exploration and exploitation in each iteration.

6.2.2  Fight against prey

To simulate a group of rats that fights against prey, the following equation is used:

(38)P = A ⋅ P⃗i(x) + C ⋅

(
P⃗r(x) − P⃗i(x)

)

(39)A = R − x ×
(

R

MaxIteration

)

(40)C = 2 × rand

Fig. 7  Pseudo-code of the WOA algorithm (Mirjalili & Lewis, 2016)
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Fig. 8  3D position vectors of rats

Fig. 9  The pseudo code of RSO algorithm
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where ��⃗Pi(x + 1) shows the next position of the rats in the next iteration so that the others 
update their positions using this variable. The simulation of these equations is shown in 
Fig. 8. According to this figure, rat (A, B) can update their location to the location of their 
prey. By setting the parameters, a number of different situations can be achieved in the cur-
rent position. Thus, exploration and exploitation can be guaranteed by parameters A and C. 
The pseudo-code of this algorithm is shown in Fig. 9.

6.2.3  Time complexity

1. The initialization of RSO population needs O (n × d) time where n indicates the number 
of iterations and, d defines the dimension of a test function to adjust the solutions within 
the boundary.

2. In the next step, the fitness calculation of each search agent requires O 
(MaxIteration × n × d) time where MaxIteration is the maximum number of iterations 
to simulate the proposed RSO algorithm.

3. Repeat Steps 1 and 2 until the satisfactory results is found which needs O (N) time. 
Therefore, the overall time complexity of RSO algorithm is O (MaxIteration × n × d × N) 
(Dhiman et al., 2020).

6.3  Particle swarm optimization

The PSO is a meta-heuristics algorithm proposed based on the social behavior of birds’ 
flocks (Coello Coello & Lechuga, 2002). Particles as a population of candidate solutions 
move across the search space in this algorithm, which is following basic mathematical 
formulae over the particle’s position and corresponding velocity, as below formulation:

where Vij(t + 1), xij(t) are particle velocity and particle position, respectively;pij(t) is 
the individual local of best position and gj(t) is the global best solution at that iteration. 
Moreover, W is the inertia weight factor that has a great impact on the dynamic fly of 
the particle, and  C1 and  C2 represent the acceleration constants and xij(t + 1) is the new 
position of the particle. In this Algorithm, the particle best position (pbest) and the global 
best position (gbest) are updated by Eq. (44).

The process will continue till obtaining the best possible solution, otherwise particles’ 
velocity and, position must be updated. The time complexity of PSO is O (DN) (D and N 
are the dimensionality and population size, respectively.

(41)��⃗Pi(x + 1) =
|||
��⃗Pi(x) − P

|||

(42)
Vij(t + 1) = W × Vij(t) + c1r1j(t)

[
pij(t) − xij(t)

]

+ c2r2j(t)
[
gj(t) − xij(t)

]

(43)xij(t + 1) = xij(t) + Vij(t + 1)

(44)
pbest(t + 1) = xi,j(t + 1)

gbest(t + 1) = xi,j(t + 1)
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6.4  RSO‑PSO hybrid algorithm

In this subsection, a new hybrid algorithm of PSO and RSO is presented. In this algorithm, 
a combination of different formulas and operators are used based on these algorithms. The 
algorithm starts with a population of candidate rats that have random positions and speeds 
in the search space. They can memorize their positions and the best position ( pbest ) and 
the best global position ( gbest ) similar to the PSO algorithm. For each primary iteration, 
the RSO is performed for a specific number of secondary iterations, and the best rat qualifi-
cation is considered as gbest . Next, for some sub-third-party iterations, the PSO algorithm 
starts by updating the position, velocity, pbest , and gbest using the PSO mechanism and 
Eqs. 8 and 9. Finally, a comparison is performed between the two different best answers 
obtained by the PSO and the RSO, and a more appropriate answer is considered as gbest . 
This process continues till ending the initial iterations. The flowchart and Pseudo-code of 
the proposed RSO-PSO hybrid algorithm is demonstrated in Figs. 10 and 11.

6.4.1  Time complexity of RSO‑PSO

1 The initialization of RSO-PSO population needs O (n × m × d) time where n and m 
indicate the number of RSO and PSO iterations and d defines the dimension of a test 
function.

Fig. 10  Flowchart of the hybrid RSO-PSO
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2 In the next step, the fitness calculation of each search agent requires O (RSOMaxItera-
tion × PSOMaxIteration × n × d) time where RSOMaxIteration and PSOMaxIteration 
are the maximum number of iterations in RSO and PSO.

3 Repeat Steps 1 and 2 until the satisfactory results is found which needs O (M) time. 
Therefore, we can conclude that the overall time complexity of RSO-PSO algorithm is 
O (RSOMaxIteration × PSOMaxIteration × n × d × M).

6.5  Evaluation of metaheuristics using benchmark functions

This section employs a benchmark outline to analyze the capability of meta-heuristics 
algorithms. A set of constrained problems from DTLZ (Deb et al., 2005), which are rep-
resented in Table 9 in Appendix are selected to evaluate the performance of the proposed 

Fig. 11  Pseudo-code of the hybrid RSO-PSO algorithm

Table 2  The obtained average 
deviation results of algorithms on 
unimodal benchmark tests

Function RSO WOA PSO RSO-PSO

F1(x) 6.09E−32 1.41E−30 4.98E−09 0.00E+00
F2(x) 0.00E+00 1.06E−21 7.29E−04 0.00E+00
F3(x) 1.10E−18 5.39E−07 1.40E+01 2.6E−35
F4(x) 4.67E−07 0.072581 6.00E−01 6.7E−15
F5(x) 6.13E+00 27.86558 4.93E+01 2.97E+00
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metaheuristics. The numerical results are available in Table 2. According to the obtained 
results, it can be concluded that RSO-PSO outpaced the other optimizers.

Fig. 12  The main cities of Ker-
man Province

Fig. 13  Customer zones loca-
tions highlighted in blue color
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7  Case study and results

The correctness of the presented model is investigated through a real case study in Kerman 
province, Iran. At present, the pistachio cultivated area in Iran is approximately more than 
300,000 hectares, and Kerman province, with a total of 200,000 hectares, provides 67% of 
the total pistachio in Iran (Taghizadeh-Alisaraei et al., 2017). In this study, information was 
collected as input data from some pistachio farmers to close the case study to reality. Some 

Table 3  The general data about 
the test problems

Test I J W B M C1 C2

1 8 2 2 1 2 2 1
2 10 5 4 3 5 4 2
3 18 7 6 4 9 6 3
4 25 11 8 5 13 9 4
5 33 16 11 7 18 12 6
6 42 20 14 8 22 16 8
7 50 25 17 9 27 20 9
8 63 30 21 10 32 24 12
9 73 38 27 11 38 29 14
10 82 45 33 12 44 35 15

Table 4  The cost of transportation between the mentioned cities (unit: dollar per ton)

Rafsanjan Zarand Kerman Ravar Sirjan Anar

(a)
 Rafsanjan 5 – – – – –
 Zarand 8 5 – – – –
 Kerman 8 8 5 – – –
 Ravar 9 7 10 5 – –
 Sirjan 12 11 13 15 5 –
 Anar 8 9 14 11 15 5

Tehran Isfahan Mashhad Shiraz Tabriz

(b)
 Rafsanjan 50 40 50 36 62
 Zarand 52 41 45 40 62
 Kerman 53 45 53 37 68
 Ravar 53 44 44 45 65
 Sirjan 55 35 55 33 64
 Anar 45 35 40 35 62
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cities of Kerman province including Rafsanjan, Ravar, Zarand, Anar, Kerman, and Sirjan, are 
selected to collect data, which are considered as farmers, processing centers, recyclers and 
warehouses. The location of these cities is shown in Fig. 12. In addition, consumers are con-
sidered among other provinces of Iran, which are highlighted in Fig. 13. Besides, as shown 
in Table 3, ten test problems are created depending on the number of network facilities for 
evaluating  the effectiveness of the proposed model. In addition, Table 4a and 4b show the 
transportation costs between the mentioned  facilities. These costs are calculated using the 
distance between the abovementioned cities (kilometers) and Iranian fare rates (dollars per 
kilometer). The conversion rate of raw pistachio to processed pistachios is approximately 
determined to 0.7 according to the collected information. Therefore, the conversion rate of 
raw pistachio to waste is about 0.3. Moreover, the conversion rate of waste pistachio to com-
post is 1.3. The price of product per Kg is between 7$ and 8$).There was a challenge to find 
exact data concerning the amount of demand, capacity and costs of related companies in the 
pistachio industry. For these reasons, the required data are mostly approximated, which are 
presented in Table 5.    

7.1  Parameter adjustment

The efficiency and effectiveness of any meta-heuristic algorithms depended on the proper 
adjustment of their parameters. Several methods have been proposed to adjust these param-
eters that the Taguchi method is used in this study. In this method, a group of factors is 
classified into two main subclasses based on orthogonal arrays, namely control and pertur-
bation factors (Roghanian & Cheraghalipour, 2019). The influence of control and perturba-
tion factors simultaneously is changed to maximum and minimum amounts, respectively. 

Table 6  Algorithm’s parameters and their levels

Algorithms Parameter Parameter level Best level

Level 1 Level2 Level3

RSO-PSO Maximum iteration (MI) 50 100 150 150
Population size (PS) 40 50 60 60
R 0.4 0.5 0.6 0.6
C 0.4 0.5 0.6 0.6
C1 1.9 2 2.1 2
C2 2.1 2.2 2.3 2.3

WOA Maximum iteration (MI) 50 100 150 150
Population size (PS) 40 50 60 60
Pe 0.4 0.5 0.6 0.5

PSO Maximum iteration (MI) 50 100 150 150
Population size (PS) 40 50 60 60
C1 1.9 2 2.1 2
C2 2.1 2.2 2.3 2.1

RSO Maximum iteration (MI) 50 100 150 150
Population size (PS) 40 50 60 60
R 0.4 0.5 0.6 0.6
C 0.4 0.5 0.6 0.6
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Fig. 14  Diagram of the S/N ratio for WOA

Fig. 15  Diagram of the S/N ratio for PSO

Fig. 16  Diagram of the S/N ratio for RSO
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The optimum level for a factor is the one that produces the highest signal-to-noise ratio 
(S/N) (Liao et  al., 2020). This ratio measures the level of changes during the process, 
which is calculated using the following formula.

where the response value in this equation is showed by Y  and the number of orthogonal 
arrays is showed by n (Cheraghalipour et al., 2018).

Three levels for each parameter are considered to obtain better performance of the algorithms, 
which are shown in Table 6. According to these levels, the Taguchi design method presents the 
L9 orthogonal array for PSO and WOA and the L27 for RSO and hybrid RSO-PSO. After per-
forming the Taguchi experiment in the Minitab software, the best level for each parameter is 
obtained using the diagrams of the S/N ratio (Figs. 14, 15, 16, 17). The best value for each level 
is the value that the diagram reaches its maximum value. The best values   for the algorithm’s 
parameters are shown in the right column of this table. For example, the best value for the maxi-
mum repetition parameter is 150. These optimal values   are usable in all sample problems.

(45)SN = − 10 log

�∑n

i=1
Y2

n

�

Fig. 17  Diagram of the S/N ratio for RSO-PSO

Table 7  The obtained computational results via solving the model

Test GAMS WOA PSO RSO RSO-PSO

Sol RPD Sol RDP Sol RPD Sol RPD

1 20,262 21,074 0.039 21,762 0.074 20,955 0.034 20,872 0.027
2 23,835 24,864 0.041 25,209 0.058 24,506 0.028 24,009 0.007
3 45,648 46,393 0.016 47,023 0.03 46,301 0.014 46,293 0.014
4 62,018 64,474 0.038 69,328 0.118 63,371 0.022 62,850 0.013
5 85,190 90,281 0.056 95,361 0.119 89,179 0.047 87,419 0.025
6 103,719 107,857 0.038 112,964 0.089 105,194 0.014 104,921 0.011
7 126,890 129,562 0.021 137,783 0.086 128,455 0.012 128,041 0.009
8 152,451 158,593 0.039 162,790 0.068 157,741 0.035 155,677 0.021
9 179,008 184,422 0.029 191,317 0.069 183,630 0.026 181,237 0.012
10 206,449 209,962 0.017 214,541 0.039 208,842 0.012 208,321 0.009
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7.2  Analysis and comparison of results

In this sub-section, the suggested model is examined on ten sample problems designed in the 
previous section. Hence, sample problems 1–5 and 6–10 are considered as small- and medium-
size problems, respectively. Then the proposed model and the meta-heuristic algorithm are 
encoded in GAMS software and MATLAB software, respectively. For performing calculations, 
a computer with 4 GB of RAM and a 2.2 GHz CPU was used. The numerical and graphical 
results obtained from solving the model are demonstrated in Table 7 and Fig. 18, respectively. 
The difference between GAMS and the proposed hybrid approach (RSO-PSO) results in all 
sample problems is acceptably between 0.009 and 0.028. According to the obtained results, 
this solution approach is valid for solving large-scale problems. Moreover, Table 8 and Fig. 19 
display the running time of the described meta-heuristic algorithms. This table illustrates that 
the running time of the algorithm increases following an increase in the problem size. Overall, 
according to these tables, although the hybrid algorithm has more execution time, it provides 
better results.

Fig. 18  Graphical diagram of the obtained results via GAMS and the proposed solution approach

Table 8  Metaheuristic 
Algorithms’ run time (Second)

Test WOA PSO RSO RSO-PSO

1 33.2 35.8 30 37.2
2 50.9 53.4 48.4 56.7
3 85.6 86.7 84.1 90.9
4 142.4 145.3 140.1 149.5
5 274.2 279.2 273.9 282.2
6 484 492.9 480.4 496.6
7 710.7 717.6 708.7 722.1
8 1321.6 1330.6 1318.4 1339.3
9 2271.3 2279.4 2267.3 2283.4
10 3729.4 3738.2 3725.7 3745.5
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7.3  Sensitivity analysis

For further evaluating the proposed model, sensitivity analysis is conducted on different 
values of the demand parameter, and Co2 emissions tax for recyclers. It should be 
remembered that the first sample problem is subjected to sensitivity analysis.

7.3.1  Demand

The diagram of the objective function values for different demands of pistachio 
(between 1400 and 1500 kg) is presented in Fig. 20. As can be shown, when the demand 
increases from 1450 to 1460, the total costs will also increase by 4.4%. The higher the 
demand, the more product will be moved, which leads to an increase in costs.

Fig. 19  Graphical diagram of the execution time

Fig. 20  The effect of increasing demand parameter on the objective function
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7.3.2  Co2 emissions tax for recyclers

Here, we perform a sensitivity analysis on Co2 emissions tax fluctuations. After solving 
with GAMS software, the obtained outcomes are shown in Fig. 21. Sensitivity analysis 
shows that with a 10% increase in Co2 tax, the total costs will also increase by 0.4.4%, 
but when the demand value increases from 10 to 20%, total costs will increase slowly.

7.3.3  The scale of uncertainty ( ')

In this section, the effect of changing the scale of uncertainty on the objective function is 
investigated. Figure 22 assesses the presented robust model with several values of uncer-
tainty levels in the first test problem. As seen in this figure, the objective function increases 
with an increase in this parameter.

8  Conclusions, managerial insights and suggestions for future studies

Optimal use of pistachio waste is one of the significant challenges in the pistachio SC, 
which these wastes are produced after pistachio processing. In this paper, a CLSC network 
was firstly organized for pistachio products, which is rarely considered by researchers. The 
proposed network structure was a four-level network, in which farmers were defined as the 
lowest level. The second layer is processing centers for processing raw pistachio products 
that are received from farmers. Then they sent the processed and packaged pistachios to 

Fig. 21  The effect of Co2 tax for 
recyclers on total costs

Fig. 22  The effect of uncertainty 
levels on total costs
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the warehouse for storing in the third layer. Besides, produced waste in processing centers 
was sent to bio-refineries and recyclers for producing biofuel and compost. In the fourth 
layer, processed pistachios were shipped from the warehouse to the consumer points, and 
the produced composts were sent to the farmers to meet their demand in the last level. 
In the present problem, a MILP model was developed to optimize the total costs under 
uncertainty of demand and capacity of farmers. These costs included transportation 
costs between network layers, production costs and Co2 emissions tax for farmers and 
recyclers, storing costs of warehouses, and fixed costs for opening new recyclers. The 
mathematical model was proposed to address strategic and several operational decisions 
such as the construction of recyclers, product flow rate, and the amount of inventory level. 
The demand for the product was sensitive to the freshness and price of the product. Then, 
GAMS software and some metaheuristic algorithms including WOA, PSO, RSO, and also 
a new hybrid algorithm based on RSO and PSO called RSO-PSO were used to solve this 
model in low and medium dimensions. Besides, parameters of the meta-heuristic algorithm 
were adjusted via the Taguchi method for obtaining better results and performance, and the 
obtained results from solving the model were analyzed. In addition, to more measurement, 
a sensitivity analysis was performed on some key parameters. In this paper, ten test 
problems with different sizes were used to evaluate the efficiency of the presented solution 
approach, and the obtained results indicated that this hybrid approach can be used to solve 
large-scale problems.

8.1  Managerial insights

The results of this research can be used by decision-makers and managers in agricultural 
fields. Besides, the applications of the presented model can be expanded to optimize the SC 
of some other agricultural products such as citrus, crops, etc. The planed model can assist 
marketing executives, and production directors in their economic decision-making process. 
Correspondingly, the planned model can help relevant managers in the agricultural sector 
to better distribute products in local markets when faced with demand uncertainty.

8.2  Limitations and future directions

Although this research designed a framework to optimize the pistachio SC, it seems to 
have many limitations. For example, collecting real data was beyond the author’s ability. 
Therefore, some of model’s parameters were generated based on existing information. 
Considering water resources or pistachio production methods were not considered in this 
research. In addition, pricing or advertising decisions in modeling or disruption effects 
were ignored.

For developing this study in the future, the proposed model can be turned into a multi-
objective model and, sustainability aspects must be integrated with it. Considering other 
robust optimization to deal with uncertainty are among the future suggestions that must 
be considered by researchers in this field. Furthermore, solving the proposed model by 
using heuristic methods and other meta-heuristic algorithms and, comparing their results 
can raise some motivation for researchers to follow this research field. Finally, due to the 
expansion of the Internet, it seems that the integration of ASC management with new con-
cepts such as the Internet of Things or machine learning could improve it, which has rarely 
received the attention of researchers. Therefore, these issues could also be investigated in 
the future.
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Appendix

See Figs. 23 and Table 9.

Fig. 23  The procedure of presented priority-based decoding in segment 3

Table 9  Unimodal benchmark 
functions

Benchmark function Dim Range

F1(x) =
∑
i=1

x2
i

30 [−100, 100]

F2(x) =
n∑
i=1

��xi�� +
∏n

i=1
��xi��

30 [−10, 10]

F3(x) =
n∑
i=1

�
i∑

j−1

xj

�2 30 [−100, 100]

F4(x) = maxi
{||xi||, 1 ≤ i ≤ n

}
30 [−100, 100]

F5(x) =
n−1∑
i=1

�
(xi+1 − x2

i
)2 + (xi − 1)2

� 30 [−30, 30]
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