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Abstract
Wheat is one of the most important cereal crops cultivated in a wide range of agro-ecolo-
gies in Ethiopia. It is also the source of food for the majority of Ethiopian people, next to 
maize. However, factors such as climate change and other challenges have contributed to 
its consistently low productivity. Therefore, this study aimed to analyze the impact of cli-
mate-smart agriculture practices (CSAPs) (wheat row planting, crop rotation and improved 
wheat variety in isolation and in combination) on the technical efficiency of wheat farm-
ers. The data were generated from 385 randomly selected wheat producers, encompass-
ing 702 plots across three prominent wheat-producing districts in northwestern Ethiopia. 
A stochastic production frontier (SPF) with selection correction model and a multinomial 
endogenous switching regression (MNESR) model were applied to estimate the technical 
efficiency and the impact of CSAPs on technical efficiency, respectively. The estimated 
mean technical efficiency of wheat farmers was 84.5%, ranging from a minimum of 32.8% 
to a maximum of 99.8%. The MNESR model result showed that the adoption of CSAPs 
in isolation or in combination considerably improved wheat farmers’ technical efficiency. 
The highest technical efficiency was recorded when farmers implemented all three CSAPs 
simultaneously within a single plot, rather than when they adopted them separately. This 
implies that policymakers and stakeholders should promote the adoption of a combination 
of CSAPs to enhance wheat productivity.
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1 Introduction

Wheat is the second most important source of calories and protein to the Ethiopian diet 
after maize, contributing 13.41% of the total calorie intake and 13.82% of the total protein 
intake (FAO, 2022). According to CSA (2022), in 2021/22 production year, wheat cov-
ered 1.867 million hectares of land at the national level, which accounts for approximately 
18.67% of the total area covered by cereal crops. The total volume of wheat production in 
the same year amounted to 58.078 million quintals, representing 19.97% of the total cereal 
crop output. The Oromia region produced the largest volume, accounting for 55% of the 
wheat area coverage and 59% of the production, followed by the Amhara region, which 
covered 36% of the area and contributed 33% of the production (CSA, 2022).

Despite the importance of wheat as a food and industrial crop, its productivity remains 
low. CSA (2022) and FAO (2022) indicate that the average productivity of wheat in Ethio-
pia is 31.11qt/ha, which is lower than average global productivity (35.47  qt/ha) and the 
average productivity of other African countries, such as Egypt (64.5  qt/ha) and South 
Africa (43.12 qt/ha) in 2021. The production and productivity of wheat in Ethiopia face 
significant challenges, including soil degradation, disease, insect pests, a decrease in farm 
size, the use of local varieties, rainfall variability, and recurrent drought/water stress due 
to climate change (Sewenet et al., 2021; Wato, 2021). Research by Solomon et al. (2021) 
indicates that wheat production is highly vulnerable to climate change, with a projected 
decrease of 25.5% in 2050. The low level of productivity, exacerbated by climate change, 
alongside the increasing demand for wheat in Ethiopia, is expected to worsen food short-
ages in the country (Workineh et al., 2020). Therefore, it is crucial to widely adopt yield-
enhancing technologies and practices that not only improve wheat productivity but also 
ensure environmental sustainability, while mitigating greenhouse gas emissions (Mekon-
nen, 2017).

Since 2010, the Ethiopian government, in collaboration with the Food and Agricultural 
Organization (FAO), has introduced climate-smart agriculture practices (CSAPs). The aim 
is to enhance agricultural productivity in a sustainable manner, adapt and build resilience 
to climate change, and reduce greenhouse gas emissions (FAO, 2016). Climate-smart agri-
culture practices have the potential to improve soil fertility, reduce erosion, break pest life 
cycles, lower GHG emissions, suspend weeds, and ultimately enhance crop productivity 
(Bongole et al., 2020; Hallama et al., 2019). For example, crop rotation and row planting 
are vital practices that mitigate the risk of pest and weed infestations, enhance nitrogen 
fixation and organic matter formation, improve water and nutrient distribution in the soil 
profile, and notably reduce greenhouse gas emissions while enhancing productivity (FAO, 
2016; Martey et  al., 2020). The use of improved crop varieties reduces the risk of crop 
failure resulting from rainfall variability and enhances productivity (Martey et  al., 2020; 
Tekelewold et al., 2019).

Several studies have been conducted in Ethiopia that have evaluated the impact of 
CSAPs on crop productivity and household welfare. However, previous studies have 
mostly considered single CSA practices (Merga et al., 2023; Mossie, 2022; Workineh et al., 
2020) and their impact on crop yield and income (Adego et al., 2019; Fentie & Beyene, 
2019; Mossie, 2022; Sedebo et al., 2022). Additionally, most of the previous studies meas-
ured the aggregate effects of CSAPs on yield and welfare (Adego et al., 2019; Belay et al., 
2023; Sedebo et al., 2022), yet each CSAPs may not contribute equally. Thus, an independ-
ent study is required to provide detailed CSAP measures for designing specific interven-
tions. In addition, many studies were focused on other crop than wheat (Adego et al., 2019; 
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Beyene, 2019; Merga et al., 2023; Shako et al., 2021). To the best of our knowledge, there 
is a dearth of studies on the impact of CSAPs on technical efficiency in Ethiopia, including 
the study area.

Furthermore, a significant portion of the studies relied on econometric models that may 
not adequately control for both observable and unobservable differences between users 
and nonusers of CSAPs, which can impact outcome variables. For instance, Abate et al. 
(2023), Belay et al. (2023), Fentie and Beyene (2019), Mossie (2022) and Wordofa et al. 
(2021) relied on the propensity score matching (PSM) model, which does not account for 
the unobservable characteristics of farmers. If there are unobservable characteristics that 
can influence adoption decisions and the outcome variable, the result from PSM is likely 
to be biased (Ma & Abdulai, 2016). Besides, most of the previous studies did not consider 
selection bias in favor of a single production frontier model to estimate technical efficiency 
by assuming that adopters and non-adopters have similar production characteristics. For 
instance, Ho and Shimada (2019) study the effects of climate-smart agriculture and climate 
change adaptation on the technical efficiency of rice farming, not accounting for selection 
bias from unobserved characteristics. Pangapanga-Phiri and Mungatana (2021) also did not 
consider selection bias when analyze the effect of CSAPs on the technical efficiency of 
maize production under extreme weather events. The reported impacts from these stud-
ies, which do not account for selection bias, are likely to be biased estimations (González-
Flores et al., 2014; Greene, 2010). According to Greene (2010), a stochastic frontier model 
with correction for sample selection takes into account the selection bias from observed 
and unobserved factors by assuming that the unobserved characteristics in the selection 
equation are correlated with the noise in the stochastic frontier.

Hence, unlike previous studies, this study tries to control for both observed and unob-
served heterogeneities to estimate production efficiency and evaluate the impact of CSAPs 
on technical efficiency. Accordingly, we applied the multinomial endogenous switching 
regression model and the recently introduced frontier model, which corrects for sample 
selection bias, to measure the impact of the adoption of CSAPs on the technical efficiency 
of wheat farmers (Greene, 2010). Hence, this study aimed to examine the individual and 
combined effects of wheat row planting, crop rotation, and improved wheat varieties on 
the technical efficiency of wheat farmers in northwestern Ethiopia. This empirical study 
will, therefore, be vital for designing appropriate policies and strategies that can stimulate 
the adoption of CSAPs to enhance the technical efficiency of wheat farmers and ultimately 
improve food security and overall livelihoods without harming the environment. This study 
will also contribute to the literature by identifying factors affecting the adoption of CSAPs 
and its impact on technical efficiency.

2  Methodology

2.1  Study area description

The study area, East Gojjam zone is one of the administrative zones of the Amhara 
National Regional State (ANRS), which is located in the northwestern part of Ethiopia 
(Fig. 1). East Gojjam is bordered on the south by the Oromia Region, on the west by 
West Gojjam, on the north by South Gondar, and on the east by South Wollo. The East 
Gojjam zone has sixteen districts and four urban administrations. The total land area of 
the zone is 14,010   km2. The average annual rainfall varies from 900–1800 mm, while 
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there is a short rainy season (Belg) during February and March in highland agro-ecol-
ogy. The average temperature ranges from 7.5° C—27° C. The zone is generally char-
acterized by mixed crop-livestock production. East Gojjam is among the high potential 
crop production areas in the Amhara National Regional State with a marketable surplus 
for urban markets. Food grain production is the dominant subsector in the zone (CSA, 
2022).

East Gojjam stands out as the leading zone in terms of area coverage, production and 
productivity of wheat in the Amhara region. In 2021/22, the east Gojjam zone produced 
5.3  million quintals of wheat from 166,578 hectares of land. Moreover, wheat is the 
first crop, followed by maize and teff, in terms of their contribution to total food grain 
production in the zone, which accounts for nearly 29%, 24% and 23%, respectively, of 
the total food grain production in the zone. The average productivity of wheat in the east 
Gojjam zone is 31.84 qt/ha, which is higher than the average productivity of Ethiopia 
(31.11 qt/ha) (CSA, 2022), but lower than the world average productivity (35.47 qt/ha) 
(FAO, 2022).

This may be because crop production systems are predominantly dependent on rain-
fed farming systems, which makes the sector most vulnerable to climate change and 
variability. In addition, the prevalence of diseases, insect pests, soil degradation, unreli-
able rainfall, temperature rise and variability, and recurrent drought are major climate 
change related problems that undermine the productivity and sustainability of the agri-
culture sector in the area (Ferede et al., 2020). In response, different CSAPs have been 
adopted to a limited extent, such as improved crop production technology, agronomic 
management practices, soil and water conservation, crop rotation, and past management 
practices.

Fig. 1  Study area map
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2.2  Sampling procedure and sample size determination

The target population for this study was smallholder wheat producer farmers in the east 
Gojjam zone. A combination of purposive and random sampling procedures was used to 
select the sample wheat producer smallholder farmers. The east Gojjam zone was cho-
sen because it is the leading zone of wheat production in the Amhara region. Debre Elias, 
Gozamin, and Basoliben districts of the East Gojjam zone were chosen purposively for 
high level wheat production in the area and for the importance of the crop in rural liveli-
hoods. Then, a total of seven kebeles1 within the three districts were randomly selected 
based on the proportion of Kebeles found in each district. From the selected rural Kebeles, 
wheat producer households were identified, and a total of 385 wheat producer farmers were 
selected randomly using a probability proportional sampling method based on the numbers 
of wheat producer farmers in each Kebele (Table 1). Moreover, the data were collected at 
the smallholder farmers’ plot level leading to 702 wheat plots cultivated in the 2021/2022 
production period. The total sample size was determined using a formula that provides the 
maximum size to ensure the desired precision (acceptable error) using the formula given 
by (Kothari, 2004). Kothari is considered essentially appropriate in a situation with a large 
or unknown population and where the population is divided into distinct subgroups or 
strata. According to Cochran (1977), assume there is a large population but the variability 
of the proportion “p” is not known, p = 0.5 variability can be taken at 95% confidence level 
and ± 5% precision. This value will give a sample size sufficiently large to guarantee an 
accurate prediction.

where, n is the desired sample size; Z is the standard cumulative distribution that corre-
sponds to the level of confidence with the value of 1.96; e is the level of precision its value 
equals to 0.05; p is the estimated proportion of an attribute present in the population, with 
a value of 0.5 as recommended by (Cochran, 1977) to get the desired minimum sample size 
of households at a 95% confidence level and ± 5% precision; q = 1 − p.

n =
Z2pq

e2
= 385

Table 1  Selected districts, 
kebeles, and their sample sizes

“hhs” means household heads

Sampled districts Kebeles Total hhs Sample hhs

Gozamen Enerata 1168 50
Wonka 1142 49
Libanos 1372 59

Debre Elias Gofichima 1636 49
Yemezegn 1300 39

Basoliben Dendegeb 2019 78
Limchi 1558 61

Total 10,195 385

1 Kebeles are the lowest administrative structure where a group of kebeles makes up a district.
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2.3  Data collection method

The study relied on data collected from primary and secondary sources. Face-to-face 
personal interviews using a semi-structured questionnaire were employed to collect pri-
mary data. Prior to the survey, the questionnaire underwent pretesting with 15 sample 
households to assess appropriateness, and necessary modifications were made to the 
questionnaire. The questionnaire was intended to generate information related to demo-
graphic, socioeconomic, institutional, and farm plot characteristics of the sample house-
holds, while it was also used to provide information related to different kinds of CSAPs 
adopted in the study area. Primary data were supplemented with secondary data col-
lected from the zone and district offices of agriculture and rural development.

2.4  Method of data analysis

2.4.1  Estimation of technical efficiency

Technical Efficiency (TE) refers to the ability of a decision-making unit to produce 
the maximum feasible output from a given bundle of inputs (Chen et al., 2005; Farrell, 
1957). Technical efficiency measures how well the inputs are combined to produce max-
imum output in the production process (FAO, 2017). Any deviation from this maximal 
output is considered inefficient (Coelli et al., 2005). Production efficiency is measured 
using either Parametric or nonparametric methods. Nonparametric production efficiency 
techniques, such as data envelopment analysis, assume that the decision-making unit 
has complete control over the production process and that any deviations from the fron-
tier are considered inefficient (Coelli, 1995; Kumbhakar & Lovell, 2000). However, in 
agriculture, the prevalence of factors outside of farmers’ control, thus it is difficult to 
accept that any departure from the frontier is inefficient (Bauman et al., 2019). Hence, 
the parametric production efficiency technique was employed. The technical efficiency 
of wheat production was measured by the Stochastic Production Frontier (SPF) correct-
ing for sample selection bias, which was developed by (Greene, 2010). This model was 
used by (Ahmed et al., 2017; Dagnew et al., 2024) to analyze the impact of improved 
seed and contract farming on productivity.

The stochastic production frontier approach requires a prior specification test of the 
functional form of the production function, and a log-likelihood ratio (LR) test was used 
to choose from Cobb–Douglas and translog production functions, which are the most 
commonly used to measure technical efficiency. The Cobb–Douglas production func-
tional equation can be expressed as follows:

where, ln denotes the natural logarithm;  yi is the observed wheat production of the ith 
farmer,  xi is the inputs used by the ith farmer (land, labor, DAP, urea, oxen, and wheat 
seed), β0 and βi are unknown parameters, ˅i is a random variable beyond the farmers con-
trol, µi is a nonnegative random variable assumed to account for production inefficiency.

Given the level of input, the technical efficiency of the ith wheat farmers is the ratio 
of the observed output to the maximum potential output (frontier output):

(1)lnyi = �0 +
∑

�ilnXi + vi − ui
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A stochastic production frontier model correcting for sample selection bias assumes that 
the unobserved characteristics in the selection equation are correlated with the noise in the 
stochastic frontier model. Then, the selected approach for the SPF analysis equations can 
be formulated as:

Selection equation:

SPF:

The error structure is specified as follows: �im = vim − uim,

where,  Aim is a binary variable equal to 1 for adopters of different combinations of CSAPs 
and 0 for non-adopters; yim is the amount of wheat produced by the ith farmer;  zim is an 
explanatory variables included in the sample selection equation;  xim is a vector of inputs 
used in the production frontier; α and β are parameters to be estimated;  vim is the stochastic 
effect beyond the farmer’s control, measurement errors and other statistical noise; and  uim 
is a nonnegative random variable assumed to account for technical inefficiency in produc-
tion. It is useful to underscore that the parameter ρ captures the presence or absence of 
selectivity bias.

2.4.2  Impact of climate smart agriculture practices on technical efficiency

To determine the accurate impact of CSAPs on technical efficiency, it is important to 
take into account both observable and unobservable characteristics of wheat farmers. The 
farmers’ decision to adopt CSAPs does not fully depend on the observed factors. It also 
depends on unobserved factors such as managerial ability, skills, and motivation, which 
in turn affect the outcome variables that cause endogeneity problems. Failure to capture 
this endogeneity may result in inconsistent and biased estimates (Greene, 2008). To con-
trol for unobserved and observed heterogeneity and self-selection bias, this study used the 
MNESR model. This framework has the advantage of evaluating both individual and alter-
native combinations of CSAPs while capturing self-selection bias (Teklewold et al., 2013).

The two-stage MNESR model was developed by (Deb & Trivedi, 2006). The first stage 
is farmers’ decision on the adoption of CSAP combinations, which was estimated using an 
MNL selection model. In the second stage, the impact of each combination of CSAP on 
technical efficiency was evaluated. Economic theory suggests that farmers adopt a single or 
a combination of CSAPs that can maximize their utility. This means that adoption occurs 
when the expected utility of the chosen CSAP is greater than that of the other alternative 

(2)TEi =
actualoutput

potentialoutput
=

f
(
xi;�

)
exp

(
vi − �i

)

f
(
xi;�

)
exp

(
vi
) = exp

(
−�i

)

(3)Aim = 1
[
𝛼Zim + 𝜔im > 0

]
, 𝜔im ∼ N(o, 1)

(4)yim = �Xim + �im, �im ∼ N
(
o, �2

)
;
(
yim,Xim

)
are observed only when Aim = 1

(5)uim = |��uim| = ��|uim|where, uim ∼ N(o, 1)

vim = ��vim where, vim ∼ N(o, 1)

(
vim,�im

)
∼ N(o, 1),

(
1, ��v, �

2
v

)
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CSAPs. However, because the utility obtained from adopting CSAPs is not observed but 
only its choice of CSAPs observed, one can assume an expected utility model that states 
conditional probability choice given a farmer’s choice. To formalize this, consider the fol-
lowing latent variable:

where, A∗
im is a latent variable that captures the ith farmer’s expected utility in adopting 

alternative combinations of CSAPs m with respect to another alternative K. Xi is a vec-
tor of observed independent variables (household characteristics, socioeconomic factors, 
institutional factors, and farm plot characteristics), and �im are unobserved characteristics 
that are relevant to the farm household’s decision maker but are unknown to the researcher, 
such as expectations, skills, perceptions, and motivations.

Thus, the farmer chose a combination of CSAP “m” over any other CSAP combination 
k, if it provides greater expected utility than any other alternative k, k ≠ m.

where,Aim indicates the farmer’s observed choice of a combination of CSAPs; and �im is the 
expected utility difference between alternative combination m and any other alternative k. 
Assuming that �im are independent and identically distributed, that is under the independ-
ence of irrelevant alternatives (IIA) hypothesis. The probability of choosing an alternative 
package of m can be computed as:

Selecting a valid instrumental variable is a difficult task; following several other studies, 
this study used sources of information (development agents and cooperatives) as instru-
mental variables for the household decision to adopt CSAPs (Sileshi et al., 2019). A valid 
instrumental variable should influence the adoption decision of CSAPs but should not 
influence the outcome variable (technical efficiency of wheat farmers). Thus, the validity 
of the instrument variables was tested using a falsification test. In the second stage, we 
apply the selection bias correction model to examine the impact of each alternative CSAP 
choice on the outcome variables. The outcome equation for each possible regime (m) can 
then be expressed as:

where,Yim indicates the TE of wheat farmers, Xi are exogenous variables that affect the 
outcome variable; and vim denotes error terms that capture the uncertainty faced by farm-
ers and are unobserved and satisfy zero mean and constant variance. To obtain consistent 

(6)A∗
im = �mXi + �im

(7)Aim =

⎧
⎪⎪⎨⎪⎪⎩

1if A∗
i1 > maxk≠1A

∗

ik
or𝜂i1 < 0

2if A∗
i2 > maxk≠2A

∗

ik
or𝜂i2 < 0

…

mifA∗
im > maxk≠mA

∗

ik
or𝜂im < 0

𝜂im = k≠m
max(A∗

ik − A∗
im) < 0

(8)
pim = pr

�
�im⟨0�Xi

�
=

exp
�
�mXi

�
m∑
k=1

exp
�
�kXi

�

(9)

⎧⎪⎨⎪⎩

Regime1; Yi1 = �1Xi + �i1 if Ai1 = 1;

Regime2; Yi1 = �2Xi + �i2 if Ai2 = 1

…

Regimem;Yim = �mXi + �im if Aim = m
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estimates, one can take into account the correlation between the error terms �im from the 
multinomial logit model estimated in the first stage and the error term �im from the out-
come equation.

where, �m is the covariance between �im and �im , ωim is the error term with an expected 
value of zero, and �im is the inverse Mills ratio computed as;

where, �m in the above equation represents the correlation coefficient between �im and �im
At this point, a counterfactual analysis will be performed to examine average treatment 

effects (ATT) by comparing the expected outcomes of adopters with and without adoption 
of a particular CSA strategy following (Di Falco & Veronesi, 2014). The ATT in the actual 
and counterfactual scenarios will be determined as follows:

Adopters with adoption (actual adoption observed in the sample):

Non-adopters with non-adoption (observed in sample):

The counterfactual case in which adopters did not adopt is also stated as follow:

Non-adopters with adoption (counterfactual):

Equations (12) and (13) model the actual expected outcomes for CSA adopters and non-
adopters, respectively, which are observed in the data. In contrast, Eqs. (14) and (15) rep-
resent the counterfactual outcomes; that is, the outcomes that adopters would achieve with-
out adoption and non-adopters would achieve with adoption. Thus, the difference between 
Eq. (12) and (14), that is, adopters with adoption and counterfactual adopters who did not 
adopt was the ATT, which is calculated as follows:

The first term on the right-hand side of Eq.  (16) represents the expected change in 
the mean outcomes (TE) of the CSA adopters, assuming that the adopters had the same 

(10)

⎧
⎪⎨⎪⎩

Regime1;Yi1 = �1Xi + �1�i1 + �i1ifAi1 = 1;

Regime2;Yi1 = �2Xi + �2�i2 + �i2ifAi2 = 2

…

Regimem;Yim = �mXi + �m�im + �imifAim = m

(11)�im =

m∑
k≠m

�m

[
pikln(pik)

1 − pik
+ ln(pim)

]

(12)∈
(
Yim|Aim = m

)
= �mXim + �m�im

(13)∈
(
Yi1|Ai1 = 1

)
= �1Xi1 + �1�i1

(14)∈
(
Yi1|Aim = m

)
= �1Xim + �1�im

(15)∈
(
Yim|Ai1 = 1

)
= �mXi1 + �m�i1

ATT =∈
(
Yim|Aim = m

)
− ∈

(
Yi1|Aim = m

)

ATT = �mXim + �m�im −
(
�1Xim + �1�im

)

(16)ATT = Xim

(
�m − �1

)
+ �im

(
�m − �1

)
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characteristics as non-adopters. The second term (λim) is the selection term that captures 
all potential differences between adopters and non-adopters that arise due to unobserved 
variables.

Similarly, the average treatment effect on the untreated (ATU) is the difference between 
Eqs.  (13) and (15). This indicates the counterfactual impact of CSAPs on non-adopting 
farmers if they had adopted the practices and can be specified as:

The first term of Eq.  (17) shows the expected change in non-adopter TE if they had 
decided to adopt alternative CSAPs given that adopters had the same characteristics as 
non-adopters.

3  Result and discussion

3.1  Characteristics of sample household

Table 2 summarizes the characteristics of the sampled farm households. The majority of 
the sampled household heads (88.89%) were male. The average household size, measured 
in adult equivalents, was 5. The average age of the sampled households was 45 years. The 
average education level of the sampled household heads was grade 3. Most of the sampled 
households practiced integrated farming systems (a mix of crop production and livestock 
rearing). The mean number of livestock owned by the sampled farmers, measured in the 
TLU, was 8.426. Agriculture was the only activity and income source for most of the sam-
pled households. Only 27.07% of the sampled farmers engaged in off-farm activities such 
as petty trade, handcraft, and daily labor, the remaining 72.93% participated in agricultural 
activities such as crop production and livestock rearing.

Among the sample respondents, only 37.32% had access to credit. This indicates that 
more than half of the respondents lacked access to credit. The average distance from the 
household residence to the input supplier institution was 30 min. The descriptive statistics 
in Table 2 show that approximately 45.87% of the sample respondents had access to train-
ing on climate change and CSAPs to adapt to climate change effects. Concerning informa-
tion access, 55.13% and 47.29% of the sample households have information from devel-
opment agents and cooperatives about the effect of climate change on production and its 
adaptation strategy, respectively.

In this study various plot specific characteristics including the average walking distance 
to the plot (plot distance), slope of the plot, soil fertility status of the plot, and plot size 
were considered. The average time that the farmers spent to reaching their wheat plots 
was 25 min. The average wheat plot size for the sampled households was 0.54 hectares. 
Table  2 shows that 68.09% of the wheat plots had flat slopes, with 7.55%, 64.96% and 
27.49% of the sampled wheat plots had fertile, moderately fertile and less fertile soil fertil-
ity, respectively.

ATU =
(
Yim|Ai1 = 1

)
− ∈

(
Yi1|Ai1 = 1

)

ATU = �mXi1 + �m�i1 −
(
�1Xi1 + �1�i1

)

(17)ATU = Xi1

(
�m − �1

)
+ �i1

(
�m − �m1

)
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3.2  Adoption of climate smart agriculture practices

Different CSAPs were implemented by wheat producer smallholder farmers in the study 
area. The most commonly implemented CSAPs were wheat row planting, crop rotation and 
improved wheat variety. Smallholder farmers used these CSAPs either solely or simultane-
ously in their wheat plots. Table 3 illustrates the various combinations of CSAPs imple-
mented in 702 smallholder farmers’ wheat plots. Out of 8 possible combinations of CSAPs, 
7 were implemented in the study area. The combined use of crop rotation with improved 
wheat varieties  (R0C1IV1) was not implemented during the study period. Smallholder 
wheat farmers mostly implemented the three CSAPs together in their plots, followed by 
wheat row planting, which was performed independently. In contrast, a small proportion of 
wheat farmers (6.13%) adopted crop rotation  (R0C1IV0), while approximately 7.26% of the 
framers did not use CSAPs.

3.3  Estimation of stochastic production frontier and measurement of technical 
efficiency

3.3.1  Model test

Before the estimation of the SPF, various tests were conducted, and the results were 
reported in Table  4. First hypothesis tests were conducted to determine the correct 

Table 2  Characteristics of the household

Source: Own survey

Continuous variables Mean Std. dev

Age of the household (year) 44.96 11.649
Education level of the household (year of schooling/grade) 2.83 3.22
Family size (adult equivalence) 4.886 1.715
Livestock holding (tropical livestock unit) 8.426 4.26
Wheat plot area (hectare) 0.539 0.256
Plot distance (human walking minute) 25.443 15.377
Input distance(human walking minute) 30.786 19.334

Discrete variables Percentage

Sex of the household (Male = 1) 88.89
Credit access (Yes = 1) 37.32
Training access (Yes = 1) 45.87
Access to information from cooperatives (Yes = 1) 47.29
Access to information from development agents (Yes = 1) 55.13
Participation in off-farm activities (Yes = 1) 27.07
Wheat plot slope (Flat = 1) 68.09
Soil fertility status of the plot
 -Fertile 7.55
 -Medium fertile 64.96
 -Low fertile 27.49
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functional form, i.e., the choice between Cobb–Douglas vs. translog functional forms. To 
determine the best functional form, the generalized likelihood ratio (LR) test computed 
as LR = −2[ln

(
HO

)
− ln

(
H1

)
] was used. where, ln

(
HO

)
 and ln

(
H1

)
 are the log-likelihood 

values of the Cobb–Douglas (null hypothesis) and translog functional (alternative hypoth-
esis) functions, respectively. The results of the LR test showed that we cannot reject the 
null hypothesis that Cobb–Douglas is more appropriate than the less restrictive translog 
functional form in this study. The critical value was greater than the computed LR value 
and statistically significant at a 5% significant level.

The second hypothesis test was the existence of the inefficiency component of the com-
posed error term of the SPF model. This finding indicates that wheat producing farmers 
were efficient and had no room for efficiency improvement (null hypothesis of � = 0 ). 
The alternative hypothesis states that there is inefficiency in the production of wheat in 
the study area ( � ≠ 0 ). This was used to decide whether the traditional average production 
function (OLS) best fit the data set compared to the SPF model. The hypothesis test was 
conducted based on the generalized likelihood ratio (LR) test as expressed in the above 
paragraph. The test results showed that the calculated LR value is 9.365, which is greater 
than the critical value of 3.84 at 1 degree of freedom and a 5% significant level. Thus, the 
alternative hypothesis was accepted, proving the presence of inefficiency in wheat produc-
tion in the study area.

To determine whether the inefficiency effect model has an effect on the inefficiency 
of wheat producer farmers in the study area, the likelihood ratio (LR) for the inefficiency 

Table 3  CSAP adoption status of the plots of sampled households

R refers wheat row planting, C refers crop rotation, IV refers improved wheat variety, subscript ‘‘1’’ indi-
cates adopter, whereas ‘‘0’’ indicates non-adopter
Source: Own survey

Adoption of CSAPs Freq Percent Cum

Non-adopter(R0C0IV0) 51 7.26 7.26
Row planting(R1C0IV0) 171 24.36 31.62
Crop rotation(R0C1IV0) 43 6.13 37.75
Improved wheat variety(R0C0IV1) 59 8.40 46.15
Row planting and crop rotation(R1C1IV0) 95 13.53 59.69
Row planting and improved wheat variety(R1C0IV1) 105 14.96 74.64
Crop rotation and improved wheat variety  (R0C1IV1) 0 0 74.64
Row planting, improved wheat variety and crop 

rotation(R1C1IV1)
178 25.36 100.00

Table 4  The generalized likelihood ratio hypothesis test

Source: Own survey

Null hypothesis Calculated LR value Critical value Decision

Ho: Production function is Cobb–
Douglas

25.277 32.671 Fail to reject Ho

Inefficiency test; Ho:� = 0 9.365 3.84 Reject Ho
Ho:�1, �2… ..�11 = 0 86.2496 19.67 Reject Ho
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effect was computed. The computed LR value (86.25) was greater than the 5% critical 
value (19.67) at 11 degrees of freedom, indicating that the null hypothesis (Ho) that all the 
explanatory variables are equal to zero was rejected.

3.3.2  Estimation of the stochastic production frontier model with corrected selectivity 
bias

In Table  5, the results of the maximum likelihood estimate of the SPF model corrected 
for selectivity bias estimated by NLOGIT 5 software were presented. The coefficient of 
Rho, which indicates the presence of selection bias, was significant for both non-adopters 
and adopters of the three CSAPs simultaneously. This suggests the presence of selection 
bias, which supports the use of a sample selection framework to estimate separate SPFs 
for adopters of each CSAP combination. The results revealed that the output of wheat 
increased with the wheat plot area in all the SPF model specification at a 1% significant 
level.

In the pooled SPF model, the amount of wheat seeds and the amount of urea used had a 
positive and significant impact on wheat production efficiency. The amount of wheat seed 
had a positive significant effect on the production of wheat crops for non-adopter farm-
ers  (R0C0IV0), who adopted the  R1C0IV0, and  R0C1IV0 SPF selection correction models. 
Endalew et al. (2023) also reported that wheat farm size, amount of urea, and amount of 
seeds used had significant positive effects on wheat production efficiency.

Oxen labor was also positively and significantly related to wheat productivity in the 
adoption of  R1C0IV0 SPF selection correction model at a 5% significance level. However, 
oxen labor was negatively and significantly relation to wheat output in the adoption of 
 R0C1IV0 and  R0C0IV0 SPF selection bias correction model at the 5% and 10% significance 
levels, respectively. The amount of urea used also increased wheat output in the SPF selec-
tion bias correction model specifications of adoption of  R0C1IV0,  R1C1IV1, and  R0C0IV0. 
The amount of human labor used and the amount of urea used had a negative and signifi-
cant impact on wheat output in the SPF correction for selectivity bias model specification 
of  R0C0IV0 at a 1% significance level. The production of wheat was significantly and nega-
tively related to the amount of DAP fertilizer used for the pooled and  R0C1IV0 SPF selec-
tion correction models at the 1% and 5% significance levels. This negative sign suggests 
the excessive use of DAP fertilizer in the production of wheat in the study area.

The coefficient related to the input variables measures the elasticity of output with 
respect to inputs. The sum of all partial production elasticities of inputs, i.e., return to scale 
(RTS), for all frontier models except for the non-adopters of CSAPs and the adopters of 
crop rotation only are consistently greater than one. This result shows that there is potential 
for wheat producers to expand their production; hence, farmers are in the stage I produc-
tion area. Thus, a unit increase in all inputs proportionally would increase wheat output by 
more than a unit amount. Getachew et al. (2020) also found that wheat production in the 
north Shewa Zone of Ethiopia had an increasing return to scale. In contrast, Endalew et al. 
(2023) revealed that wheat production in northwestern Ethiopia follows decreasing returns 
to scale.

3.3.3  Technical efficiency of wheat farmers

After estimating the SPF corrected for both observed and unobserved heterogeneities, the 
technical efficiency score of each sample of wheat farmers was predicted and presented 
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in Table 6. Accordingly, the overall average technical efficiency of the wheat farmers was 
84.5%, with a range between 32.8% and 99.8%. This implies that wheat farmers could 
increase production by 15.5% by improving their technical efficiency. Specifically, the 
mean technical efficiency of non-adopter  (R0C0IV0) wheat farmers was 78.9%, whereas for 
the adopter of  R1C0IV0, the mean technical efficiency was 85.6%. The mean technical effi-
ciency of the adopter of  R0C1IV0 was estimated to be 81.9%, implying that 18.1% of the 
production was lost due to technical inefficiency alone. The mean technical efficiency of 
the adopter of  R0C0IV1 was estimated to be 80.4%. This shows that wheat farmers could 
increase production by 19.6% by improving their technical efficiency. When looking at the 
combined adoption of CSAPs including,  R1C1IV0,  R1C0IV1, and  R1C1IV1, the mean tech-
nical value was estimated to be 87.1%, 83.8% and 86.1%, respectively.

3.4  Determinants of adoption of climate smart agriculture practices

The first stage of the MNESR model for each adoption choice estimation result is pre-
sented in Table 7. The base category or reference was non-adopters of any of the alterna-
tive CSAPs  (R0C0IV0). The model fits the data reasonably well. The Wald test in which 
all regression coefficients are jointly equal to zero was rejected (Χ2 = 207.365; p = 0.000). 
The results show that the estimation coefficients differ substantially across the alternative 
packages.

The demographic characteristics of the household such as the sex of the household head 
and family size were significantly associated with the adoption of  R0C0IV1 and  R1C1IV0. 
Male-headed households are more likely to adopt  R0C0IV1 than female headed households. 
A study conducted by Beyene et  al. (2017) reported that male-headed households were 
more likely to adopt CSAP packages than to female-headed households. This might be 
because women are resource and time constrained. Family size positively and significantly 
affected the adoption of  R0C0IV1 and  R1C1IV0. This may be due to the availability of labor 
at the household level to utilize different CSAPs at the same time. Similarly, Erekalo and 
Yadda (2023) and Alemu et al. (2023) reported that availability of labor could be deployed 
to accomplish additional tasks that are associated with implementing adaptation and miti-
gation strategies that minimize the cost that farmers pay for other daily labor workers.

Household head education level had a positive and significant effect on the adoption 
of  R0C1IV0 and  R1C1IV1. This might be because better education is associated with 

Table 6  The mean technical efficiency score estimated after bias correction for each CSAP

Source: Own survey

Variable Obs Mean Std.Dev Min Max

Non-adopter(R0C0IV0) 51 0.789 0.169 0.329 0.999
Row planting(R1C0IV0) 171 0.856 0.052 0.589 0.935
Crop rotation(R0C1IV0) 43 0.819 0.11 0.484 0.958
Improved wheat variety(R0C0IV1) 59 0.804 0.087 0.413 0.929
Row planting and crop rotation(R1C1IV0) 95 0.871 0.038 0.737 0.938
Row planting and improved wheat variety(R1C0IV1) 105 0.838 0.05 0.651 0.93
Row planting, improved wheat variety and crop 

rotation(R1C1IV1)
178 0.861 0.04 0.685 0.949

Overall sample mean technical efficiency 702 0.845 0.075 0.329 0.999
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greater access to information and awareness about climate change-related problems, 
CSAPs, and their benefits, which motivate them to adopt. In addition, education makes 
farmers more open, rational, and able to analyze the benefits of new technology. This 
finding is in line with the finding of Beyan et al. (2023), who reported that education 
enhances farmers’ ability to acquire and analyze new ideas, thereby facilitating the 
adoption of CSAPs.

The adoption of alternative combinations of CSAPs was also affected by wheat 
plot specific characteristics, including plot slope, soil fertility status of the plot and 
plot distance. If the plot is flat, then the probability of adoption of  R1C0IV0,  R1C1IV0, 
and  R1C0IV1 decreases. This suggests that households with steep or hilly lands are 
more inclined to adopt CSAPs, likely due to their increased vulnerability to climate 
change impacts such as floods and erosion. Similar results were reported in a previous 
study (Beyene et  al., 2017). Plot distance is the other variable that negatively affects 
the probability of adoption of  R1C1IV1. This implies that for farmers whose wheat 
plots are far from their home residence, the likelihood of the adoption of this prac-
tices decrease. In line with this result, Alemu et al. (2023) found that a longer walking 
distance between plots and household homesteads had a negative and significant cor-
relation with the continuous adoption of CSAPs. The soil fertility status of a plot is 
another factor that determines the adoption decision of CSAPs. By taking the fertile 
plot as a reference, soil fertility had a positive and significant effect on the adoption of 
 R1C1IV0 and  R1C1IV1. The study results revealed that farmers are more likely to adopt 
 R1C1IV0 on medium and less fertile plots than on fertile plots. Similarly, farmers are 
more likely to adopt  R1C1IV1 on less fertile plots than on fertile plots. This result is 
consistent with the findings of (Beyene et al., 2017; Tilahun et al., 2023).

Institutional factors such as credit access, access to training, source of information 
and distance to the input supplier institution center determined the adoption of dif-
ferent combinations of CSAPs. The result in Table  7 show that access to credit had 
a positive and significant relation with the adoption of  R1C0IV1 and  R1C1IV1. This 
shows that the probability of adoption of  R1C0IV1 and  R1C1IV1 increases as small-
holder farmers gain access to credit. Beyan et al. (2023) also found that access to credit 
positively affects the adoption of medium level CSAPs.

The other institutional variable that affects the probability of adoption of CSAPs 
is access to training. Access to training had a positive and significant impact on the 
adoption of all alternative CSAPs except the adoption of  R0C0IV1. This finding is con-
sistent with the findings of (Beyan et  al., 2023). Additionally, obtaining information 
from development agents and cooperatives about climate change and its effect on crop 
production, different climate change adaptation strategies, and the importance of adap-
tation strategies for production and productivity will enable farmers to adopt different 
CSAPs. Zegeye et  al. (2022) found that extension agents provide information about 
the application and benefit of agricultural technologies, thus, in turn, increasing the 
likelihood of adoption of agricultural technology packages. In addition, distance to the 
input supplier institution significantly and negatively affects the adoption of  R0C0IV1, 
 R1C1IV0, and  R1C1IV1. This could be mainly due to the increase in agricultural input 
transportation costs as farmers are far away from input supply institutions. In addition, 
distance to the input supply institution could also be taken as a proxy for distance to 
obtain information about the use and availability of agricultural inputs, technology and 
practices. This finding is congruent with the finding of (Tilahun et al., 2023).
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3.5  The impact of climate smart agriculture practice on technical efficiency

The average effects of the adoption of a combination of CSAPs on the technical effi-
ciency of wheat farmers are presented in Table  8. To estimate the average treatment 
effects on the treated (ATT), the technical efficiency of wheat farmers who adopted 
CSAPs (actual) was compared with the technical efficiency of wheat farmers if they had 
not adopted (counterfactual). The ATT result indicates that the technical efficiency of 
adopters of any alternative CSAPs would significantly decrease if households chose not 
to adopt these practices.

When looking at the impact of various CSAPs independently, wheat row plant-
ing  (R1C0IV0) had the greatest impact on technical efficiency, followed by crop rota-
tion  (R0C1IV0). As shown in Table  8, households who adopt  R1C0IV0 might shift to 
not adopt this practice, the mean technical efficiency would be significantly reduced by 
7.2%. Similarly, if  R0C1IV0 adopters decide not to adopt this practice, the average tech-
nical efficiency would significantly decrease by 7%. The mean technical efficiency of 
wheat farmers could be reduced by 4.9%, if farmers adopting improved wheat varie-
ties  (R0C0IV1) decide not to adopt them, which has the lowest impact of all alternative 
practices. However, when these practices are implemented in combination the returns 
are even greater. In particular, the adoption of  R1C1IV0 and  R1C1IV1 has the greatest 
impact, decreasing the technical efficiency by 10.1% and 10.3%, respectively, if wheat 
farmers decide not to adopt these practices. The adoption of  R1C0IV1 have the lowest 
impact, which decrease in technical efficiency by 7.2%, even compared to  R1C1IV0 and 
 R1C1IV1. However,  R1C0IV1 had the greatest impact compared to the separate use of 
CSAPs.

To estimate the average treatment effects on untreated (TTU), the technical efficiency 
of non-adopters is compared with the technical efficiency of wheat farmers if they have 
adopted alternative CSAPs (counterfactual). Accordingly, wheat farmers who did not 
adopt CSAPs would have gained more if they had adopted CSAPs in isolation or in 
combination except for the use of improved wheat varieties. If non-adopter wheat farm-
ers choose to implement wheat row planting  (R1C0IV0), the mean technical efficiency 
would significantly increase by 5%. Similarly, if non-adopter wheat farmers choose to 
implement crop rotation  (R0C1IV0), the mean technical efficiency would significantly 
increase by 4.5%. Households that have not adopted CSAPs would experience greater 
improvements in technical efficiency if they choose to implement these practices col-
lectively rather than individually. If a combination of CSAPs  (R1C1IV0,  R1C0IV1, and 
 R1C1IV1) is implemented by non-adopter wheat farmers, the mean technical efficiency 
could be increased by 7.6%, 5.6% and 7%, respectively.

Moreover, the result shows that the adoption of any of CSAPs in isolation or in com-
bination provide higher average technical efficiency as compared to the non-adopters. 
In addition, the adoption of a combination of CSAPs provides more technical efficiency 
than does the adoption of each CSAP implemented in isolation. The result reveals that, 
from the combination of CSAPs, the highest technical efficiency is obtained when farm-
ers adopt the three CSAPs  (R1C1IV1) simultaneously in the same plot. Thus, adopting 
multiple CSAPs simultaneously guarantees the maximum return.

In line with this finding, Ahmed et  al. (2017) reported that improved maize varie-
ties resulted in a 4.42% increase in technical efficiency compared to their non-adopter 
counterparts. Similarly, Ho and Shimada (2019) studied the effects of climate-smart 
agriculture and climate change adaptation on the technical efficiency of rice farming 
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in Vietnam. Their finding shows that climate-smart agriculture and climate change 
adaptation play crucial roles in improving the technical efficiency of rice production by 
increasing 13–14% compared to no adaptation response. Besides, the adoption of soil 
and water conservation, maize improved variety, and adopting organic manure and inor-
ganic fertilizers in combination significantly improves maize technical efficiency by 9%, 
15%, and 18%, respectively (Pangapanga-Phiri & Mungatana, 2021).

4  Conclusion

This study was conducted in northwestern Ethiopia with the aim to examined the impact 
of CSAPs on the technical efficiency of wheat farmers. In this study, various climate smart 
agriculture practices were considered, including crop rotation, wheat row planting, the use 
of improved wheat varieties, and alternative combinations of these practices. The study 
used primary data collected from 385 smallholder farmers (702 wheat plots) selected by 
using purposive and two-stage sampling methods. The stochastic production frontier with 
a selection correction model was used to estimate the technical efficiency, and the MNESR 
mode was applied to analyze the impact of CSAPs on the technical efficiency of the wheat 
farmers.

The result of the first stage of the MNESR model show that, sex of the household head, 
education level, family size, slope of the plot, plot distance, soil fertility status of the plot, 
credit access, training access, access to information from development agents and coop-
eratives and distance to the input supplier institution are the major factors that determine 
the adoption of alternative combinations of CSAPs in the study area. The second stage of 
the MNESR result revealed that, the adoption of wheat row planting, crop rotation, and 
improved wheat variety in isolation as well as in combination had significant contribu-
tion to improve technical efficiency of wheat farmers. Thus, the government and stake-
holders should prioritize scaling up the adoption of multiple CSAPs to enhance technical 
efficiency. This can be achieved by improving farmers’ skills through providing technical 
and practical training about CSAPs; strengthening the contact of development agents with 
farmers, and facilitating and reinforcing the existing input supply market centers and credit 
supply institutions.

Although this study is informative, it relies on cross-sectional data, which limits the 
investigation of the dynamics of CSAPs intervention over time. Additionally, this study 
focused on only three CSAPs. This narrow scope may not fully capture the diverse range of 
CSAPs available and their varying impacts on agricultural productivity and sustainability. 
Therefore, future studies should use panel data collected from both participants and non-
participants before and after the intervention to evaluate the long-term effects and dynamic 
nature of CSAPs.
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