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Abstract
Assessing glaciers’ response to climate change is vital for water resource management. 
This study investigates changes in glacier areas, retreats and mass balance in the Garh-
wal Himalayan region. Initially, multitemporal Landsat imagery was used to delineate 
sample glacier boundaries for different study years manually. Subsequently, the Fried-
man test was employed to assess glacier area changes and retreats’ temporal status across 
the Garhwal Himalayan region. The findings reveal a 1.12% deglaciation rate, consistent 
across observation periods. Mean area change for the first (2001-11), second (2011-16), 
and third epochs (2016-21) range from − 0.053 to -0.203, -0.084 to -0.309, and − 0.088 
to -0.257%yr− 1, respectively. Glacier retreat also shows homogeneous length loss across 
all epochs, with mean scores ranging from 7.024 to 14.65, 7.87 to 17.03, and 8.956 to 
14.98 myr− 1, respectively. Mass balance ranges from − 0.547 to -1.089  m.w.e.yr− 1 be-
tween 2000 and 2020, influenced by variations in mean slope and debris cover on indi-
vidual glaciers. Debris cover and glacier slope are identified as key determinants, with 
debris cover exhibiting a positive coefficient and glacier slope demonstrating an inverse 
relationship with mass balance. Additionally, a 10% increase in debris cover corresponds 
to a 0.36 m.w.e.yr− 1 mass gain for a given slope, while a 10% increase in slope steepness 
results in a 0.86 m.w.e.yr− 1 mass loss for a given debris cover. The study highlights that 
glacier area doesn’t affect the heterogeneous response. Instead, a strong correlation exists 
between glacier area and debris cover, with debris cover playing a key role in character-
izing responses to changing climates. Thus, glacier area serves effectively as a proxy for 
debris cover extent.

Keywords  Glacier mass balance · Garhwal Himalaya · Central Himalaya · Debris 
cover · Morphological parameter · Mann-Kendall test
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1  Introduction

The Hindu Kush Himalayan (HKH) region boasts one of the world’s largest glacier expanses, 
rivaling those found in polar regions (Ramsankaran et al., 2019). This vast reservoir of 
freshwater is essential for sustaining over a billion people and driving the economies of the 
developing Indian subcontinent and beyond (Immerzeel et al., 2010; Frey et al., 2014; Azam 
et al., 2018, 2021). Particularly, the Indian sector of the Central Himalaya, the birthplace of 
the Ganga River, significantly influences India’s agrarian economy. Hence, understanding 
glacier responses, including changes in area, length, thickness, or mass balance in response 
to climate change, is crucial to mitigate potential water scarcity-induced instability (IPCC, 
2014). Additionally, a thorough comprehension of glacier responses is vital for predict-
ing variations in coastal areas due to rising sea levels (IPCC 2019) and assessing impacts 
on ecosystems and cryosphere-related hazards (Stoffel & Huggel, 2012; Cauvy-Fraunié & 
Dangles, 2019; Hugonnet et al., 2021).

Glacier mass changes in the Hindu Kush Himalayan (HKH) region exhibit significant 
variation, as highlighted in several previous studies (Brun et al., 2017; Lin et al., 2017; Shean 
et al., 2020; Hugonnet et al., 2021; Bhambri et al., 2023). This variability is observed even 
within the same climatic zone, with glaciers exhibiting diverse thickness and mass changes. 
For example, Zhou et al. (2019) found that in the Pamir range, mass balance ranged from 
− 0.12 to 0.63 m.w.e.yr-1. The study utilized KH-9 imagery from 1975 to create a historical 
digital elevation model (DEM) and compared it with SRTM-C DEM to calculate glacier 
thickness changes. Similarly, Abdullah et al. (2020) analyzed glacier thickness changes in 
the Upper Indus basin from 2000 to 2012 using TanDEM-X and SRTM-C DEMs. The study 
found the highest thinning at -1.69 ± 0.60 m.yr-1 and marginal thinning at -0.11 ± 0.32 m.
yr-1 (Abdullah et al., 2020). Likewise, Pieczonka et al. (2013) documented heterogeneous 
mass loss in the Aksu-Tarim Catchment from 1976 to 2009. The study presents mass 
changes for 12 glaciers, utilizing 1976 KH-9 Hexagon, 2000 SRTM3, and 2009 SPOT-5 
datasets in the Aksu-Tarim Catchment. The glacier mass balance ranged from 0.05 ± 0.23 
to -1.53 ± 0.23 m.w.e.yr-1 and 0.51 ± 0.19 to -0.69 ± 0.19 m.w.e.yr-1 during 1976–1999 and 
1999–2009, respectively (Pieczonka et al., 2013). Numerous other studies (Bandyopadhyay 
et al., 2019; Bhattacharya et al., 2021; Bhambri et al., 2023) underscore different glacier 
mass balance magnitudes across various catchment levels within the same climatic zone in 
different HKH regions.

Scherler et al. (2011) reported that glaciers respond to climate change, with the magni-
tude of this response depending on various topographical and morphological parameters. 
These controlling geomorphic parameters vary significantly from one glacier to another, 
contributing to the heterogeneous response observed. Additionally, Pellicciotti et al. (2015) 
underscored the intricate and diverse nature of glacier response patterns within catchments, 
influenced by a complex of dynamic and surface factors. Recent studies have endeavoured 
to unravel the reasons behind heterogeneous glacier responses, particularly at the catchment 
or basin level, where the assumption of the same climatic zone is valid. These studies have 
utilized various topographic and morphological factors as predictors (Brahmbhatt et al., 
2017; Garg et al., 2017a, b, 2019; Abdullah et al., 2020; Bhattacharya et al., 2021; Romshoo 
et al., 2022).

Some of these studies seek to elucidate heterogeneous responses through expert intu-
ition, a subjective method that introduces variability among experts and lacks the quantifi-
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cation of controlling parameters. Furthermore, other studies adopted multiple simple linear 
regression models for individual morphological parameters to anticipate diverse glacial 
responses (Ali et al., 2017; Brahmbhatt et al., 2017). However, employing a distinct simple 
linear regression model for each morphological parameter (predictor) is not entirely optimal 
(James et al.,  2013). When the morphological parameters utilized in previous studies as 
predictors are correlated, this approach can yield misleading estimates of the association 
between each morphological parameter and glacier response parameters. Consequently, uti-
lizing a multivariate regression model that accommodates numerous predictors directly is 
preferable to fitting separate simple linear regression models for each predictor (James et 
al.,  2013).

The scarcity of comprehensive glacier data in the Central Himalayas has impeded a thor-
ough assessment of regional mass balance estimations (Dobhal et al., 2008; Pratap et al., 
2015; Kumar et al., 2021). Therefore, most glacier studies focus on changes in glacier areas 
and retreat to gauge glacier health. Limited regional studies (Bhambri et al., 2011; Garg 
et al., 2017a; Kumar et al., 2021) marginally cover segments of the Indian Central Hima-
layan glaciers. Bhambri et al. (2011) analyzed changes in the glacier area in the Garhwal 
Himalayan zone, observing a transition from 599.9 ± 15.6 to 572.5 ± 18.0 km2 between 1968 
and 2006, indicating a loss of 4.6 ± 2.8%.  Garg et al. (2017a) assessed glacier changes and 
topographical impacts on 18 Central Himalayan glaciers from 1994 to 2015, noting a reduc-
tion in glacier area from 313.34 ± 7.95 to 306.36 ± 8.04 km2 during this period. Kumar et 
al. (2021) monitored a 10% deglaciation rate between 1980 and 2017 in the Rishi Ganga 
catchment. However, relying on a small sample of glaciers may not adequately represent the 
entire region, especially when improper statistical methods are employed (Guha & Tiwari, 
2022). Furthermore, to the best of knowledge in drafting this manuscript, previous studies 
from the Garhwal Himalaya have neither comprehensively covered all glaciers in the region 
nor employed suitable statistical methods to extrapolate findings to the entire region from a 
limited sample. Consequently, the condition of glaciers in India’s Central Himalayan region 
remains inadequately understood.

The purpose of the current study is dually based on the aforementioned literature gap:

i)	 The current study employs inferential statistical techniques to calculate temporal 
changes in the glacial area and glacial retreat for more than two decades in the twenty-
first century;

ii)	 Compute the mass balance and identify factors influencing heterogeneous glacier mass 
balance through appropriate statistical learning methods.

2  Study area

The study focuses on the Garhwal Himalayan zone, a region in the Central Himalayas of 
India. This area is of interest due to the convergence of two major precipitation regimes—
the Indian Summer Monsoon in the summer and mid-latitude westerlies in the winter—that 
nourish the glaciers (Dobhal et al., 2008; Bookhagen & Burbank, 2010; Garg et al., 2017a). 
Situated within the Indian state of Uttarakhand (Fig. 1), the study also includes a few gla-
ciers extending beyond the Indo-China border. Twenty-three representative glaciers in the 
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Garhwal Himalayan zone are examined in this study, selected based on criteria such as size, 
altitude, slope, and debris cover extent.

These sampled glaciers range widely in size, from the largest spanning 51.8 km2 to the 
smallest covering 2.01 km2. In terms of the equilibrium line altitude (ELA), the sampled 
glaciers exhibit a broad range, with the highest ELA recorded at 6196 m and the lowest at 
5529 m. Slopes vary among the glaciers, ranging from the steepest at 21.25 to the gentlest at 
10.37. Similarly, the mean elevation of these glaciers ranges from 6113 to 5440 m. Notably, 
the sample includes both heavily debris-covered and clean glaciers, providing a diverse rep-
resentation of glacier conditions in the Garhwal Himalayan range. Therefore, these selected 
sample glaciers provide a comprehensive snapshot of the region’s glacier dynamics, form-
ing the basis for the subsequent statistical analysis in this study.

3  Data and methods

3.1  Data used

The Landsat precision and terrain-corrected product (L1T) exhibit very high geodetic and 
radiometric accuracy, including ground control points, utilizing a DEM for topographic dis-
placement (Yan & Roy, 2021). Consequently, the Multitemporal Landsat (L1T) product was 
obtained from the United States Geological Survey (USGS) portal (https://earthexplorer.
usgs.gov/) and used for parameter collection, such as glacial boundary, glacial area and 

Fig. 1  Location of studied glaciers
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debris cover (Supplementary Table 1). Simultaneously, the Shuttle Radar Topography Mis-
sion (SRTM) and Aster DMO14 DEMs were acquired from the SRTM Data (http://srtm.csi.
cgiar.org/srtmdata/) and Earthdata (https://earthdata.nasa.gov/) web portals, respectively. 
These DEMs were utilized to calculate glacial thickness change, ELA, slope, and mean 
elevation of the glaciers.

For meteorological data, the CTU 4.06 half-degree datasets covering the study area were 
employed (Harris et al., 2020) for four grids: 79.25oE & 31.25oN, 79.25oE & 30.75oN, 
79.75oE & 31.25oN, and 79.75oE & 30.75oN. The average of these datasets was used for 
meteorological trend analysis.

3.2  Methodology

The methodology is structured into three subsections (Fig. 2). The initial phase involves 
examining temporal changes in glaciers across the Garhwal Himalayan region, encompass-
ing assessments of glacier area variations and retreats. Furthermore, appropriate statistical 
methodologies were utilized to extrapolate findings from sample glaciers to the broader 
area. The second segment of the study focuses on determining glacier mass balance using 
geodetic techniques. Subsequently, the third part of the methodology aims to identify fac-
tors influencing the heterogeneous mass balance in the Garhwal Himalayan zone. Potential 
parameters affecting glacier mass balance were identified from relevant literature sources 
(Bhambri et al., 2011; Hanshaw & Bookhagen, 2014; Nuimura et al., 2012; Pellicciotti et 

Fig. 2  Methodology flowchart of 
this study
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al., 2015). Following this, specific constraining parameters were selected from this list, and 
their respective impacts were assessed using a multivariate regression model.

3.2.1  Spatio-temporal variation analysis

3.2.1.1  Spatial changes of the glaciers  Initially, the panchromatic sharpening method was 
applied to increase the spatial resolution from 30 m to15 m of all Landsat Enhanced Thematic 
Mapper Plus (ETM+) and Operational Land Imager (OLI) datasets. Further, the onscreen 
manual digitization process has delineated individual glacier boundaries. The method is 
most accurate for delineating glacier boundaries (Albert, 2002; Tiwari et al., 2016), mainly 
for the debris-covered glaciers in the Himalayan landscape (Guha & Tiwari, 2022). Various 
false colour compositions (FCC) like Near-infrared (NIR)- Short-wave infrared (SWIR) 
-Red, SWIR-NIR-Green, and NIR-Red-Green have been used for greater conception and 
image interpretation. Furthermore, the topmost portion of the glaciers was delineated by 
understanding the position of the ice divide. In addition, the debris-covered glacier ablation 
zone and non-glacier rocky terrain have been distinguished using the SWIR-NIR-RED band 
combination in the Landsat images (Pandey et al., 2011). The most challenging glacier snout 
area has been identified by tracking various morphological features and locating the ice-wall 
shadow or the origin of any stream or runnel supplied by that specific glacier.

To achieve the objective, area change was converted into the rate of area changes per 
year (% yr-1), followed by a statistical test. Stripes were drawn 50 m apart and parallel to 
the glacier’s primary flow direction to calculate changes in glacial length or retreats. The 
mean length where the stripes intersected with the glacier outlines was then used to measure 
length change (Bhambri et al., 2012). Finally, the rate of area changes (%yr-1) and retreat 
(myr-1) between 2001 and 2011, 2011‒2016, and 2016‒2021 was tagged as first (TF1), sec-
ond (TF2), and third timeframe/epoch (TF3), respectively. The uncertainty of average annual 
area changes is 100.62, 201.24, and 127.2 m2yr-1 for TF1 to TF3, respectively (Supplemen-
tary Table 2). Likewise, the uncertainty of the average annual retreat is 3.39, 6.67, and 4.24 
myr-1 for the TF1, TF2, and TF3, respectively.

3.2.1.2  Statistical analysis  In this study, inferential statistics were utilized to gain insights 
into temporal variations in Garhwal Himalayan glaciers, using a dataset of 23 sample gla-
ciers. The application of inferential statistics commences with the selection of an appropri-
ate test statistic (Marshall & Jonker, 2011; Guha et al., 2024). When working with datasets 
involving at least three groups, researchers often consider analysis of variance (ANOVA) 
as a primary option. Various types of ANOVA exist, such as parametric ANOVA, repeated 
measures ANOVA, Kruskal-Wallis ANOVA, and the non-parametric Friedman ANOVA, 
among others. ANOVA and Kruskal-Wallis ANOVA are designed for independent data, 
while repeated measures ANOVA and the Friedman test are tailored for repetitive datasets 
(Sanders et al., 2019; Guha et al., 2024). It is essential to acknowledge that parametric tests 
tend to yield more effective results when specific assumptions are met (McCrum-Gardner, 
2008). However, one key assumption for parametric tests like ANOVA is that the dataset 
follows a normal distribution. To assess this assumption, a quartile-quartile plot (Q-Q plot) 
was employed in the current study. The results from the Q-Q plot indicated that the dataset 
deviates from a normal distribution (Supplementary Fig. 1). Hence, in the present study, the 
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non-parametric Friedman test was selected as the most suitable test statistic for hypothesis 
testing, given its compatibility with repetitive data and its ability to handle non-normally 
distributed data (Cleophas and Zwinderman, 2016; McCrum-Gardner, 2008).

The Friedman test (1937), is a robust non-parametric analytical tool that operates without 
stringent assumptions about data distributions. The test is ideal for working with ordinal or 
ranked data and exhibits resilience when dealing with skewed or non-normally distributed 
datasets (Noguchi et al., 2012). The choice of the Friedman test was driven by the need 
to circumvent potential violations of parametric assumptions. The fundamental purpose of 
the Friedman test is to determine whether significant differences exist among the groups, 
accounting for the inherent nature of repeated measurements in the data. In cases where 
the outcomes of the Friedman test yield statistical significance, post-hoc analyses become 
necessary. These post-hoc examinations often manifest as pairwise comparisons, carried out 
using suitable non-parametric tests such as the Wilcoxon signed-rank test (Guha & Tiwari, 
2022). These comparisons frequently require specific adjustments to discern the unique dis-
parities among groups. Conducting the Friedman test necessitates an initial step where the 
data is organized into a tabular format, with each condition occupying a distinct column. In 
this study, which delved into temporal analysis across three distinct epochs, each column 
represented one epoch, while each row corresponded to an individual glacier. Once the gla-
cier data was ranked within their respective epochs, the sum of these ranks was computed. 
Utilizing these rank-sum values, the Friedman test statistic (Fr) was calculated using the 
following formula:

	
Fr =

[
12

Nk(k + 1)

k∑

i=1

R2

]
− 3 N(k + 1)� (1)

Where the sum of the ranks of each group, number of samples, and number of epochs are 
represented by R, N, and K, respectively. Finally, with a significance threshold of 0.05, the 
study proceeds to test the hypotheses outlined in Table 1.

3.2.1.3  Post hoc test and Bonferroni correction  In the context of hypothesis testing involv-
ing multiple groups, particularly after conducting ANOVA or other similar tests, the rejec-

The first hypothesis in this study tests if the rate of glacier area 
changes (%yr− 1) is uniform across all epochs for Garhwal Himala-
yan glaciers.
The null hypothesis (H0a) assumes no difference 
in the rate of temporal area changes in all the 
epochs

While the alter-
native hypoth-
esis (Haa) posits 
changes in at 
least one epoch

The second hypothesis examines if the retreat rate (m/yr-1) is consis-
tent across all epochs.
The second null hypothesis (H0r) assumes no 
difference in glacier retreat in the Garhwal Hima-
layan glaciers in all the epochs

While the alter-
native hypothesis 
(Har) suggests 
changes in at 
least one epoch.

Table 1  shows hypotheses tested 
in the present study
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tion of the null hypothesis (H0) raises questions about specific group differences. Generally, 
ANOVA results do not offer detailed information on which particular group pairs exhibit 
significant differences. Therefore, researchers often perform supplementary analyses to 
uncover these distinctions among specific groups. To address this, employing a multiple 
comparison test, often referred to as a post-hoc test, is necessary (Cleophas and Zwinder-
man, 2016).

In a statistical hypothesis test, the significance probability, often expressed as a P value, 
represents the likelihood of observing an extreme result if H0 is true. This significance level 
ranges between 0 and 1, signifying the probability of observing an outcome that supports 
H0 (Lee & Lee, 2018).

In the context of comparing three groups, such as Group X versus Group Y, Group Y 
versus Group Z, and Group X versus Group Z, each pair of comparisons is regarded as a 
family. The family-wise error, a Type I error that may be encountered during each of these 
family-wise comparisons, is denoted as such. To illustrate the impact of not adjusting the 
significance level (α) when multiple statistical analyses are conducted involving these fami-
lies concurrently, the following scenario is contemplated: A Student’s t-test is conducted 
between two groups, X and Y, with a 5% alpha error level, leading to a statistically non-
significant outcome. In this case, the probability that H0, which posits that groups X and Y 
are identical, is true, stands at 95%. Now, another group, Group Z, to be compared with both 
Groups X and Y, is introduced. If a subsequent Student’s t-test between Groups X and Y 
also yields a non-significant result, the likelihood of non-significance between X and Y, as 
well as between Y and Z, is calculated as 0.95 × 0.95 = 0.9025, or 90.25%. Consequently, the 
alpha error for these tests is determined to be 1 − 0.9025 = 0.0975, surpassing the initial 0.05 
level. Furthermore, if the statistical analysis between Groups X and Z also results in non-
significance, the combined probability of all three pairs (families) yielding non-significant 
results is found to be 0.95 × 0.95 × 0.95 = 0.857, resulting in an actual testing alpha error of 
1 − 0.857 = 0.143, exceeding 14%.

This underscores the significance of adjusting the α level when multiple comparisons 
are made to maintain the desired Type I error rate and prevent the inflation of the error 
rate (Guha & Tiwari, 2022). To manage this increased risk of Type I error, the Bonfer-
roni correction is a commonly used method for adjusting the significance level in multiple 
comparisons. It ensures that the family-wise error rate is maintained at the desired level. 
This correction entails dividing the alpha level (typically set at 0.05) by the number of tests 
conducted. The adjusted alpha level is then used to evaluate the statistical significance of 
each individual test, thereby reducing the likelihood of detecting false positives (Napierala, 
2012).

For pairwise post hoc tests, where in the current study have three groups of datasets 
from three epochs (k = 3), the total number of hypotheses tested for pairwise comparisons is 
calculated as 3C2 = 3. The adjusted alpha for these pairwise tests can be determined using 
the formula:

	 Adjusted alpha (Adjα) = α/3� (2)

Adjusted alpha (Adj α) = α/3 (Eq. 2).
In this case, the level of significance (α) is 0.05/3, resulting in α = 0.0166.
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In the current study in the context of the post hoc test, a series of non-parametric Wil-
coxon signed-ranked tests have been conducted between each pair of groups, utilizing a 
significance level of 0.0166 to mitigate the risk of Type I error. The Wilcoxon signed-ranked 
test involves the summation of ranks and is conceptually akin to a paired-sample Student 
t-test in which rank adjustments are applied before incorporating difference scores into the 
t-formula. This approach is analogous to a one-sample Student t-test conducted on signed 
ranks, with differences replacing the observations (Zimmerman & Zumbo, 1993).

3.2.1.4  Bootstrapping confidence interval  Regardless of the distribution of the dataset, the 
bootstrapping confidence interval method helps estimate the empirical confidence intervals 
(Christopher Z. Mooney and Robert D. Duval, 1993; Efron and Tibshirani, 1993; Haukoos 
& Lewis, 2005) statistically. By periodically taking random samples from the known sample 
with replacement, the technique creates a sampling distribution using data from one sample 
(Endo et al., 2015). For each period in our current study, 1000 bootstrap samples were 
developed to calculate the 95% confidence interval.

3.2.2  Glacier surface elevation changes and mass balance calculation

The co-registration algorithm developed by Nuth and Kääb (2011) is a widely recognized 
method for minimizing horizontal and vertical discrepancies between two Digital Eleva-
tion Models (DEMs). In our study, we employed the universal co-registration technique 
as the initial step in calculating glacier mass balance. Subsequently, the DEM differencing 
approach was applied to quantify surface elevation changes between the initial and final 
epochs. To ensure accuracy, outliers in the surface elevation change (SEC) data were identi-
fied and removed by excluding pixels where the height difference exceeded three standard 
deviations from the mean (Ramsankaran et al., 2019).

Following the outlier removal process, glacier volume change was derived from the 
SEC data, using manually digitized glacier boundaries. The resulting volume change was 
then converted to mass change for the entire glacier using a density conversion factor of 
850 ± 60 kg m− 3, as per the methodology outlined by Huss (2013).

3.2.3  Quantification for heterogenous glacier responses

3.2.3.1  Selection of confining parameters that regulate the glacier response  In the subse-
quent phase, the plausible factors influencing the glacier response within the same climate 
zone were chosen from earlier research publications (Nuimura et al., 2012; Hanshaw & 
Bookhagen, 2014; Pellicciotti et al., 2015). Multiple studies have used the parameter of 
the glacier area (Bhambri et al., 2011; Basnett et al., 2013; Kriegel et al., 2013; Garg et 
al., 2017a, b). The ELA is another critical parameter as it helps determine the relationship 
between the distribution of glacier mass and local climate (Hanshaw & Bookhagen, 2014) ) 
and the overall state of the glacier (Shukla & Qadir, 2016; Garg et al., 2017a, b). Therefore, 
the current study selected the ELA as one of the probable parameters. The study incorpo-
rates slope (Nuimura et al., 2012; Pellicciotti et al., 2015) and glacier elevation (Garg et 
al., 2017a; Brahmbhatt et al., 2017), drawing from prior research in the Himalayan region. 
These parameters were chosen for their established relevance in understanding mass bal-
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ance fluctuations. Debris cover, a key factor in glacier responses (Basnett et al., 2013; Garg 
et al., 2017a, b), was also included. The final step involved selecting controlling parameters 
from the probable list using the best subset selection method, ensuring maximum model 
accuracy. Subsequently, the study established relationships between these parameters and 
mass balance.

3.2.3.2  Extraction of other parameters  With the manual digitization process, the debris 
cover extent in the glacier has been outlined. Further, the ELA has been calculated by Accu-
mulation Area Ratio (AAR) using the ELA toolbox made by Pellitero et al. (2015). Addi-
tionally, the mean elevation of the glacier was derived from the DEM. Another important 
factor, glacier slope, was determined by dividing the elevation difference by the glacier’s 
length along the main flow line.

3.2.3.3  Optimization of parameter subset and coefficient estimation  For predicting a quan-
titative response, linear regression is a very effective tool (Guha & Tiwari, 2023). Therefore, 
the current study uses multiple linear regression to determine the link between the different 
morphological parameters as predictors and response, i.e., mass balance, because there are 
more independent variables than one. In many scenarios, only a small amount of the avail-
able predictors is correlated with response to a greater extent (James et al., 2013; Guha & 
Tiwari, 2023). Equation  (3) can be used to express the basic formula for multiple linear 
regressions.

	 Y = a + b1X1 + b2X2 + · · ·+ bpXp � (3)

where Y is the response variable. X1, X2, and Xp are predictors that the subset selection 
method can select. a, b1,b2, and bp are the coefficients of the model.

Amidst numerous potential variables, choosing a concise set of significant predictors 
is crucial for reducing model complexity. The present study utilizes the best subset selec-
tion method with the aim of identifying a limited subset of predictors that maximizes the 
expected prediction accuracy of the resulting linear model (Zhu et al., 2020). This approach 
systematically tests all possible combinations of predictors, selecting the subset that ensures 
optimal model accuracy.

The chosen metric to assess the accuracy of the model is Adjusted R2 in this study. The 
most common metric, R2 simply explains the training error, which may be decreased by 
overfitting or adding more predictors, so the chosen parameter has an advantage over R2. 
However, the more significant test error—that is, an error from a new, unexposed data-
set—is defined by the adjusted R2. The Adjusted R2 parameter also aids in removing point-
less predictors. Consequently, in order to reduce redundancy and model complexity, the 
Adjusted R2 is essential (James et al., 2013).

The final section computes the model coefficients based on the smallest least square 
error, where the values minimizing the sum of squares between the model and measure-
ments serve as estimates of model parameters in the least-squares approach (Abdi, 2007).
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4  Results

4.1  Status and temporal changes in the glaciers

The results of the current study reveal a discernible pattern in the total area of the sampled 
glacier, which underwent a reduction from 391 ± 0.056 to 386 ± 0.044 km² during the period 
from 2001 to 2021. This corresponds to a deglaciation rate of approximately 1.12%. Nota-
bly, Glacier 6 (G6) experienced the most significant area change, with a decrease of 12.93%, 
while Glacier 23 (G23) exhibited the smallest area change of only 0.04% during the obser-
vation period (Supplementary Table 3).

The findings of the Friedman test, with a significance level of 0.30, suggest that there are 
no statistically significant differences in the temporal area changes. This p-value, notably 
higher than the conventional threshold of 0.05, leads to the retention of the null hypothesis, 
signifying that the available data does not provide sufficient evidence to assert unequal rates 
of area change.

Further analysis reveals varying trends in area changes over the study’s three distinct 
epochs. In the initial period (2001–2011), Glaciers G6, G1, and G4 displayed the most 
substantial area changes, while G23, G15, and G20 exhibited the least variation. From 2011 
to 2016, G6, G13, and G8 recorded the greatest area changes, while G11, G23, and G10 
displayed the least. Finally, between 2016 and 2021, G6, G1, and G4 once again exhibited 
the most significant area changes, with G23, G22, G20, and G21 remaining the most stable 
glaciers with the least area changes. When considering the entire study period, G6, G1, and 
G4 consistently displayed the maximum area changes, while G23, G20, and G19 remained 
the most stable. On average, the area changes for individual glaciers between 2001 and 2021 
was − 0.153%yr-1. Notably, Glaciers G3, G9, and G18 closely mirrored the overall regional 
trends. Finally, the mean rates of area change for the first-, second-, and third-epochs ranged 
from − 0.053 to -0.203, -0.084 to -0.309 and − 0.088 to -0.257% yr-1, respectively, with a 
95% confidence level (Fig. 3 and Supplementary Table 5).

During the entire study period, the sample glaciers exhibited an average retreat of 11.97 
myr− 1. The chronological assessment using the Friedman test yielded non-significant results 

Fig. 3  Change in glacier area with 95% 
confidence interval
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for retreat, mirroring the pattern observed in the area change parameter. Consequently, the 
average retreat remains consistent across all epochs in the Garhwal Himalayan zone. How-
ever, some variations in retreat within the same glaciers were noted across different epochs.

Between 2001 and 2011, the maximum retreat was observed in G16, G1, and G17, while 
marginal retreat occurred in G23, G14, and G22 during the same epoch. In the subsequent 
epoch (TF2), the maximum retreat transpired in G13, G15, and G5, whereas G20, G19, and 
G14 emerged as the most stable glaciers. Between 2016 and 2021, the highest retreat was 
observed in G7, G14, and G9, while the three glaciers with the least retreat were G23, G22, 
and G20. Notably, G16 exhibited the maximum retreat at a rate of 25.48 myr− 1 through-
out the entire study period, followed by G13 and G17 (Supplementary Table 4). In con-
trast, minimal length changes were observed in G23, G22, and G20, each with a magnitude 
of around one myr− 1, falling below the study’s uncertainty level between 2001 and 2021. 
At a 95% confidence level, the mean scores of length changes for the first, second, and 
third epochs range between − 7.024 to -14.65, -7.87 to -17.03 and − 8.956 to -14.98 myr− 1, 
respectively (Fig. 4 and Supplementary Table 6).

Interestingly, while G16 experienced the maximum retreat, G6 exhibited the maximum 
area changes. This discrepancy is attributed to lateral retreat or glacier width changes, a 
prevalent phenomenon in many smaller glaciers (Fig.  5). While G16 demonstrates high 
retreat, G6 undergoes deglaciation due to alterations in glacier width.

4.2  Assessment of glacier thickness change and mass balance

The result shows that the mean surface elevation changes of the studied glaciers are − 0.96 
myr− 1 between 2000 and 2020. All the glaciers show thinning in the ablation zone and 
thickening in the upper accumulation zone (Fig. 6).

The result also shows that all the sample glaciers have a negative mass balance. Addi-
tionally, the magnitude of the mean mass balance is -0.818 ± 0.21 m.w.e.y− 1 (Fig. 7). The 
95% confidence interval of mass balance comes between − 0.547 and − 1.089 m.w.e.yr− 1 in 
the entire Garhwal Himalaya (Supplementary Table 7).

Fig. 4  The 95% confidence interval of the 
retreat
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4.3  Influence of morphological parameter

From the subset selection, we observed that only two predictors, debris cover extends and 
slope, are sufficient to describe the reason behind different mass balances (Fig. 8, Supple-
mentary Fig. 2). In detail, the debris cover has a positive coefficient means mass balance is 
less negative to positive when the debris cover extent is greater and vice versa. On the other 
hand, mass balance is inversely proportional to the glacier’s slope (Figs. 8 and 9), which 
means mass balance is more negative when the slope is stiff, and less negative or positive 
mass balance can be seen if the slope of the glacier is gentle.

Fig. 6  Temporal shifts in surface elevation changes in Garhwal Himalayan glaciers from 2000 to 2020

 

Fig. 5  Comparison of glacier 
width changes in the Garhwal 
Himalayan region (2001–2021) 
using high-resolution google 
earth imagery (Left) and landsat 
imagery (Right) at 30 m spatial 
resolution
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	 MB = 0.070 + 0.036 Debris cover- 0.086 slope� (4)

The above equation can be interpreted as follows: for a given slope, an additional 10% debris 
cover is associated with 0.36 m.w.e.yr− 1 as gain in mass, approximately (Eq. 4). On the 
other hand, an additional 10% slope is associated with the loss in mass of 0.86 m.w.e.yr− 1, 
for a given debris cover. The P-value of the coefficients is below 0.001, which means both 
coefficients are highly significant. Besides that, the correlation matrix shows that the slope 
and debris cover is correlated weekly, proving the model’s strength.

Fig. 8  The relation between selected predictors and mass balance

 

Fig. 7  Variability in mass balance among the investigated glaciers 
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Finally, the accuracy of the model has been calculated. The R2 value of the model is 0.75, 
which means the proposed model can explain more than three fourth variation in the mass 
balance in the training dataset. But the R2 value significantly increases by selecting all five 
morphological predictors instead of only the slope and debris cover. However, we aim to 
make a simple model with less test errors, not the training error. Therefore, the parameters 
are selected based on the maximum adjusted R2 value. The adjusted R2 shows that only the 
slope and debris cover can explain the 73% variation in the mass balance (Supplementary 
Fig. 3).

5  Discussions

5.1  Climatic analysis

Over the past century, there has been a global increase in average surface air tempera-
ture by approximately 0.7 °C (IPCC 2001). This trend is particularly pronounced in high 
topographic areas like the Himalayas, where climate conditions differ significantly from 
those in lower-elevation regions, potentially biasing global trends for specific regions (Sahu 
& Gupta, 2020). Unfortunately, due to the scarcity of meteorological stations in or near 
Himalayan glaciers, there is often ambiguity in associating climatic components with gla-
cial responses. Moreover, there are only a few catchments for high-altitude meteorological 
observations in the Central Himalayan region (Garg et al., 2017a). For instance, at the Cho-
rabari glacier, the mean daily temperature ranged from 12 to -1 °C between June and Octo-
ber 2003‒2010, with average summer precipitation recorded at 1253 mm between June and 
October 2007‒2010 (Dobhal et al., 2013). Furthermore, the Mukhim station, also situated in 
the Indian Central Himalayan region, showed a statistically insignificant decreasing trend in 
mean annual temperature between 1957 and 2005, along with a decreasing trend in precipi-
tation over the same period (Bhambri et al., 2011). Similarly, between 2000 and 2012, the 
Bhojwasa station recorded mean annual temperatures ranging from 11.1 to -2.3 °C and pre-

Fig. 9  The relation between mass balance and selected predictors for various intervals
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cipitation of 2575 mm, situated at an elevation of approximately 3780 m a.s.l. (Gusain et al., 
2015). At the Dokriani glacier (around 3760 m above sea level), daily mean air temperatures 
ranged from 17 to 1 °C between May and October 1992‒2002, with summer precipitation 
ranging from 1000 to 1300 mm from 1992 to 2000 (Dobhal et al., 2013).

In the Himalayan region, a dearth of long-term meteorological data (Sahu & Gupta, 
2020) and inadequate data sharing policies pose challenges for researchers aiming to access 
local meteorological datasets for scientific purposes. However, the availability of reanalysis 
meteorological products in recent years has eased the study of climatic trends in the Himala-
yan terrain, owing to their global coverage. As a result, annual temperature and precipitation 
trends have been estimated from 1901 to 2021 using reanalysis datasets in this study.

The Mann-Kendell test and Sen’s slope estimator are commonly employed methods for 
trend analysis (Garg et al., 2024). The results of the Mann-Kendall test in the current study 
show significant trends in temperature and precipitation (Table 2). Sen’s slope estimator 
suggests an increasing trend in mean annual temperature with a magnitude of 0.007 °C per 
year (Fig. 10), while precipitation data show a downward trend (-1.35 mm per year).

Multiple studies have established a strong relationship between temperature, precipita-
tion, and glacier dynamics (Mir & Majeed, 2018; de Kok et al., 2020; Kaushik et al., 2020). 
Although temperature has a more pronounced effect on glacier melting than precipitation, 
leading to increased energy absorption by ice and snow and subsequent acceleration in gla-
cier melting and negative mass balance (Sahu & Gupta, 2020).

5.2  Comparison with previous studies

According to the current study, the glaciers in the Garhwal Himalayan region are currently 
going through a stage of depletion. The current study shows that the glaciers in the Garhwal 
Himalayan area are going through a depletion stage in the 21st century. Also, the temporal 

Mann Kendall test for Temperature 
data
Kendall’s tau 0.36
S 2580
Var(S) 199239.67
p-value (Two-tailed) 7.57E-09
alpha 0.05
Parameter Value Lower bound 

(95%)
Upper bound 
(95%)

Slope 0.007 0.005 0.009
Intercept -14.91 -18.97 -10.6
Mann Kendall test for Precipita-
tion data
Kendall’s tau -0.171
S -1242
Var(S) 199246.67
p-value (Two-tailed) 0.005
alpha 0.05
Parameter Value Lower bound 

(95%)
Upper bound 
(95%)

Slope -1.36 -2.22 -0.38
Intercept 3646.33 1736.86 5337.05

Table 2  The statistics of tem-
perature and precipitation trends 
in the Garhwal Himalayan region
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rate of area changes and retreats are equal in the entire observed time in the current study. 
The following comparison study is carried out with the previously published study in the 
same or its surrounding region.

According to statistics on area changes for the investigated glaciers, 1.12% of the gla-
cier’s area was lost over the course of the 20 years under study, which is less than the 2.23% 
claimed by (Garg et al., 2017a). The main reason for this difference is methodology and 
sample selection. Garg et al., (2017a) neither studied the glacier’s presence in the Central 
Himalayan region nor did any statistical analysis to conclude the entire area of interest. 
Therefore, the result of (Garg et al., 2017a) only says about the studied glacier, not the entire 
Central Himalayan region. On the other hand, the current study infers the actual mean or 
population mean, that is, the mean of area changes and retreat in the entire Garhwal Hima-
layan region from the sample glaciers. Also, the current study’s result shows that the sample 
mean of area change lie between − 0.079 to 0.228%yr− 1 based on different sample selections 
from the Garhwl Himalayan zone. On the other hand, (Garg et al., 2017a) found that from 
1994 to 2001 and 2001–2015, the rates of area change were − 0.13 ± 0.28 and − 0.10 ± 0.1% 
yr− 1, respectively, which also supports the findings of the present study.

The average retreat rate for the entire Garhwal Himalayan region is estimated at 11.97 
myr− 1, with a 95% confidence interval indicating that the sample mean of retreat may vary 
from 8.956 to 14.98 myr-1 between 2001 and 2021. In comparison, Garg et al. (2017a) 
reported a higher average retreat rate of 15.39 ± 7.39 myr− 1 from 1994 to 2001, which dif-
fers from the findings of the current study. This variance can be attributed to differences in 
sample selection and observation periods between the two studies. According to Garg et al. 

Fig. 10  The temporal variation of tem-
perature (a) and precipitation (b) in the 
study area
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(2017a), the retreat magnitude from 2001 to 2015 was 11.29 ± 5.71 myr− 1, which closely 
aligns with the results of the present study.

Kumar et al. (2021) documented a 10% deglaciation rate in the Upper Rishi Ganga basin 
of the Central Himalayas between 1980 and 2017. This variation in deglaciation rates could 
stem from differing climate conditions across various regions within the Central Himalayan 
zone, as well as disparities in observation periods. Similarly, Bhambri et al. (2011) noted a 
transition in glacier area from 324.7 ± 8.4 to 306.3 ± 9.5 km2, indicating a deglaciation rate 
of 0.15 ± 0.07%yr− 1 between 1968 and 2006 in the Garhwal Himalayan region. While lack-
ing formal statistical analyses, their findings notably align with those of the present study.

In the Mt Everest region of the Central Himalayas, retreat rates ranged from 14 ± 3 to 
64 ± 5 myr− 1 between 1989 and 2015 (King et al., 2018). Meanwhile, the Gangotri glacier, 
the largest in the Garhwal Himalayan region, experienced a retreat rate of 17.9 ± 0.5 myr− 1 
from 1965 to 2015 (Bhattacharya et al., 2016). The observed retreat magnitude for the Gan-
gotri glacier in the present study was 14.08 myr− 1, slightly lower than that reported by 
Bhattacharya et al. (2016). This difference may be attributed to higher retreat rates recorded 
in the 1990s compared to the early 2000s (Bhattacharya et al., 2016; Shukla & Qadir, 2016), 
influencing the variations between these findings.

Bandyopadhyay et al. (2019) reported an average mass balance of -0.61  m.w.e.yr− 1 
between 2000 and 2014 in the Ganga basin. In the Garhwal Himalayan zone, part of the 
Ganga basin, the magnitude of mass balance ranged from − 0.547 to -1.089 m.w.e.yr− 1 in 
the current study. The mean mass balance calculated in this study is -0.818  m.w.e.yr− 1, 
slightly higher than that reported by Bandyopadhyay et al. (2019). This difference may be 
due to variations in study periods, as Bandyopadhyay et al. (2019) analyzed data up to 2014, 
while this study extended six years further. Notably, the findings of the previous study fall 
within the range of mass balance observed in this study, indicating consistency between the 
two.

Various studies tried to understand the reason behind different glacier responses in the 
same catchment or river basin scale where uniform intra zonal climatic assumption is valid. 
Either these studies adopted a nonmathematical subjective method, or others used a single 
parameter or separate simple linear regression for each parameter (Bhambri et al., 2011; 
Basnett et al., 2013; Ali et al., 2017; Brahmbhatt et al., 2017; Garg et al., 2017a, b, 2019; 
Bhattacharya et al., 2023).

Previous studies have observed an inverse relationship between glacier area loss and 
glacier size, indicating that smaller glacierstend to experience greater area loss com-
pared to larger ones (Basnett et al., 2013; Bhambri et al., 2011).

However, our current study reveals that glacier area alone does not significantly influence 
the heterogeneous response. Instead, we observe a robust correlation between glacier area 
and debris cover (Scherler et al., 2011; Benn et al., 2012; Bolch et al., 2012). Debris cover 
emerges as a critical parameter in describing heterogeneous responses, as it controls the 
glacier response pattern to changing climates on an individual glacier basis. Consequently, 
glacier area serves as a proxy for debris cover extent, with glacier area often credited for 
its correlation with the percentage of debris cover on mass balance (Supplementary Fig. 4).

Furthermore, numerous prior studies have highlighted debris cover as a constraining 
factor in elucidating heterogeneous responses, given its role as a protective shield shield-
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ing glaciers from the impacts of a warming climate (Rowan et al., 2015; Banerjee & Azam, 
2016; Azam et al., 2018). Our current study further substantiates this notion by demon-
strating that a greater extent of debris cover contributes to the preservation of glaciers in a 
steady-state condition within the Garhwal Himalayan region. Moreover, our research con-
tributes to establishing a quantified relationship between debris cover and mass balance, 
enhancing our understanding of their interplay in glacier dynamics.

The study identifies glacier slope as a crucial parameter in understanding heterogeneous 
glacier responses. Our analysis reveals an inverse relationship between mass balance and 
slope, indicating that steeper slopes hinder steady-state or positive mass balance. This find-
ing aligns with previous research by (Garg et al., 2017a) in the Central Himalayan zone, 
reinforcing our results.

Interestingly, our study presents a contradictory finding to Brun et al. (2019), who 
reported that glaciers with gentle slopes exhibit more thinning compared to those with 
steep slopes. The discrepancy may stem from variations in snowfall amounts. Glaciers with 
steeper slopes, when receiving ample snowfall, efficiently transfer more mass downhill to 
warmer areas, aiding in maintaining a steady state. However, when such glaciers experience 
insufficient snowfall, the rapid mass transfer to lower, warmer zones accelerates melting 
due to higher temperatures. This leads to a reduction in solid mass and compromises the 
glacier’s ability to maintain a steady state, particularly evident in glaciers with steep slopes 
experiencing insufficient snowfall.

In the present study, we observed the highest mass loss in glacier G6, reaching 
− 2.26 m.w.e.yr-1. This glacier features a mean slope of 21.25% and has minimal debris 
cover, extending to less than 2%. Similarly, glacier G14 exhibits the second-highest mass 
loss, with a magnitude of -1.74 m.w.e.yr-1, and shares a steep slope of 20.82% with minimal 
debris cover. The third-highest mass loss, totaling − 1.39 m.w.e.yr-1, was observed in glacier 
G3. Despite its gentler slope, glacier G3 exhibits a debris cover extent of only 2.8%.

Conversely, G17, G11, and G22 emerged as the most stable glaciers, experiencing 
minimal mass loss. G11 and G22 have gentle slopes below the sample glaciers’ average, 
while G17, despite having a mean slope of 16%, exhibits minimal mass loss due to a debris 
cover percentage exceeding 30%. The impact of higher debris cover predominates over the 
slope value in minimizing mass loss. Among the two glaciers with minimal mass loss (G11 
and G22), both are debris-covered, with average debris cover extents of 10% and 22%, 
respectively.

The correlation analysis between individual glaciers, slope, and debris cover indicates 
that glaciers with steeper slopes tend to undergo more significant mass loss. Conversely, 
debris-covered glaciers show less mass loss to clean glaciers, consistent with the model’s 
predictions.

6  Conclusions

The current study evaluates the temporal dynamics of glacier presence in the Garhwal 
Himalayan region by analyzing changes in glacial area and retreat. Inferential statistical 
methods are employed on a dataset comprising 23 sample glaciers to comprehend the condi-
tion of the glaciers fully. Results indicate a consistent reduction in the total sample glacier 
area, declining at a rate of 1.12% between 2001 and 2021. Furthermore, the 95% confidence 
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intervals for the mean area changes of different epochs, namely the first, second, and third, 
range from − 0.053 to -0.203, -0.084 to -0.309, and − 0.088 to -0.257%yr− 1, respectively. 
These intervals imply nearly identical rates of area change across the study period. Simi-
larly, glacier retreat rates exhibit a homogeneous trend, ranging from 7.024 to 14.65 myr− 1, 
7.87 to 17.03 myr− 1, and 8.956 to 14.98 myr− 1 for the first to third epochs, respectively, 
across the entire area of interest. Notably, changes in glacier width emerge as dominant 
factors influencing glacier area alterations, particularly for smaller glaciers. The study pos-
its that the combination of increased temperatures and decreased precipitation over recent 
centuries contributes to deglaciation.

Furthermore, the study estimates the magnitude of mass balance in the study area, rang-
ing between − 0.547 to -1.089 m.w.e.yr− 1, with heterogeneity explained by a multivariate 
regression model. Debris cover and glacier slope are identified as key determinants, with 
debris cover exhibiting a positive coefficient and glacier slope demonstrating an inverse 
relationship with mass balance. Specifically, a 10% increase in debris cover corresponds 
to approximately 0.36 m.w.e.yr− 1 of mass gain, while a similar increase in slope leads to a 
0.86 m.w.e.yr− 1 mass loss. The study highlights that glacier area does not exert a significant 
influence on the heterogeneous response. Instead, a strong correlation emerges between 
glacier area and debris cover. Debris cover emerges as a pivotal parameter in characterizing 
heterogeneous responses, as it dictates the glacier response pattern to changing climates 
on an individual glacier basis. Consequently, glacier area effectively serves as a proxy for 
debris cover extent.

Moreover, the study suggests avenues for enhancing model accuracy, such as incorpo-
rating morphological parameters like glacier surface ice velocity, accumulation area ratio, 
aspect, and terminus types of the glacier, which were not considered in the current analysis.
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