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Abstract
Reducing agricultural carbon emissions is a crucial aspect of China’s overall carbon emis-
sion reduction plan. In this study, we first analyzed the spatiotemporal trends in agricul-
tural carbon emissions across 31 provinces in China from 2007 to 2020. Subsequently, 
we employed a geographically and temporally weighted regression model to analyze the 
spatiotemporal evolution of the factors influencing provincial agricultural carbon emis-
sions. Our findings revealed that high carbon emission areas are primarily distributed in the 
central and northern regions. The center of gravity of carbon emissions is located within 
Henan Province (112°30′–113°30′  E; 34°10′–33°40′  N) and has gradually shifted in the 
northwest direction. Therefore, the central, northern, and western regions should become 
the focal areas for agricultural carbon emission mitigation efforts. The influencing factors 
demonstrate spatiotemporal heterogeneity in their impacts on agricultural carbon emis-
sions, so differentiated emission mitigation strategies should be formulated according to 
local conditions. The central and northern regions should prioritize the adoption of green 
technologies, support zero growth of chemical fertilizers and promotion of organic alterna-
tives, and promote urbanization. Western regions should be encouraged to use less harmful 
fertilizers and increase mechanization levels. Nationwide, green technology innovation in 
agriculture should be strengthened to promote sustainable agricultural development.
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1  Introduction

In recent years, environmental challenges such as climate change, biodiversity loss, land 
desertification, and pollution have gained global attention (Celik, 2020; Moran et al., 2018), 
with a particular focus on reducing carbon emissions across various industries. China, as 
the world’s largest emitter of carbon, plays a crucial role in achieving carbon peak and neu-
trality targets (Erdogan, 2021; Wen et al., 2020). While carbon emissions from industry, 
construction, transportation, and services have been extensively studied (Huo et al., 2021; 
Kou et al., 2022; Liu et al., 2021b; Sun et al., 2022; Wang et al., 2020), the impact of agri-
culture, particularly the plantation sector, on carbon emissions has received less attention. 
This study aims to fill this gap by examining the spatiotemporal dynamics of agricultural 
carbon emissions in China and their underlying drivers.

Agriculture is the primary industry in China (Chen et al., 2019; Zadgaonkar et al., 2022) 
and has been a key driver of economic and social prosperity since 1978 (Chen et al., 2019). 
However, this growth has come at the cost of increased consumption of natural resources, 
leading to concerns about the sustainability of China’s agricultural sector (Lu et al., 2015; 
Norse & Ju, 2015). Notably, the plantation industry is the most representative of the pri-
mary agricultural industry (Cui et  al., 2021a; Guan et  al., 2018), and maintaining food 
security has become an essential policy in China, especially in light of the COVID-19 pan-
demic’s negative impact on food cultivation (Bai et al., 2020; Wu et al., 2022).

Considering the regional disparities in natural environments, population qualities, eco-
nomic development, and agricultural structures throughout China’s vast territory (Cui 
et al., 2021b), our study examines the evolution of agricultural carbon emissions using the 
geographically and temporally weighted regression (GTWR) model to investigate their 
drivers. This research significantly enhances our understanding of agricultural carbon emis-
sions by: (1) addressing the scarcity of comparative studies between provinces, offering 
a comprehensive analysis of spatiotemporal differences in agricultural carbon emissions; 
(2) advancing beyond traditional models and employing the GTWR model to concurrently 
assess spatial and temporal heterogeneity of influencing factors, expanding GTWR’s appli-
cation in the agricultural sector; (3) exploring a diverse set of seven drivers for agricultural 
carbon emissions based on data availability and relevance to China’s current agricultural 
issues, yielding a more representative and accurate analysis of contributing factors in the 
plantation sector; and (4) providing a solid theoretical basis to assist local governments 
in formulating targeted agricultural carbon reduction policies adapted to local conditions, 
ultimately promoting sustainable agriculture in China and other developing countries. By 
building on prior research and addressing its limitations, our study offers valuable insights 
for policymakers in shaping tailored carbon emission reduction policies within the planta-
tion sector, ultimately fostering sustainable agricultural practices in China and beyond.

2 � Literature review

2.1 � Characteristics of agricultural carbon emissions

In recent years, the study of geographical disparities, spatiotemporal characteristics, and 
agricultural carbon emission dynamics has gained increasing attention among scholars 
(e.g., Han et al., 2021). Existing research can be discussed at both national and regional 
levels, with some studies examining broader trends and others focusing on specific regions.
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At the national level, Liu et al., (2021a, 2021b) found that China’s agricultural carbon 
emissions (ACEs) follow an inverted "U" shape trend, with an overall decreasing growth 
rate. Simultaneously, the main concentration areas of ACEs exhibit a tendency to shift 
from eastern to central regions. Huang et al. (2019) further explored the changes in agricul-
tural carbon emission intensity, discovering a noticeable downward trend. These findings 
align with studies like Rios and Gianmoena (2018), who developed a spatially augmented 
green Solow model that integrated technological interdependence in production, demon-
strating that neighboring nations’ economic features affect one another’s carbon emissions.

At the regional level, Wang and Feng (2021) discussed the spatial distribution of ACEs 
across Chinese provinces, finding significant differences between regions. Liu and Yang 
(2021) investigated the regional differences in agricultural carbon emission efficiency, 
revealing spatial clustering effects and catch-up effects between regions. Cui et al. (2021a) 
compared the distribution characteristics of agricultural carbon emission intensity and per 
capita carbon emissions, finding that regional differences in agricultural carbon emission 
intensity gradually narrowed over time, while differences in per capita carbon emissions 
clustering levels gradually expanded. Cui et al. (2021b) further examined regional differ-
ences in the carbon emission intensity of plantations, finding “intra-regional convergence 
and inter-regional divergence.” The spatiotemporal characteristics of ACEs in specific 
provinces in China, such as Xinjiang, Hubei, and Fujian, which represent western, central, 
and eastern coastal regions, respectively, are also remarkably different due to variations 
in geographical factors, economic levels, and policy orientations (Chen et al., 2019; Shan 
et al., 2022; Xiong et al., 2016).

Compared to previous studies, our research has several notable highlights. First, the past 
research mainly focused on discussing agricultural carbon emissions from the perspective 
of the country as a whole or specific provinces, while comparative studies between prov-
inces have been relatively scarce. Furthermore, existing research on provincial disparities 
in agricultural carbon emissions has primarily explored spatial differences, often neglect-
ing the temporal variation of these emissions. Therefore, this study combines both tempo-
ral and spatial perspectives to comparatively investigate the spatiotemporal differences in 
agricultural carbon emissions across provinces. Additionally, by incorporating the center-
of-gravity model, we analyze the trends in changes in carbon emission gravity over time.

2.2 � Driving factors of agricultural carbon emissions

Numerous factors influencing agricultural carbon emissions have been recently investi-
gated, including agricultural production, economic growth, population size, technological 
advancement, and agricultural land (Chen et al., 2019; Long & Tang, 2021). These factors 
can be categorized as carbon sinks and carbon sources (Stevanovic et al., 2017). According 
to Ismael et al. (2018), agricultural production exerts a considerable dual effect on carbon 
emissions. While increased agricultural production inevitably generates carbon emissions 
(Ismael et al., 2018), organic agriculture production reduces them (Gomiero et al., 2008). 
Economic and population growth, as two critical elements of agricultural output, promotes 
agricultural carbon emissions (Ridzuan et  al., 2020). Similarly, Zafeiriou et  al. (2018) 
demonstrated a strong relationship between agricultural revenue and carbon emissions. 
Technological improvement in agriculture is also a key factor affecting agricultural carbon 
emissions. Gerlagh (2007) analyzed the impact of technological advancement on carbon 
emission reduction and discovered that technological innovation significantly reduced the 
cost of carbon emission reduction and increased societal benefits. However, technological 
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innovation can also contribute to carbon emissions, particularly in the context of independ-
ent innovation or during the early stages of innovation focused on increasing production 
(Gu et  al., 2019; Yu & Du, 2019). Agricultural land, encompassing per capita land-use 
area and farmland conversion, also influences agricultural carbon emissions. Zhao et  al. 
(2018) ranked several factors that affect agricultural carbon emissions and concluded the 
economic output of water resources > the ratio of water and land resources > land-use area 
per capita. Sarauer and Coleman (2018) found that converting farmland to bioenergy crops 
could impact greenhouse gas (GHG) emissions, including those of carbon dioxide (CO2), 
methane, and nitrous oxide, which could inform land-use modeling or life cycle analysis.

In summary, scholars from both domestic and international backgrounds have con-
ducted extensive research on the factors influencing agricultural carbon emissions. How-
ever, due to variations in model selection, indicator choice, and the quantity and construc-
tion of influencing factors, the research results present certain discrepancies. Consequently, 
this study, considering data availability and the representativeness of influencing factors for 
contemporary agricultural issues in China, investigates seven driving elements of agricul-
tural carbon emissions. These elements include agricultural economic level, agricultural 
structure, urbanization level, agricultural mechanization, fertilizer consumption, financial 
support for agriculture, and agricultural technology innovation.

2.3 � Models to estimate driving factors

The most common methods for estimating driving factors of carbon emissions include the 
autoregressive distributed lag model (Owusu & Asumadu-Sarkodie, 2017), Granger cau-
sality test (Khan et al., 2018), and vector error correction model (Mourao & Domingues 
Martinho, 2017). Moreover, the logarithmic mean Divisia index (Gu et al., 2019; Shi et al., 
2019) and variance decomposition methodology (Ismael et al., 2018) employ exponential 
decomposition to examine the primary factors influencing agricultural carbon emissions. 
Other innovative approaches encompass denitrification–decomposition models (Appiah 
et al., 2018), spatial econometric models (Khan et al., 2018), and fully modified ordinary 
least squares (OLS) models (Yadav & Wang, 2017; Ye et al., 2016).

Given that carbon emission driving factors exhibit spatial heterogeneity, geographi-
cally weighted regression (GWR) models can yield accurate predictions (Xu & Lin, 2021). 
However, these factors also vary over time, necessitating the incorporation of temporal het-
erogeneity to develop geographically and temporally weighted regression (GTWR) models 
(Li et al., 2021). GTWR models have been applied in the analysis of water quality (Chu 
et al., 2018), water resource carrying capacity (Zhang & Dong, 2022), and PM2.5 particu-
late matter concentrations (Guo et al., 2017; Mirzaei et al., 2019). Despite this, there is a 
limited body of research on geographical and temporal factors in carbon emission studies. 
For instance, Liu et al. (2021b) used the GTWR model to estimate carbon emission inten-
sity in the transportation sector across 30 Chinese provinces. Zhang et al. (2022) examined 
the spatiotemporal heterogeneous effects of socioeconomic and meteorological factors on 
CO2 emissions, employing the GTWR model and nighttime light data. Wang et al. (2022b) 
applied the GTWR model to investigate spatial and temporal differences in the impact of 
spatial structure on carbon emissions in various urban agglomerations.

In summary, previous research on carbon emission driving factors predominantly uti-
lized traditional models without fully addressing the non-stationarity of time and space. 
Although a few studies have considered the spatial heterogeneity of carbon emission 
influencing factors by introducing the GWR model, the GTWR model—which accounts 
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for both spatial and temporal heterogeneity—has been explored in only a limited number 
of fields, such as the transportation industry. Drawing from the methods and applications 
mentioned earlier, this study incorporates the GTWR model to examine the influencing 
factors of agricultural carbon emissions, providing an analysis of the spatiotemporal distri-
bution differences of these factors. By doing so, the study offers a preliminary theoretical 
basis to support local governments in devising agricultural carbon reduction policies tai-
lored to local conditions.

3 � Methodology and data

3.1 � Agricultural carbon emission measurement

Three main types of accounting methods are currently used for agricultural carbon emis-
sions, namely, life cycle assessment (Hao et  al., 2020), input–output analysis (Cao et  al., 
2010; Lal, 2007), and the Intergovernmental Panel on Climate Change (IPCC) method 
(Huang et al., 2019; Villarino et al., 2014). Considering the advantages and disadvantages of 
these methods and the accessibility of data, we used the widely applied IPCC method. Spe-
cifically, we chose plantation (narrow agriculture) as the subject of our study (Liu & Yang, 
2021). Referring to Tian et al. (2014), the specific formula is as follows:

where E represents agricultural carbon emissions, Ti represents the carbon emissions of 
source i, and δi represents the emission coefficient of source i. Furthermore, referring to 
Mostashari-Rad et al. (2021), we classified carbon sources into six categories: fertilizers, 
pesticides, agricultural films, diesel oil used in agriculture, tillage, and agricultural irriga-
tion. Table 1 shows all of the agricultural sector’s carbon emission sources and coefficients:

3.2 � Methods for the analysis of the spatial distribution characteristics

3.2.1 � Global spatial autocorrelation

Global spatial autocorrelation is an exploratory spatial data analysis approach mainly 
used to identify the spatial distribution characteristics of the study object. Moran’s I 

(1)E =
∑

Ei =
∑

Ti × �i

Table 1   Agricultural carbon emission sources and coefficients

Carbon-emission source Coefficient References

Fertilizer 0.8956 kg·kg−1 West and Marland (2002)
Chemical pesticide 4.9341 kg·kg−1 Zhou et al. (2022)
Agricultural film 5.18 kg·kg−1 Liu et al. (2021a)
Diesel oil used in agriculture 0.5927 kg·kg−1 IPCC (2007)
Tillage 312.6 kg·km−2 He et al. (2021a)
Irrigation 20.476 kg·km−2 Dubey and Lal (2009)
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index is the most used indicator of global spatial autocorrelation (Mathur, 2015), which 
is calculated as follows: 

where n represents the number of samples; xi and xj represent the agricultural carbon emis-
sions of provinces i and j, respectively; x represents the average of all carbon emissions; 
wij is the corresponding element of the space weight matrix; and I is Moran’s I index, the 
value of which ranges from − 1 to 1. A value larger than 0 indicates a positive spatial cor-
relation, a value less than 0 indicates a negative correlation, and a value equal to 0 indi-
cates no correlation. For Moran’s I, the degree of spatial autocorrelation in a region can be 
assessed using the standardized statistic Z as follows:

where E(I) is the expectation of Moran’s I, and VAR(I) is the variance of Moran’s I.

3.2.2 � The center‑of‑gravity model

The fundamental concept of the center-of-gravity model is drawn from physics and 
has been widely used in other areas of research, including economics (Lewer and Van 
den Berg 2008; Westerlund & Wilhelmsson, 2011) and environmental science (Wang 
& Feng, 2017; Zhang et al., 2012). In this study, we used the center-of-gravity model 
to analyze the spatial center of gravity and the evolutionary footprint of China’s agri-
cultural carbon emissions from 2007 to 2020. The center of gravity was calculated as 
follows:

where ( Xt , Yt ), respectively, represent the longitude and latitude coordinates of the center 
of gravity of agricultural carbon emissions; ( xs , ys ), respectively, represent the longitude 
and latitude coordinates of the capital city of province S; mt

s
 is the degree of agricultural 

carbon emissions in year t for province S; and n represents the number of provinces in a 
given region. The offset distance is the distance from which an attribute’s center of gravity 
moves, which is calculated using the following formula:

(2)I =

n
n
∑

i=1

n
∑

j=1

wij

�

xi − x
��

xj − x
�

n
∑

i=1

n
∑

j=1

wij

n
∑

i=1

�

xi − x
�2

(3)Z =
I − E(I)
√

VAR(I)

(4)Xt =

n
∑

s=1

mt
s
× xs

n
∑

s=1

mt
s

(5)Yt =

n
∑

s=1

mt
s
× ys

n
∑

s=1

mt
s
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where Dt is the offset distance, representing the movement distance of the gravity center of 
agricultural carbon emissions, and c is typically 111.111, which is the coefficient of con-
verting spherical longitude and latitude coordinates to plane distance.

3.3 � Estimation models for driving factors

3.3.1 � Model comparison

The GWR model extends the OLS model, which permits local parameter estimation, as 
follows:

where Yi is the value at location i; (ui, vi) represent the geographic coordinates of city i; 
�0(ui,vi) is the local intercept; �k(ui,vi) is the local coefficient of city i; q is the number of fac-
tors; Xik is the independent variable in province i; and �i is the random error.

In contrast to the commonly used GWR model, which only considers spatial variation 
in predicting parameter relationships, the GTWR model incorporates spatiotemporal het-
erogeneity through a weighting matrix that combines both spatial and temporal dimensions 
(Huang et al., 2010). The specific model is as follows:

where (ui, vi, ti) denote the spatiotemporal coordinates (longitude, latitude, and time, 
respectively) of the given city i; �0(ui,vi,ti) is the intercept; and �k(ui,vi ,ti) is the local regres-
sion coefficient of the kth variable in the ith province as a function of the spatiotemporal 
coordinates.

Furthermore, referring to Huang et al. (2010), the spatiotemporal distance is defined as 
follows:

where λ and μ are the scaling factors for spatial and temporal distances, respectively. When 
μ is 0, only spatial distance and heterogeneity are considered, and the model is a GWR; 
when λ is 0, only temporal distance and temporal non-stationarity are considered, and the 
model is a temporally weighted regression (TWR).

3.4 � Data

This research examined agricultural carbon emissions in 31 provinces of China, excluding 
Taiwan, Hong Kong, and Macau, from 2007 to 2020. The provinces included in the study 
are shown in Fig. 1:

(6)Dt = c ×

√

(

Xt − Xt−1
)2

+
(

Yt − Yt−1
)2

(7)Yi = �0(ui,vi) +

q
∑

k=1

�k(ui,vi)Xik + �i;i = 1, 2⋯ n

(8)Yi = �0(ui,vi,ti) +

q
∑

k=1

�k(ui,vi ,ti)Xik + �i; i = 1, 2⋯ n

(9)dST
ij

=

√

�

[

(

ui − uj
)2

+
(

vi − vj
)2
]

+ �
(

ti − tj
)2
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We calculated agricultural carbon emission statistics for 31 Chinese provinces from 
2007 to 2020. Data on six carbon emission sources—namely fertilizers, agricultural films, 
pesticides, diesel, tillage data, and agricultural irrigation—were acquired from the China 
Rural Statistical Yearbook (2008–2021) and the China Statistical Yearbook (2008–2021). 
In selecting the influencing factors or independent variables, we thoroughly considered the 
current challenges faced by China’s agriculture.

Firstly, as a major agricultural nation, China’s agricultural economic level is a cru-
cial indicator of its development. The transformation of agricultural production methods 

Fig. 1   Map showing the provinces included in this study
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resulting from an improved agricultural economy leads to notable carbon emissions. Con-
sequently, we include this factor in our research considerations. Secondly, Chinese agri-
culture is diverse, with the planting industry (rice and wheat) holding a dominant position. 
Therefore, we examine the role of agricultural structure in carbon emissions. At present, 
China is experiencing rapid urbanization, with population concentration in urban areas 
and a decline in rural labor. This trend alters agricultural production methods and impacts 
carbon emissions. In recent years, the Chinese government has vigorously promoted agri-
cultural mechanization to enhance efficiency. However, this mechanization might also 
increase energy consumption and carbon emissions, making it a significant driving factor 
for agricultural carbon emissions. As the world’s largest consumer of agricultural chemical 
fertilizers, China’s agricultural carbon emissions are heavily influenced by fertilizer usage. 
By examining this driving factor, we can provide essential references for future transforma-
tion in fertilizer consumption across provinces. Meanwhile, financial support for agricul-
ture in China is vital for production and technological innovation, consequently affecting 
carbon emissions. Financial assistance enables producers to adopt advanced technologies 
and production methods, reducing carbon emissions. Lastly, we highlight the crucial role 
of agricultural technological innovation in agricultural carbon emissions. The Chinese gov-
ernment has prioritized innovation to enhance efficiency, minimize resource consumption, 
and mitigate environmental pollution. Thus, the level of agricultural technological innova-
tion is one of the key factors influencing China’s agricultural carbon emissions.

In conclusion, we ultimately chose seven driving factors, with total agricultural carbon 
emissions selected as the dependent variable. The details of each independent variable are 
provided in Table 2.

We analyzed the variables using the variance inflation factor (VIF) and tolerance to 
avoid multicollinearity and found that the VIFs of all of seven driving factors were < 3, 
with tolerance values of > 0.4 (see Appendix 1, Table 5). As a result, this study included all 
seven driving factors as independent variables.

4 � Results

4.1 � Spatiotemporal analysis of provincial carbon emissions

4.1.1 � Spatial pattern evolution

To visualize the development of spatial carbon emission patterns across China’s 31 prov-
inces from 2007 to 2020, ArcGIS software was used to calculate the spatial pattern evo-
lution of total provincial carbon emissions for 2007, 2012, 2016, and 2020. The graph’s 
colors indicate the intensity of carbon emissions: The closer to red, the higher the emis-
sions. Color changes over time indicate how agricultural carbon emissions have evolved in 
each province.

In Fig.  2, the high-emission region expands over time, while the number of green 
areas is relatively stable, indicating that China’s agricultural carbon emissions increased 
over the study period and that the areas with high carbon emissions expanded over time. 
From 2007 to 2020, the region of higher emissions steadily expanded from the center 
to the north, indicating that the northern region is gradually becoming the epicenter 
of China’s agricultural carbon emissions. In addition, the spatial distribution pattern of 
provincial agricultural carbon emissions in China was relatively consistent and similar 
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to those in other studies (Liu et  al., 2021a; Yang et  al., 2022). Specifically, low car-
bon emission areas were concentrated in the southeastern coastal and western regions, 
high carbon emission areas were concentrated in the central and northern regions, and 
moderate carbon emission areas surrounded the high emission areas, primarily in the 
middle and lower reaches of the Yangtze and Yellow Rivers. This suggests that China’s 
agricultural carbon emissions were spatially clustered and that most provinces with high 
carbon emissions were adjacent to each other.

Fig. 2   Evolution of the spatial pattern of total agricultural carbon emissions
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4.1.2 � Global spatial autocorrelation analysis

We used Eq. (2) with ArcGIS to determine each province’s global Moran’s I for total agri-
cultural carbon emissions (see Table 3).

As seen in Table 3, a significant positive correlation existed between the total agricul-
tural carbon emissions of the provinces from 2007 to 2020. Furthermore, there was a clear 
spatial autocorrelation of the emissions of nearby provinces, as shown by their spatial clus-
tering. These results are consistent with those of Liu and Yang (2021). However, this effect 
diminished over time as local geographic variability increased, with Moran’s I reaching 
0.158 in 2020.

4.1.3 � Center‑of‑gravity analysis

We calculated yearly center-of-gravity coordinates and migration distances using 14-year 
agricultural carbon emission statistics from the 31 provinces (see Fig. 3 and Appendix 1, 
Table 6).

From 2007 to 2020, the center of gravity of agricultural carbon emissions was in Henan 
Province at 112°30′–113°30′  E and 34°10′–33°40′  N latitude. Other studies have also 
found that Henan was the center of gravity (Song et al., 2015; Wang & Feng, 2017). Given 
Henan’s location in the Yellow River Valley, which is ideal for agricultural production due 
to its terrain and climate, it is logical that the center of gravity of carbon emissions from 
agriculture is in this province. Nonetheless, the rapid agricultural development in the west 
has created a northwestward shift in the center of gravity. China’s center of agricultural car-
bon emissions shifted every year from 2007 to 2020 in general accordance with the results 
of Zhang et al. (2018). From 2007 to 2009, it showed a southwestward shift, whereas in 
the later period (2010–2020), a northwestward shift occurred. As in earlier research (Li 
et al., 2020), we found that agricultural and industrial carbon emission centers were both 
in Henan Province and migrating westward. The center of gravity of agricultural carbon 

Table 3   Global Moran’s I index 
of agricultural carbon emissions 
from 2007 to 2020

*, **, and *** denote passing the significance test at 10%, 5%, and 1% 
levels, respectively

Year Moran’s I Index P value Z score

2007 0.226** 0.014 2.255
2008 0.224** 0.015 2.332
2009 0.221** 0.016 2.322
2010 0.218** 0.016 2.300
2011 0.209** 0.019 2.100
2012 0.201** 0.023 2.001
2013 0.194** 0.027 1.946
2014 0.174** 0.030 2.031
2015 0.164** 0.036 1.842
2016 0.167** 0.036 1.092
2017 0.163** 0.037 1.845
2018 0.161** 0.038 1.740
2019 0.155** 0.040 1.780
2020 0.158** 0.044 1.765
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Fig. 3   Agricultural carbon emission center moving track in China
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emissions generally shifted to the northwest over the study period, primarily due to con-
tinued “Western Development” (Cui et al., 2019), as energy-intensive industries relocated 
from eastern regions to central–western China (Zhang et al., 2018).

4.2 � Analysis of the driving factors of total agricultural carbon emissions

4.2.1 � Comparative analysis of fitting results

Like Li et al. (2022), we used R2, adjusted R2, and corrected Akaike information criterion 
(AICc) to estimate the model fit. Generally, a high R2 and a low AICc absolute value sug-
gest a good model fit. We began by investigating the factors that contribute to total car-
bon emissions and developing a total regression model. The goodness-of-fit values for the 
OLS, TWR, GWR, and GTWR models were calculated using ArcGIS (see Table 4). As 
expected, the TWR, GWR, and GTWR models demonstrated better goodness-of-fit than 
the OLS model. The GTWR model, in particular, had a higher adjusted R2 and AICc than 
the GWR model. Thus, the GTWR model was chosen for driving factor analysis.

4.2.2 � Driving factor analysis using the GTWR model

(1)	 Time evolution of driving factors

To accurately observe the temporal trends of the influence coefficients of various driv-
ing factors on agricultural carbon emissions, boxplots of each influencing factor were gen-
erated (see Appendix 2, Fig. 4). Overall, the impacts of the seven factors on agricultural 
carbon emissions showed significant differences during the study period. Specifically, 
except for the negative mean coefficient values of urbanization level and financial support 
for agriculture across the timeframe, indicating their inhibitory effects, the mean coeffi-
cient values for the remaining factors were positive, suggesting their promotional roles in 
agricultural carbon emissions.

Moreover, the regression coefficients of the influencing elements fluctuated to some 
extent over time. The promotive effects of agricultural economic level, fertilizer con-
sumption level, and agricultural technology innovation level on agricultural carbon emis-
sions decreased annually, while the facilitative role of agricultural mechanization level 
rebounded in recent years, and the propelling impact of agricultural structure remained 
stable. This implies that while developing the economy, innovating technologies, and 
increasing yields by fertilizer use, China has also balanced carbon reduction in recent years 

Table 4   Comparison of the 
goodness-of-fit of the total 
regression models

OLS Ordinary Least Square, TWR​ Temporally Weighted Regression, 
GWR​ Geographically Weighted Regression, GTWR​ Geographically 
and Temporally Weighted Regression

Model R2 Adjusted R2 AICc

OLS 0.502 0.494 944.084
TWR​ 0.645 0.639 853.679
GWR​ 0.936 0.935 177.092
GTWR​ 0.949 0.949 168.874
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(Cheng et  al., 2011; Kwakwa et  al., 2023). The suppressive effect of urbanization level 
weakened gradually, whereas the inhibitory influence of financial support for agriculture 
first declined and then ascended. According to the 2020 data, agricultural mechanization 
level, fertilizer consumption level, and agricultural technology innovation level exerted 
relatively strong promotional effects on agricultural carbon emissions, while the inhibitory 
effect of urbanization level was pronounced.

(2)	 Spatial heterogeneity of driving factors

In order to more intuitively visualize the spatial differences for each influencing fac-
tor, this study summarizes and depicts the regression coefficients in 2007, 2012, 2016, 
and 2020 (see Appendix 1, Tables 7, 8, 9, 10, 11, 12, and 13 and Appendix 2, Figs. 5, 6, 
7, 8, 9, 10, and 11). Moreover, special attention was given to three factors—agricultural 
mechanization level, fertilizer consumption level, and agricultural technology innovation 
level—which exhibited strong promoting effects on carbon emissions based on the 2020 
data. Additionally, the factor of urbanization level was highlighted due to its noticeable 
suppressive impact on carbon emissions revealed in the 2020 data. Therefore, this study 
focuses the analysis on these four influencing factors.

In most provinces, agricultural mechanization increased carbon emissions, aligning 
with findings from several studies (Fabiani et al., 2020; Jiang et al., 2020). However, mech-
anization actually reduced emissions in some western provinces (Sichuan, Yunnan, Tibet, 
Gansu, Qinghai, and Xinjiang) and some northeastern provinces (Liaoning, Jilin, and Hei-
longjiang). This divergence can be attributed to two key factors: First, the underdeveloped 
agriculture in western and southwestern regions benefited from mechanization’s efficiency 
improvements (Benin, 2015), and second, the favorable economic and geographical condi-
tions in northeastern provinces promoted large-scale agriculture (Friel et  al., 2009). The 
effect of agricultural mechanization in increasing agricultural carbon emissions is primar-
ily concentrated in the central and southern provincial regions of China (see Appendix 
1, Table 10 and Appendix 2, Fig. 8). Consequently, these provinces should prioritize the 
adoption of green agricultural technologies and enhancing production scale to mitigate 
emissions (Zhang et al., 2019).

Most Western, Central, and Northern provinces exhibited positive correlations between 
fertilizer consumption and agricultural carbon emissions, which aligns with findings from 
other studies (Guo et al., 2022; Ju et al., 2009). This positive correlation can be attributed 
to the fact that increased fertilizer use often results in soil nutrient runoff, diminished soil 
fertility, and subsequently higher emissions (Guo et al., 2022; see Appendix 1, Table 11 
and Appendix 2, Fig. 9). However, in comparison with previous years, the promoting effect 
of fertilizer consumption on carbon emissions has shown a decline, suggesting a shift 
toward the adoption of organic fertilizers (Wang et al., 2018). In contrast, the Northeastern 
region displayed a negative correlation between fertilizer consumption and carbon emis-
sions. This phenomenon can be attributed to the implementation of less harmful fertilizers 
as part of green agriculture promotion efforts, which has led to a reduction in emissions 
(Liu et al., 2015).

Up until 2020, all Chinese provinces exhibited a positive correlation between agricul-
tural technology innovation and carbon emissions, which contradicts prevailing findings 
suggesting that innovation leads to emission reduction (Chang, 2022; Zhao et al., 2021). 
However, the contribution of agricultural technology innovation to agricultural carbon 
emissions differed across regions, with greater contributions in western and northwestern 
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regions and smaller contributions in eastern and southeast coastal regions. In contrast to 
previous years, a notable reduction in the coefficients reflecting the impact of agricultural 
technology innovation on agricultural carbon emissions has been observed across nearly 
all provinces. Notably, in Heilongjiang Province, the coefficient depicting the influence of 
agricultural technology innovation on agricultural carbon emissions has shifted from nega-
tive to positive (see Appendix 1, Table 13 and Appendix 2, Fig. 11).

In most provinces, except for several western provinces (such as Tibet and Xinjiang), 
urbanization was negatively correlated with agricultural carbon emissions, in line with 
other studies (Chen & Lee, 2020; Han et al., 2021). Rapid urbanization improves agricul-
tural efficiency and decreases emissions (Zhang et al., 2016). However, in certain western 
provinces (such as Tibet and Xinjiang), the process of urbanization has led to an increase 
in agricultural carbon emissions. This phenomenon can be attributed to the relatively low 
level of agricultural development in these provinces, coupled with their dependence on ele-
vated agricultural factor inputs as a means to counterbalance the reduction in agricultural 
labor force (see Appendix 1, Table 9 and Appendix 2, Fig. 7).

5 � Conclusion and suggestions

5.1 � Conclusion

This study analyzed the spatiotemporal heterogeneity of factors influencing provincial agri-
cultural carbon emissions in China and investigated reduction strategies for each province. 
The following are the key findings.

High agricultural carbon emissions were primarily concentrated in central, and north-
ern China, with apparent spatial clustering, indicating mutual influence between provinces. 
Meanwhile, the changing center of gravity for emissions was mainly in Henan, moving 
northwestward due to agricultural development regions and policy adjustments, such as 
"Western Development" and carbon emission reduction. Therefore, agricultural carbon 
reduction in central, northern, and western regions of China is of great significance for 
achieving the "dual carbon" goals in China’s agricultural sector (Zhuo et al., 2023).

This study examined seven driving factors of agricultural carbon emissions using the GTWR 
model, revealing their spatiotemporal heterogeneity. Temporally, the regression coefficients of 
the influencing factors fluctuated over time. The promoting effects of agricultural economic level, 
fertilizer consumption level, and agricultural technology innovation level on carbon emissions 
decreased annually, while the facilitating role of agricultural mechanization level rebounded in 
recent years, and the propelling impact of agricultural structure remained stable. The suppres-
sive effect of urbanization level weakened gradually, whereas the inhibitory influence of financial 
support for agriculture first declined and then ascended.

Spatially, the impacts of different factors on agricultural carbon emissions varied 
across regions. This study focused on the factors with strong promotional effects on car-
bon emissions in 2020 (e.g., agricultural mechanization level, fertilizer consumption 
level, and agricultural technology innovation level), and the factors with pronounced 
inhibitory effects (e.g., urbanization level). Specifically, agricultural mechanization level 
mainly increased the agricultural carbon emission levels in central and southern regions 
but inhibited emissions in several western provinces. Except northeastern regions, 
elevated fertilizer consumption level universally intensified agricultural carbon emis-
sions in other areas. Meanwhile, agricultural technology innovation level was positively 
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correlated with carbon emissions in all provinces, but the contributions of innovation 
levels differed across regions. Western and northwestern areas’ innovation levels con-
tributed more substantially to agricultural carbon emissions, while eastern and south-
eastern coastal regions’ contributions were smaller. Additionally, Urbanization level 
played a suppressive role in agricultural carbon emissions in most provinces except west-
ern regions. Consequently, provinces should adopt tailored countermeasures for carbon 
emissions based on their unique situations.

5.2 � Suggestions

China’s agricultural carbon reduction should primarily focus on the central, northern, and 
western regions. Given the high agricultural carbon emissions in central and northern 
China (Liu et al., 2021a), the government should take actions in several aspects: (1) Pri-
oritize the adoption of green and low-carbon technologies, and gradually phase out tradi-
tional high energy-consuming agricultural machinery (Lin & Xu, 2018); (2) support zero-
growth action of chemical fertilizers and promote organic alternatives (Jiang et al., 2022); 
(3) promote urbanization to rationally reallocate surplus rural labor (Wang et al., 2022a). 
For the relatively underdeveloped western regions, on one hand, the government should 
promote less damaging fertilizers, limit synthetic nitrogen fertilizers, and encourage tar-
geted fertilization based on soil fertility and deficiencies (Wang & Lu, 2020). On the other 
hand, the government should increase subsidies for agricultural machinery purchases and 
motivate farmers to use large machinery instead of small machinery (Lin & Xu, 2018); 
concurrently, proactively introduce policies on inter-regional agricultural machinery opera-
tion to effectively improve machinery utilization. Finally, all provinces should shift devel-
opment goals through technological innovation from productivity improvement to sustain-
able agricultural development, supported by government economic incentives (Zhu & Huo, 
2022), accelerate green technology innovation in agriculture, improve the transformation 
rate of agricultural science and technology achievements (Liu et al., 2021a, 2021b), so that 
agricultural technology innovation can truly become a catalyst for carbon reduction.

Appendix 1: The tables section of the manuscript

See Table 5, 6, 7, 8, 9, 10, 11, 12, and 13.

Table 5   Variance inflation factor 
(VIF) and tolerance of variables

Variable VIF Tolerance

Agricultural economic level 2.177 0.459
Agricultural structure 1.127 0.887
Urbanization level 2.272 0.44
Agricultural mechanization level 1.752 0.571
Fertilizer consumption level 1.481 0.675
Fiscal support for agriculture 2.458 0.407
Agricultural technology innovation level 1.19 0.84
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Table 6   Location of the 
center-of-gravity coordinates 
and migration distances for 
agricultural carbon emissions

E East longitude, N North latitude

Year X (Longitude) Y (Latitude) Moving 
distance 
(km)

2007 113° 20′ 28.728″ E 34° 15′ 6.448″ N
2008 113° 10′ 40.565″ E 34° 12′ 22.552″ N 15.6080
2009 113° 8′ 55.942″ E 34° 12′ 19.622″ N 2.6330
2010 113° 6′ 29.842″ E 34° 14′ 29.271″ N 5.3791
2011 113° 0′ 26.616" E 34° 14′ 50.202″ N 9.1582
2012 112° 56′ 41.831″ E 34° 17′ 3.826″ N 6.9516
2013 112° 52′ 28.298″ E 34° 18′ 33.443″ N 6.9258
2014 112° 44′ 10.708″ E 34° 22′ 51.602″ N 14.7398
2015 112° 40′ 47.307″ E 34° 23′ 56.095″ N 5.4653
2016 112° 43′ 33.909″ E 34° 33′ 13.422″ N 17.2194
2017 112° 43′ 36.483″ E 34° 33′ 7.531″ N 0.1895
2018 112° 42′ 3.183″ E 34° 37′ 3.657″ N 7.5156
2019 112° 39′ 9.807″ E 34° 37′ 32.309″ N 4.4215
2020 112° 39′ 6.138″ E 34° 37′ 16.942″ N 0.4738

Table 7   Agricultural economic-level coefficients

Province 2007 2012 2016 2020 Province 2007 2012 2016 2020

Beijing 0.988 0.560 0.365 0.253 Hubei 0.434 0.114 0.001  − 0.064
Tianjin 0.942 0.482 0.305 0.222 Hunan  − 0.003  − 0.121  − 0.164  − 0.160
Hebei 1.238 0.689 0.416 0.142 Guangdong  − 0.461  − 0.380  − 0.351  − 0.297
Shanxi 1.005 0.483 0.273  − 0.027 Guangxi  − 0.868  − 0.651  − 0.661  − 0.658
Inner Mongolia 1.036 0.572 0.388 0.150 Hainan  − 0.671  − 0.551  − 0.549  − 0.583
Liaoning 0.008 0.123 0.129 0.123 Chongqing 0.627 0.406 0.089 0.019
Jilin 0.007 0.105 0.087 0.067 Sichuan 1.460 1.051 0.519 0.305
Heilongjiang 0.200 0.159 0.093 0.042 Guizhou  − 0.221  − 0.236  − 0.352  − 0.327
Shanghai 0.598 0.265 0.141 0.065 Yunnan  − 0.186  − 0.130  − 0.265  − 0.153
Jiangsu 0.565 0.240 0.129 0.047 Tibet  − 0.420 0.097 0.336 0.317
Zhejiang 0.431 0.217 0.139 0.066 Shaanxi 0.966 0.519 0.126  − 0.096
Anhui 0.651 0.242 0.119 0.033 Gansu 1.459 1.219 0.788 0.373
Fujian 0.040 0.095 0.127 0.059 Qinghai 1.223 1.094 0.886 0.644
Jiangxi 0.072 0.022 0.037  − 0.001 Ningxia 1.007 0.790 0.515 0.111
Shandong 1.266 0.583 0.276 0.078 Xinjiang  − 0.045 0.048 0.070 0.080
Henan 1.235 0.465 0.146  − 0.066
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Table 8   Agricultural structure coefficients

Province 2007 2012 2016 2020 Province 2007 2012 2016 2020

Beijing 0.269 0.157 0.154 0.260 Hubei 0.448 0.407 0.374 0.419
Tianjin 0.391 0.228 0.202 0.296 Hunan 0.408 0.330 0.201 0.221
Hebei 0.171 0.056 0.118 0.265 Guangdong 0.501 0.304 0.107 0.070
Shanxi  − 0.042  − 0.182  − 0.122 0.045 Guangxi  − 0.106  − 0.127  − 0.179  − 0.278
Inner Mon-

golia
 − 0.079  − 0.122  − 0.101  − 0.056 Hainan 0.298 0.118 0.030  − 0.058

Liaoning 0.123 0.154 0.162 0.166 Chongqing  − 0.127  − 0.176  − 0.215  − 0.145
Jilin  − 0.018 0.095 0.094 0.031 Sichuan 0.032  − 0.021  − 0.090  − 0.080
Heilongjiang  − 0.024 0.088 0.098 0.006 Guizhou  − 0.380  − 0.382  − 0.408  − 0.380
Shanghai 0.907 0.820 0.659 0.562 Yunnan  − 0.432  − 0.202  − 0.156  − 0.205
Jiangsu 0.849 0.800 0.718 0.676 Tibet 0.020 0.037 0.026 0.028
Zhejiang 0.879 0.815 0.661 0.560 Shaanxi  − 0.149  − 0.233  − 0.212  − 0.068
Anhui 0.758 0.725 0.696 0.688 Gansu 0.024 0.033 0.017  − 0.016
Fujian 0.825 0.739 0.550 0.391 Qinghai 0.067 0.094 0.089 0.061
Jiangxi 0.685 0.623 0.528 0.491 Ningxia  − 0.021  − 0.014  − 0.074  − 0.086
Shandong 0.453 0.320 0.348 0.465 Xinjiang 0.007  − 0.036  − 0.011 0.015
Henan 0.196 0.046 0.121 0.268

Table 9   Urbanization-level coefficients

Province 2007 2012 2016 2020 Province 2007 2012 2016 2020

Beijing  − 1.361  − 1.217  − 1.122  − 1.126 Hubei  − 0.850  − 0.673  − 0.631  − 0.777
Tianjin  − 1.296  − 1.161  − 1.073  − 1.085 Hunan  − 0.592  − 0.444  − 0.479  − 0.637
Hebei  − 1.505  − 1.340  − 1.214  − 1.162 Guangdong  − 0.212  − 0.155  − 0.257  − 0.463
Shanxi  − 1.534  − 1.378  − 1.303  − 1.276 Guangxi  − 0.055 0.024 0.165 0.116
Inner Mon-

golia
 − 1.573  − 1.349  − 1.255  − 1.301 Hainan 0.102 0.066 0.092 0.129

Liaoning  − 0.748  − 0.679  − 0.631  − 0.672 Chongqing  − 0.885  − 0.870  − 0.768  − 0.833
Jilin  − 0.323  − 0.400  − 0.456  − 0.513 Sichuan  − 0.961  − 0.994  − 0.880  − 0.854
Heilongjiang 0.043 0.099  − 0.037  − 0.393 Guizhou  − 0.332  − 0.264  − 0.188  − 0.307
Shanghai  − 0.934  − 0.730  − 0.560  − 0.524 Yunnan  − 0.049  − 0.179  − 0.162  − 0.303
Jiangsu  − 0.915  − 0.711  − 0.561  − 0.533 Tibet 0.163 0.234 0.048 0.059
Zhejiang  − 0.833  − 0.682  − 0.536  − 0.494 Shaanxi  − 1.605  − 1.455  − 1.293  − 1.435
Anhui  − 0.964  − 0.740  − 0.606  − 0.599 Gansu  − 1.135  − 1.094  − 0.959  − 0.828
Fujian  − 0.659  − 0.674  − 0.644  − 0.608 Qinghai  − 0.646  − 0.754  − 0.741  − 0.646
Jiangxi  − 0.647  − 0.543  − 0.548  − 0.631 Ningxia  − 1.463  − 1.202  − 1.074  − 1.107
Shandong  − 1.358  − 1.161  − 1.014  − 0.968 Xinjiang 0.310 0.318 0.312 0.320
Henan  − 1.441  − 1.229  − 1.124  − 1.172
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Table 10   Agricultural mechanization-level coefficients

Province 2007 2012 2016 2020 Province 2007 2012 2016 2020

Beijing  − 0.219  − 0.021 0.130 0.245 Hubei 0.631 0.650 0.761 0.828
Tianjin  − 0.213  − 0.029 0.114 0.210 Hunan 0.978 0.855 0.877 0.833
Hebei  − 0.176 0.028 0.201 0.430 Guangdong 1.180 0.830 0.801 0.708
Shanxi 0.009 0.216 0.309 0.547 Guangxi 1.555 1.098 0.786 0.558
Inner Mon-

golia
 − 0.176 0.106 0.184 0.350 Hainan 1.436 0.998 0.846 0.645

Liaoning 0.309 0.132  − 0.016  − 0.074 Chongqing 0.377 0.296 0.356 0.420
Jilin 0.310 0.094  − 0.038  − 0.084 Sichuan  − 0.646  − 0.568  − 0.391  − 0.134
Heilongjiang 0.282 0.175 0.028  − 0.053 Guizhou 0.819 0.633 0.477 0.407
Shanghai 0.284 0.368 0.506 0.577 Yunnan  − 0.349  − 0.195  − 0.300  − 0.333
Jiangsu 0.308 0.390 0.529 0.614 Tibet  − 0.189  − 0.203  − 0.131  − 0.074
Zhejiang 0.371 0.412 0.546 0.630 Shaanxi 0.532 0.562 0.578 0.675
Anhui 0.309 0.392 0.529 0.630 Gansu  − 0.312  − 0.393  − 0.294  − 0.115
Fujian 0.507 0.383 0.474 0.622 Qinghai  − 0.669  − 0.616  − 0.552  − 0.544
Jiangxi 0.598 0.564 0.637 0.719 Ningxia 0.240 0.152 0.177 0.435
Shandong  − 0.097 0.033 0.222 0.410 Xinjiang  − 0.211  − 0.272  − 0.253  − 0.242
Henan 0.205 0.360 0.495 0.665

Table 11   Fertilizer consumption-level coefficients

Province 2007 2012 2016 2020 Province 2007 2012 2016 2020

Beijing 0.547 0.481 0.381 0.407 Hubei 0.359 0.338 0.247 0.220
Tianjin 0.476 0.398 0.314 0.350 Hunan 0.436 0.357 0.233 0.185
Hebei 0.636 0.651 0.538 0.505 Guangdong 0.366 0.193 0.105 0.081
Shanxi 0.655 0.690 0.550 0.470 Guangxi 0.336 0.209 0.166 0.147
Inner Mongolia 0.698 0.666 0.491 0.415 Hainan 0.222 0.146 0.116 0.117
Liaoning  − 0.277  − 0.252  − 0.180  − 0.157 Chongqing 0.208 0.198 0.176 0.123
Jilin  − 0.519  − 0.413  − 0.341  − 0.366 Sichuan 0.182 0.236 0.270 0.192
Heilongjiang  − 0.669  − 0.527  − 0.466  − 0.488 Guizhou 0.064 0.033 0.029 0.009
Shanghai 0.103 0.080 0.049 0.079 Yunnan 0.020 0.120 0.169 0.066
Jiangsu 0.136 0.134 0.103 0.145 Tibet 0.878 0.514 0.395 0.381
Zhejiang 0.172 0.120 0.065 0.093 Shaanxi 0.480 0.402 0.381 0.290
Anhui 0.153 0.185 0.149 0.183 Gansu 0.320 0.203 0.198 0.212
Fujian 0.280 0.134 0.022 0.037 Qinghai 0.352 0.199 0.125 0.113
Jiangxi 0.331 0.259 0.142 0.135 Ningxia 0.440 0.285 0.259 0.286
Shandong 0.411 0.445 0.377 0.383 Xinjiang 0.806 0.706 0.645 0.592
Henan 0.460 0.558 0.456 0.364
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Appendix 2: The figures section of the manuscript

See Figs. 4, 5, 6, 7, 8, 9, 10, 11.

Table 12   Financial support for agriculture coefficients

Province 2007 2012 2016 2020 Province 2007 2012 2016 2020

Beijing  − 0.176  − 0.048  − 0.031  − 0.134 Hubei  − 0.328  − 0.260  − 0.340  − 0.628
Tianjin  − 0.172  − 0.035  − 0.014  − 0.109 Hunan  − 0.358  − 0.295  − 0.408  − 0.537
Hebei  − 0.294  − 0.118  − 0.094  − 0.242 Guangdong  − 0.327  − 0.329  − 0.410  − 0.425
Shanxi  − 0.358  − 0.144  − 0.099  − 0.278 Guangxi  − 0.177  − 0.161 0.041 0.158
Inner Mon-

golia
 − 0.315  − 0.109  − 0.030  − 0.162 Hainan  − 0.187  − 0.224  − 0.166 0.006

Liaoning  − 0.145  − 0.035 0.169 0.240 Chongqing  − 0.347  − 0.293  − 0.174  − 0.193
Jilin  − 0.009 0.055 0.217 0.300 Sichuan  − 0.171  − 0.116  − 0.080  − 0.156
Heilongjiang 0.043 0.122 0.229 0.269 Guizhou  − 0.216  − 0.137 0.027 0.016
Shanghai  − 0.261  − 0.141  − 0.091  − 0.177 Yunnan 0.011 0.022 0.104  − 0.003
Jiangsu  − 0.264  − 0.132  − 0.076  − 0.161 Tibet  − 0.018  − 0.016  − 0.008  − 0.002
Zhejiang  − 0.235  − 0.130  − 0.101  − 0.197 Shaanxi  − 0.633  − 0.536  − 0.396  − 0.559
Anhui  − 0.296  − 0.156  − 0.106  − 0.225 Gansu  − 0.243  − 0.054  − 0.005  − 0.109
Fujian  − 0.235  − 0.203  − 0.297  − 0.467 Qinghai  − 0.082 0.016 0.068 0.022
Jiangxi  − 0.245  − 0.158  − 0.259  − 0.491 Ningxia  − 0.497  − 0.387  − 0.249  − 0.314
Shandong  − 0.313  − 0.142  − 0.097  − 0.211 Xinjiang 0.106 0.055 0.038 0.029
Henan  − 0.437  − 0.310  − 0.313  − 0.569

Table 13   Agricultural technology innovation-level coefficients

Province 2007 2012 2016 2020 Province 2007 2012 2016 2020

Beijing 0.968 0.449 0.379 0.294 Hubei 0.171 0.095 0.046 0.005
Tianjin 0.860 0.442 0.365 0.286 Hunan 0.156 0.045 0.027 0.047
Hebei 0.675 0.367 0.331 0.256 Guangdong 0.174 0.066 0.071 0.126
Shanxi 0.942 0.434 0.377 0.282 Guangxi 0.399 0.117 0.097 0.108
Inner Mongolia 1.134 0.518 0.457 0.328 Hainan 0.118 0.048 0.054 0.079
Liaoning 1.864 0.544 0.409 0.350 Chongqing 0.872 0.415 0.404 0.428
Jilin 0.777 0.332 0.331 0.383 Sichuan 0.346 0.385 0.494 0.568
Heilongjiang  − 0.972  − 0.873  − 0.392 0.185 Guizhou 0.915 0.338 0.269 0.273
Shanghai 0.134 0.089 0.054 0.030 Yunnan 1.387 0.552 0.423 0.393
Jiangsu 0.169 0.103 0.055 0.020 Tibet 4.932 0.758 0.612 0.550
Zhejiang 0.136 0.084 0.041 0.012 Shaanxi 1.083 0.555 0.495 0.362
Anhui 0.196 0.129 0.074 0.028 Gansu 0.693 0.574 0.598 0.651
Fujian 0.189 0.130 0.084 0.033 Qinghai 0.585 0.463 0.428 0.448
Jiangxi 0.191 0.089 0.048 0.009 Ningxia 2.244 1.141 0.945 0.797
Shandong 0.437 0.312 0.272 0.212 Xinjiang 0.375 0.407 0.451 0.461
Henan 0.380 0.295 0.253 0.160
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Fig. 4   Time variation trend of GTWR regression coefficients from 2007 to 2020
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Fig. 5   Agricultural economic level coefficient from 2007 to 2020



	 X. Zheng et al.

1 3

Fig. 6   Agricultural structure coefficient from 2007 to 2020
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Fig. 7   Urbanization-level coefficient from 2007 to 2020
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Fig. 8   Agricultural mechanization-level coefficient from 2007 to 2020
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Fig. 9   Fertilizer consumption-level coefficient from 2007 to 2020
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Fig. 10   Financial support for agriculture coefficient from 2007 to 2020
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