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Abstract
Correct inflow prediction is a critical non-engineering measure for ensuring flood control 
and increasing water supply efficiency. In addition, accurate inflow prediction can offer res-
ervoir planning and management guidance since inflow is the major input into reservoirs. 
This study aims at generalizing a machine learning model for forecasting reservoir inflow. 
Daily, weekly, and monthly inflow and rainfall time-series data have been collected as two 
hydrological parameters to forecast reservoir inflow using a machine learning method, 
namely, support vector regression (SVR). Four different SVR kernels have been applied in 
this study. The kernels are radial basis function (RBF), linear, normalized polynomial, and 
sigmoid. Two scenarios for input selection have been implemented. Dokan dam in Kurdis-
tan region of Iraq and Warragamba Dam in Australia were selected as the case studies for 
this research. For the purpose of generalization, the proposed models have been applied 
to two countries with a different climate condition. The findings showed that daily time-
scale outperformed weekly and monthly, while RBF outperformed the other SVR kernels 
with root-mean-square error (RMSE) = 145.7 and coefficient of determination (R2) = 0.85 
for forecasting daily inflow at Dokan dam. However, RBF kernel could not perform well 
for forecasting daily inflow in Warragamba dam. The results showed that the proposed 
machine learning model performed well at Kurdistan region of Iraq only, while the result 
for Australia was not accurate. Therefore, the proposed models could not be generalized.
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1 Introduction

Climate change and weather patterns, rising water demand, and poor water resource man-
agement practices are all factors have led to the present global water crisis (Herslund & 
Mguni, 2019; Kooy et al., 2020; Marlow et al., 2013; Sosa-Rodriguez et al., 2019). Water 
management is a critical component of urban development’s long-term viability. The scien-
tific community has expressed worry about urban water-related issues all around the world 
(Jia et al., 2015). Water concerns currently include increasing urban floods, over-exploita-
tion of groundwater, urban water shortages, the waste of rainfall resources, and water con-
tamination as a result of fast urbanization and extreme weather events (Bábek et al., 2020; 
Nguyen et al., 2019; Wang et al., 2018).

One of the most essential elements in the development, maintenance, and sustainability 
of riparian ecosystems is reservoir inflow. Inflow may be thought of as a "master variable" 
that regulates riverine species’ abundance and distribution (Latif, Ahmed, et  al. 2021). 
Weather (rainfall and temperature) interacts with geology, topography, soil, and vegetation 
to impact infiltration, evaporation, and run-off generation, all of which influence reservoir 
inflow. The number and timing of reservoir inflows are key components of river system 
environmental fluxes and ecological integrity. This "master variable" also shapes river 
ecosystems and affects fish eating, migratory, nesting, and spawning conditions (Dhungel 
et al., 2016; O’Keeffe et al., 2019; U.S. Environmental Protection Agency (U.S. EPA) and 
US EPA, 2008; Xu et al., 2020).

Correct inflow forecast is an essential non-engineering measure to confirm flood-control 
protection and to raise the efficiency of water supply use. In addition, since inflow is the 
main input into reservoirs, good inflow forecast may provide direction for reservoir devel-
opment and management (Apaydin et al., 2020; More et al., 2019; Qi et al., 2019). Because 
of its importance, numerous reservoir inflow forecasting models and techniques have been 
created and tested in real-world scenarios (Apaydin et al., 2020).

Inflow prediction has been proposed using a variety of hydrologic models over the past 
decade, but there is no silver bullet: Various techniques will perform better for particular 
watersheds, lead times, and types of occurrences (Tikhamarine et al., 2020). Since inflow 
is the primary input into reservoirs, accurate inflow prediction is not only an important 
non-engineering method to assure flood-control safety and enhance water resource use effi-
ciency, but it may also give direction for reservoir development and management. There-
fore, the need to have a capable model for predicting reservoir inflow is crucial (Amnatsan 
et al., 2018; Yan et al., 2018).

According to recent research, Iraq will face greater issues in the future, with the water 
deficit situation worsening over time and the Tigris and Euphrates Rivers anticipated to be 
dry by 2040. The estimated discharge of the two rivers in 2025 will be drastically reduced 
(Zakaria et al., 2013). In Australia, overall urban water consumption is expected to rise by 
at least 39% between 2009 and 2026, following a population increase of more than 24% 
between 2007 and 2026. Climate change will probably certainly exacerbate the situation on 
a global and regional basis (Yan et al., 2018). This study focuses on implementing a gener-
alizable model for both countries for forecasting reservoir inflow.

Nowadays, hydrologists focuses on machine learning algorithms for forecasting hydro-
logical parameters (Lai et al., 2020; Latif & Ahmed, 2021; Latif et al., 2020, 2021a, 2021b; 
Najah et al., 2021). For example, Babaei et al., 2019, conducted a study in Zayandehroud 
dam reservoir in Iran to predict the dam reservoir inflow, and their input parameters were 
monthly inflow and rainfall. They have applied ANN and SVR as their proposed method. 
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Their findings showed that the proposed model has the lowest error for inflow prediction, 
with the SVR model’s products outperforming those of the ANN model. Another study 
was conducted by Zhang et  al., 2020, in the Huanren reservoir in China to produce an 
ensemble of 10-day inflow forecasts. The time scale was 10 days with different input com-
binations such as inflow, precipitation, relative humidity, minimum temperature, maximum 
temperature, and precipitation forecast. They have implemented ANN, SVR, and ANFIS 
for their methods. The decomposition outcome of their study showed that the input set 
is the dominant source of uncertainty. They found out the contribution of the data-driven 
model is limited and has a substantial seasonal variation which is more significant in win-
ter and summer but more minor in spring and autumn. Furthermore, Y. Yu et  al., 2017, 
proposed a study in Three Gorges Reservoir (TGR), China. They have developed a novel 
model, combining monthly inflow forecasting and multi-objective ecological reservoir 
operations. The objective of their research was to improve the efficiency of water resource 
allocation. For the monthly time scale, meteorological and hydrological data were used as 
inputs. A hybrid model based on SVR and singular spectrum analysis (SSA), namely, SSA-
SVR, was applied for the method. The results of the simulations revealed that the proposed 
coupled model for the TGR will outperform actual TGR operations; moreover, multi-
objective ecological operations based on inflow forecasts may help relieve water shortages. 
Meanwhile, Al-Suhili & Karim, 2015, developed five ANN models for predicting daily 
inflow at Dokan dam. According to their findings, their proposed model was capable of 
forecasting daily inflow with the highest correlation coefficient of 0.94. Moreover, Y. Wang 
et al., 2014, conducted a study in order to forecast monthly inflow at Three Gorges Reser-
voir. Three machine learning models, namely, SVR, genetic programming (GP), and sea-
sonal autoregressive (SAR), have been implemented in their study. RBF has been adopted 
in their SVR prediction model as an effective kernel. Their findings showed that SVR and 
GP model performance significantly improves when coupled with the SSA for predicting 
the inflow series. On the other hand, Halik et  al., 2015, utilized wavelet support vector 
machine (WSVM) with the adaptation of RBF for forecasting inflow at Sutami Reservoir, 
Indonesia. Their findings showed that WSVM performed better in forecasting inflow with 
utilizing RBF kernel.

The area of research is based on the primary data in Dokan dam, Iraq, and the secondary 
data in Warragamba dam, Sydney, Australia. In this study, reservoir inflow and rainfall as 
two different scenarios have been utilized as the input parameters for the proposed machine 
learning models. In Dokan dam, the four kernels of SVR are not applied for forecasting 
reservoir inflow to check the most accurate kernel. Therefore, this study aims to fill this 
gap in the literature by contributing a new idea of applying four different kernels of SVR in 
order to ensure the most accurate kernel for forecasting reservoir inflow.

2  Materials and methods

2.1  Dokan dam

Dokan dam is located on the Lesser Zab tributary, approximately 295-km north of Bagh-
dad and 65-km southeast of Sulaymaniyah (Fig. 1) (Sulaiman et  al., 2021). At a typical 
functioning level of 511 m above sea level, the dam height is approximately 116 m, with 
a total storage capacity of 6.87 109 m3 (6.14 109 m3 living storage and 0.73 109 m3 dead 
storage) (Ezz-Aldeen et al., 2018). The historical daily time-series inflow and rainfall data 
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are collected from the Ministry of Agriculture and Water Resources, Kurdistan regional 
government, Iraq, for the duration of January 1, 1988, to December 31, 2015 (Fig.  2). 
The basic statistical characteristics of the utilized inflow data of Dokan dam are shown in 
Table 1.

2.2  Warragamba dam

Warragamba dam is a heritage-listed dam in the Wollondilly Shire of New South Wales in 
Australia, near the outer southwestern Sydney suburb of Warragamba (Fig. 3). One of the 
wild rivers that will be flooded after the Warragamba dam wall is lifted is the Kowmung 
River (Division, 2005). The historical daily time-series inflow data have been collected 
from January 1, 1988, to December 31, 2015 (Fig. 4). The basic statistical characteristics 
of the utilized data of Warragamba dam are shown in Table 2.

2.3  Statistical analysis for datasets

The annual data for both locations were split into two subsamples to test for homogeneity 
of the overall series by performing a t-test for significant change in the mean values and an 
F-test for the variances. According to the t-test and F-test values, there are no significant 
changes in these parameters; therefore, it is justified to forecast using the entire set of data. 
In the current study, 80% of the data was used for training, and the remained 20% was used 
for testing. Furthermore, the data for both locations have been collected as a daily time-
series data; then, it was converted to weekly and monthly data. Table 3 shows the values 
for t-test and F-test for Dokan and Warragamba dams.

2.4  Model combinations and input selection

In machine learning application for forecasting purposes, one of the important steps is 
selecting the appropriate input parameters to the models. In this study, autocorrelation 
function has been utilized in order to select the most correlated input parameters for the 

Fig. 1  First study area location
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Fig. 2  a The daily inflow at Dokan dam and b the daily rainfall at Dokan dam

Table 1  Statistical characteristics 
of Dokan dam inflow data

Time indices Mean Standard deviation Minimum Maximum

Daily 165.83 227.47 3 3608
Weekly 165.83 206.60 7.57 2298
Monthly 166.62 190.25 8.74 1569.16
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proposed models. Autocorrelation function (ACF) is an important method that shows 
the correlation between two values in a time-series matter. ACF is widely used for 
hydrological prediction modeling since it will select the most appropriate input combi-
nation. According to ACF, five models with five time-lags have been selected (Table 4).

Where Qt represents reservoir inflow, while Qt-1 represents reservoir inflow for pre-
vious 1-day time-lag.

Fig. 3  Second study area location (Latif & Ahmed, 2021)
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Regarding the input selection, two scenarios were proposed. In the first scenario, 
inflow rate has been utilized as input selection. In the second scenario, inflow and rain-
fall have been combined in order to check which scenario achieve better performance 
for the proposed models.
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Fig. 4  Daily streamflow of the Warragamba dam from January 1, 2008, to July 1, 2017

Table 2  Statistical characteristics 
of Warragamba dam inflow data

Time indices Mean Standard deviation Minimum Maximum

Daily 306.29 712.32 0.128 15,372.14

Table 3  T-test and F-test values 
for Dokan and Warragamba dams

Dams T-test value F-test value

Dokan dam 1.05254 5.8477
Warragamba dam 0.00025 1.4104

Table 4  Model combinations for 
daily inflow time-series data

Model Target variable Input combination

Model-1 Qt Qt-1

Model-2 Qt Qt-1,  Qt-2

Model-3 Qt Qt-1,  Qt-2,  Qt-3

Model-4 Qt Qt-1,  Qt-2,  Qt-3,  Qt-4

Model-5 Qt Qt-1,  Qt-2,  Qt-3,  Qt-4,  Qt-5
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2.5  Support vector regression (SVR)

SVR is one of the machine learning algorithms widely used in prediction (Lai et al., 2019). In 
general, it is a suitable method for the prediction of regression and time series in hydrological 
studies. This model typically defines the learning function for inputs and outputs. Support vec-
tors are the training points nearest to the separating hyperplane, and the general definition of 
SVR is demonstrated in Fig. 5. For example, there are accountable decision functions, hyper-
planes capable of delineating positive and negative data that defined the maximum margins. 
It displays the variance from the nearest positive to a hyperplane sample and maximizes the 
variance between the nearest negative sample and the hyperplane.

where ϕ(x) represents the spaces of the high-dimensional function, which is mapped non-
linearly from the x input space. By minimizing the regularized function R(C), the coeffi-
cients w and b are estimated:

where

where b is the bias, ε is insensitive loss function, and w is the weight vector.
Four common types of SVR kernels as mentioned below are introduced in this study to 

train the SVR models for the first assessment to investigate the ability of the SVR model to 
mimic and learn on the pre-processed data. The four types of SVR kernels are RBF, linear, 
NP, and sigmoid, which are introduced as follows:
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Fig. 5  The basic concept of SVR 
(Latif, 2021)
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Here � , r , and d are kernel parameters.
The tuning parameters of RBF, linear, NP and sigmoid kernels are summarized in 

Table 5 in order to obtain the most optimal parameters to train and test in three different 
inputs designed for SVR.

Where γ: gamma; C: cost; d: degree; and r: coefficient. γ is a hypermeter that is 
established before the training model and is used to give the decision boundary cur-
vature weight. Low values indicate "far" while big values indicate "near." The gamma 
parameter controls how far a single training example’s impact reaches. The inverse of 
the radius of effect of samples picked by the model as support vectors are the gamma 
parameters. C is also a hypermeter that is used to regulate errors and is set before the 
training model. d is a parameter used when kernel is set to polynomial kernel. It is basi-
cally the degree of the polynomial used to find the hyperplane to split the data. r is the 
coefficient of the kernel.

There are two forms of SVR regression; both have the general Eqs. (3 and 4). Form 
1 or epsilon is regarded as the first phase of SVR regression. The formulation shown in 
Eq. (4) gives this type of error function. Form 2 of regression is known as Nu (Aljanabi 
et al., 2018; Ehteram et al., 2019; Yahya et al., 2019).

Generally, if the model was created using the SVR approach, and V = 5, the data 
would be divided into five subsets of similar size by the model, and the training process 
would be repeated five times. The model runs for each training phase, using subsets for 
training and leaving one for assessing the model error.

In this research, two types of SVR were used, namely, SVR regression type 1 (also 
known as epsilon-SVR regression) and SVR regression type 2 (also known as nu-SVR 
regression). The nu-SVR is used to calculate the percentage of support vectors to keep 
in the solution compared to the total number of samples in the dataset. While epsi-
lon-SVR is brought into the design of the optimization problem and is automatically 
approximated.

Two types of SVR models may be distinguished based on the specification of this 
error function:

a. Epsilon-SVR regression.
For this type of SVR, the error function is as follows:

which we minimize subject to:

(7)Sigmoid Kernel:K
(
xi, xj

)
= tanh

(
xT
i
× xj + r

)

(8)1

2
wTw + C

N∑

i=1

�i + C

N∑

i=1

�⋅
i

Table 5  Tuning components for 
four different kernels in SVR

Type of kernel functions Tuning or 
affecting 
parameters

RBF γ and C
Linear C
Normalized polynomial kernel (NP) d, γ, r, and C
Sigmoid γ, r, and C
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b. nu-SVR regression.
For this SVR model, the error function is given by:

which we minimize subject to:

2.6  Statistical measurements

2.6.1  Root‑mean‑square error (RMSE)

The residuals standard deviation is abbreviated as RMSE (predictive errors). To validate 
experimental data, the RMSE is commonly employed in climate analysis, prediction, and 
regression testing.

The mean value of the observed inflow is where Qip and Qio are observed and predicted 
inflow values. The closer the RMSE value to zero, the better accuracy is going to show.

2.6.2  Coefficient of determination (R.2)

A major performance of the regression analysis is the coefficient of determination (denoted 
by  R2). This is the fraction of variation in the dependent variable that is predicted from the 
independent variable.

2.6.3  Nash–Sutcliffe model efficiency coefficient (NSE)

NSE is a normalized statistic that assesses the amount of the residual variance in relation 
to the variance of the measured data. In the case of zero error of the proposed model, NSE 
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should be equal to 1. NSE is utilized in order to assess the predictive skill of the proposed 
models. It is defined as follows:

where Qo is the mean of observed inflow, and Qt
m
 is modeled inflow. Qt

o
 is observed inflow 

at time t.

2.7  Sensitivity analysis (SA)

SA is valuable to investigate the uncertainty, especially during model development (Bor-
gonovo, 2017). The meteorological parameter is one of the factors that contribute to res-
ervoir inflow. Therefore, it is important to comprehensively study the meteorological input 
parameter contribute on reservoir inflow at study locations. The performance evaluation 
of the various possible combinations of the parameters is utilizing RMSE,  R2, and NSE 
approaches to determine the most effective parameters on the output. Utilizing these 
evaluations, the model can be observed if the parameter under consideration is missing 
or included in the analysis. As a result, the most important parameters will give a higher 
 R2 and NSE with the lower RMSE values. Then, it is indicated that the parameters are the 
most effective tool for the performance of the models. Sensitivity analysis is applied in 
order to have different models for comparison purposes in terms of accuracy. Figure 6 rep-
resents the sensitivity analysis of the proposed study.

2.8  Strength and limitation of the proposed techniques

In prediction modeling, SVR has various advantages. For instance, it has a superior gen-
eralization performance compared to other machine learning algorithms. Moreover, SVR 
can easily deal with nonlinear process through utilizing kernel functions since it is able 

(14)NSE = 1 −

∑T

t=1

�
Qt

m
− Qt

o

�2

∑T

t=1

�
Qt

o
− Qo

�2

Fig. 6  Sensitivity analysis of the current study
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to consider nonlinear relationships between observed and target values. Furthermore, pre-
dicted values can exceed observed values in the training data in SVR. However, there are 
various limitations of using SVR for prediction modeling. For instance, most of the time 
SVR is not suitable for a vast amount of data. Also, the training period is longer than the 
other machine learning algorithms. In addition, SVR is not very accurate for predicting 
extreme events. In summary, SVR should be well improved through utilizing different ker-
nels and improving the pre-processing of observed data. In this study, epistemic uncer-
tainty has been realized since the rainfall was not a suitable parameter as input for predict-
ing inflow.

3  Results and discussion

SVR models are developed and compared in terms of RMSE,  R2, and NSE with differ-
ent kernel functions and input parameters designed. The model that yields lower errors 
will reflect higher performance in this prediction of reservoir inflow. The first assessment 
is to scrutinize the optimization of RBF, linear, NP, and sigmoid kernels. SVR plays an 
important role in regression. Different kernel parameters were used as tuning parameters 
to improve the model accuracy. Several tuning or affecting parameters were used in SVR 
kernels.

The execution of optimizations is shown in the following section with the model per-
formance of RMSE, R2, and NSE. In this study, two scenarios were proposed for selecting 
input parameters of the proposed models. The first scenario is selecting reservoir inflow 
as a single input parameter, while the second scenario is combining reservoir inflow and 
rainfall as input parameters.

In this study, the SVR technique has been implemented on three-time horizons (daily, 
weekly, and monthly) with its four different kernels, namely, RBF, linear, NP, and sigmoid 
kernels. These four kernels have been applied in order to find out the most accurate kernel. 
Five models with different input combinations have been applied to the three different time 
horizons in two different scenarios (inflow and inflow + rainfall). Also, two different types 
of SVR (SVR regression type 1 and SVR regression type 2) were applied. According to the 
results, 36 models have been run. The best model, time horizon, scenario, SVR type, and 
kernel have been selected among all the 36 models. Model-2 outperformed all the other 
four models, while daily outperformed weekly and monthly time horizons. On the other 
hand, the first scenario (selecting only inflow as model input) outperformed the second sce-
nario. In addition, SVR regression type 2 outperformed SVR regression type 1. The RBF 
kernel outperformed the other three kernels. The second-best kernel was the linear kernel, 
while the NP kernel was the third-best kernel. The kernel with the least performance was 
the sigmoid kernel, among the others. The results of SVR model are used in selecting the 
best scenario since it has four different kernels with two different regression types.

3.1  Forecasting reservoir inflow utilizing RBF kernel

RBF is a well-known kernel function that may be found in a variety of kernelized learn-
ing methods. It is widely used in classification and regression using SVR. The RBF 
kernel is a function whose value is proportional to the distance between the origin and a 
given location. The RBF kernel with different input designs is performed a pre-process-
ing process in order to obtain the most optimum RBF tuning components. First, SVR 
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regression type 1 (also known as epsilon-SVR regression) was selected in the begin-
ning. Secondly, SVR regression type 2 (also known as nu-SVR regression) has been 
implemented. The accuracy between SVR regression type 1 and SVR regression type 2 
has been compared in order to select the most accurate type. Tables 6 shows the imple-
mentation of summary results of the overall model performance RMSE,  R2, and NSE 
with different input designs for SVR regression type 1. The tuning or affecting param-
eters of RBF kernel components are gamma and C. Figure  7 shows the performance 
of the overall set of Model-2 SVR regression type 1 RBF kernel for forecasting daily 
reservoir inflow.

Based on the outcomes achieved, Model-2 had significant value compared to the 
other models. Therefore, Model-2 is considered as the best-selected model to be applied 
for the next techniques. Therefore, SVR regression type 2 will be applied on Model-2.

In terms of RMSE and NSE, SVR type 2 regression outperformed type 1 regres-
sion. Therefore, from now on, SVR regression type 2 will be selected for the remaining 
SVR analysis. Table 7 shows the comparison results of the overall, training, and testing 
set for the SVR regression type 1 and type 2 for RBF kernel on the Model-2. Figure 8 
shows the overall set of Model-2 performance for SVR regression type 2 RBF kernel.

Based on the previous results, from now on SVR regression type 2 will be selected 
for the remaining SVR analysis since it could successfully outperform the SVR type 1 
regression.

3.2  Forecasting reservoir inflow utilizing linear kernel

In this stage, the pre-processing of predicted inflow at the Dokan dam is executed with 
the linear kernel. The tuning or affecting parameters of the linear kernel component is 
only C. The splitting ratio of train-to-test is set up at 80:20. Table 8 shows the execu-
tion of summary results of the model performance RMSE,  R2, and NSE for the Model-2 
SVR linear kernel. Figure  9 shows the overall set of Model-2 performance for SVR 
regression type 2 linear kernel.

3.3  Forecasting reservoir inflow utilizing NP kernel

First, the pre-processing of predicted inflow at Dokan dam is executed with the NP ker-
nel. The tuning or affecting parameters of NP kernels component are degree, gamma, 
and coefficient. The splitting ratio of train-to-test is set up at 80:20. Table  9 shows 
the execution of summary results of the model performance RMSE,  R2, and NSE for 

Table 6  Summary results of 
daily overall RBF kernel of SVR 
regression type 1

SVR (RBF kernel) RMSE R2 NSE

Model-1 148.2 0.84 0.57
Model-2 148.0 0.85 0.58
Model-3 149.2 0.85 0.57
Model-4 156.1 0.85 0.53
Model-5 161.6 0.85 0.49
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Fig. 7  The performance of overall set of Model-2 for SVR regression type 1 RBF kernel a actual vs pre-
dicted daily reservoir inflow and b scatter plot

Table 7  Summary results of 
daily SVR regression type 1 and 
type 2 for RBF kernel

Types of SVR 
regression

SVR regression type 
2 (Model-2)

RMSE R2 NSE

Type 1 Overall 148 0.84 0.57
Training 148 0.83 0.56
Testing 148.1 0.87 0.61

Type 2 Overall 145.7 0.85 0.59
Training 145.1 0.84 0.58
Testing 145.5 0.88 0.62
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Fig. 8  The performance of overall Model-2 of SVR regression type 2 RBF kernel a actual vs predicted 
daily reservoir inflow and b scatter plot

Table 8  Summary results of 
daily SVR regression type 2 
linear kernel

SVR regression type 2 (Model-
2) linear kernel

RMSE R2 NSE

Overall 157.5 0.84 0.52
Training 159.1 0.82 0.50
Testing 152.6 0.87 0.59
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Fig. 9  The performance of overall set of Model-2 for regression type 2 SVR linear kernel a actual vs pre-
dicted daily reservoir inflow and b scatter plot

Table 9  Summary results of 
daily SVR regression type 2 NP 
kernel

SVR regression type 2 
(Model-2) NP kernel

RMSE R2 NSE

Overall 695.2 0.24 − 8.34
Training 694.2 0.23 − 8.61
Testing 698.0 0.26 − 7.62
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Model-2 SVR NP kernel. Figure 10 shows the overall set of Model-2 performance for 
SVR regression type 2 NP kernel.

3.4  Forecasting reservoir inflow utilizing sigmoid kernel

The sigmoid kernel is derived from the area of neural networks, where the bipolar sigmoid 
function is frequently employed as an artificial neuron activation function. It is worth not-
ing that a sigmoid kernel function SVR model is equal to a two-layer perceptron neural 
network. Because of its origins in neural network theory, this kernel was extremely popular 

Fig. 10  The performance of the overall set of Model-2 for regression type 2 SVR NP kernel a actual vs pre-
dicted daily reservoir inflow and b scatter plot
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for SVR. First, the pre-processing of predicted inflow at Dokan dam is executed with the 
sigmoid kernel. The tuning or affecting parameters of the sigmoid kernel’s component are 
gamma, coefficient, and C. The splitting ratio of train-to-test is set up at 80:20. Table 10 

Table 10  Summary results of 
daily SVR regression type 2 
sigmoid kernel

SVR regression type 2 (Model-
2) sigmoid kernel

RMSE R2 NSE

Overall 716.4 0.84 − 8.92
Training 715.7 0.83 − 9.22
Testing 718.3 0.87 − 8.12

Fig. 11  The performance of overall set of Model-2 for regression type 2 SVR sigmoid kernel a actual vs 
predicted daily reservoir inflow and b scatter plot
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shows the execution of summary results of the model performance RMSE,  R2, and NSE 
for Model-2. Figure 11 shows the accuracy of overall set of Model-2 performance for SVR 
regression type 2 sigmoid kernel for forecasting daily reservoir inflow.

According to the results of the overall datasets using sigmoid kernel, it is clear that 
sigmoid kernel is not capable of predicting the current data accurately. Sigmoid kernel 
could not forecast extreme events. The results of the overall dataset of sigmoid kernel are 
similar to the results of NP kernel. However, the RBF and linear kernels showed better 
performance.

3.5  Comparison performance of RBF, linear, NP, and sigmoid kernels

In order to understand the performance of the SVR kernels, the results of SVR kernels 
have been summarized using three statistical indices, namely, RMSE,  R2, and NSE. Four 
SVR kernels have been implemented to find the best-performed kernel for forecasting res-
ervoir inflow. Table 11 shows the results of the selected variables used in the final models 
and SVR hyperparameter values in terms of comparison of the four types of kernels of the 
proposed SVR method for the daily reservoir inflow prediction.

Based on the results achieved, RBF outperformed linear, NP, and sigmoid kernels for 
the daily time-lag. Thus, RBF will be selected to apply in the other time-lags. Moreover, 
SVR regression type 2 outperformed SVR regression type 1. Furthermore, Model-2 will be 

Table 11  Comparison 
performance of SVR kernels 
(daily time horizon)

Data partition SVR kernels RMSE R2 NSE

Training Linear 159.1 0.82 0.50
NP 694.2 0.23 − 8.61
RBF 145.1 0.84 0.58
Sigmoid 715.7 0.83 − 9.22

Testing Linear 152.6 0.87 0.59
NP 698.0 0.26 − 7.62
RBF 145.5 0.88 0.62
Sigmoid 718.3 0.87 − 8.12

Overall Linear 157.5 0.84 0.52
NP 695.2 0.24 − 8.34
RBF 145.7 0.85 0.59
Sigmoid 716.4 0.84 − 8.92

Table 12  The accuracy of daily (inflow only) reservoir inflow prediction.

Techniques Regression Type Kernels Models

SVR

R-1 RBF

Model-1
Model-2
Model-3
Model-4
Model-5

R-2 RBF Model-2
R-2 Liner Model-2
R-2 NP Model-2
R-2 Sigmond Model-2
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applied for other techniques such as RF, BRT, and LSTM because Model-2 outperformed 
the other models, namely, Model-1, Model-3, Model-4, and Model-5. Table 12 shows the 
first stage of the SVR technique results for forecasting the daily reservoir inflow.

3.6  Predicting weekly reservoir inflow utilizing RBF kernel

Forecasting reservoir inflow through a weekly time-lag has been implemented through the 
SVR regression type 2 technique and the selected Model-2 with the RBF kernel. The out-
comes showed that the weekly time-lag was not as accurate as the daily time-lag. Table 13 
represents the results of the weekly reservoir inflow prediction for the overall, training, and 
testing dataset, respectively. Figure 12 shows the accuracy of overall set of Model-2 perfor-
mance for SVR regression type 2 RBF kernel for forecasting weekly reservoir inflow.

3.7  Predicting monthly reservoir inflow utilizing RBF kernel

Predicting reservoir inflow through a monthly time-lag has been applied over the SVR 
regression type 2 technique and the selected Model-2 with the RBF kernel. The results 
showed that the monthly time-lag was not as accurate as the daily and weekly time-lag. 
As it is shown in Table 14, the results of the RMSE in the monthly time-lag are a bit more 
accurate compared to the weekly time-lag. In contrast, the results of the  R2 and NSE in the 
weekly time-lag are significantly more accurate compared to the monthly time-lag. There-
fore, the weekly time-lag is considered more accurate compared to the monthly time-lag, 
and the daily time-lag is considered as the most accurate compared to weekly and monthly 
time-lags. Figure  13 shows the overall set of Model-2 performance for SVR regression 
type 2 RBF kernel for forecasting monthly reservoir inflow. 

Depending on the above results, the daily time-lag showed the best performance com-
pared to weekly and monthly time-lags. However, the weekly time-lag outperformed the 
monthly time-lags. Based on this result, daily time-lag will be selected for the next applica-
tions. The reason behind this achievement is that Dokan dam has semi-arid weather. There-
fore, daily data provide more time-series values and support the models to accurately train 
the dataset.

3.8  The second scenario for forecasting daily reservoir inflow

The second scenario of input combinations is to select inflow and rainfall parameters for 
forecasting inflow using different machine learning and deep learning methods, namely, 
SVR, RF, BRT, and LSTM. As previously explained, daily, weekly, and monthly reservoir 

Table 13  Summary results of 
weekly SVR regression type 2 
RBF kernel

SVR regression type 2 (Model-2) 
RBF kernel (weekly)

RMSE R2 NSE

Overall 131.9 0.71 0.59
Training 136.2 0.70 0.59
Testing 118.4 0.74 0.58
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inflow time-series data have been selected to check the accuracy of the proposed mod-
els. Twenty-eight years daily, weekly, and monthly datasets for reservoir inflow and rain-
fall parameters have been collected and selected as the input parameters. ACF is used for 
selecting the most suitable input combinations. According to the previous results for the 
SVR method, the RBF kernel outperformed the other three kernels (linear, NP, and sig-
moid). Therefore, for this scenario, the RBF kernel will be selected for the SVR method to 
forecast the daily, weekly, and monthly reservoir inflow at Dokan dam, Iraq.

The tuning or affecting parameters of RBF kernel components are gamma and C. The 
splitting ratio of train-to-test is set up at 80:20. Table 15 shows the execution of summary 

Fig. 12  The performance of overall set of Model-2 for regression type 2 SVR RBF kernel a actual vs pre-
dicted weekly reservoir inflow and b scatter plot
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results of the model performance of RMSE,  R2, and NSE for the proposed models. Based 
on the results, Model-2 has the highest accuracy, the RMSE = 150.328,  R2 = 75, and 
NSE = 0.56, respectively, for the overall dataset. Figure 14 shows the overall set of Model-2 

Fig. 13  The performance of overall set of Model-2 for SVR regression type 2 RBF kernel a actual vs pre-
dicted monthly reservoir inflow and b scatter plot

Table 14  Summary results of 
monthly SVR regression type 2 
RBF kernel

SVR regression type 2 (Model-2) 
RBF kernel (monthly)

RMSE R2 NSE

Overall 131.3 0.55 0.52
Training 135.5 0.54 0.50
Testing 117.6 0.61 0.60
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Table 15  Results of overall set 
of SVR RBF kernel regression 
type 2 (second scenario) for 
forecasting daily reservoir inflow

SVR (RBF kernel) RMSE R2 NSE

Model-1 151.643 0.73 0.55
Model-2 150.328 0.75 0.56
Model-3 151.02 0.74 0.56
Model-4 154.90 0.71 0.54
Model-5 155.92 0.70 0.53
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Fig. 14  The performance of overall set of Model-2 for SVR regression type 2 RBF kernel (second scenario) 
a actual vs predicted daily reservoir inflow and b scatter plot



12536 S. D. Latif, A. N. Ahmed 

1 3

performance for SVR regression type 2 (second scenario) RBF kernel for forecasting daily 
reservoir inflow.

So based on the results, the first scenario performed better accuracy than the second 
scenario; therefore, the first scenario will be used for the rest of the models. Depending on 
the outcomes and the achieved results, SVR regression type 2 was better than SVR regres-
sion type 1. Besides, among all the SVR kernels, RBF attained the best result; thus, it is 
considered the best kernel. The second-best kernel was the linear kernel, and each sigmoid 
and NP came after them. Relying on the different models, Model-2 was the best among the 
rest. While Model-3, Model-1, Model-4, and Model-5 performed from the best to the least 
performance, respectively. Depending on the different time-lags, the data analyzed showed 
that the daily reservoir inflow outperformed the weekly and monthly time-lags. In contrast, 
the weekly time-lag showed better performance than the monthly time-lag. Based on the 
two different scenarios, the first scenario that has reservoir inflow as the input parameter 
showed a significant outcome and the best result compared to the second scenario, which 
was the combination of reservoir inflow and rainfall as input parameters. Thus, the first 
scenario will be selected to be applied in other techniques.

3.9  Analysis of SVR results

The results of the SVR method are similar to the previous studies as it has some limita-
tions. According to Zhang et al., 2020, who have conducted a study at Huanren reservoir 
in China, the contribution of the data-driven model through SVR is limited and has sub-
stantial seasonal variation. It is more significant in winter and summer but more minor in 
spring and autumn. According to the different time scales, results from Wushan and Weiji-
abao hydrologic stations, China, that presented by Hu et al., 2020, revealed that the reli-
ability of the forecasting decreased as the foresight period increased. This indicates that the 
SVR prediction model could constantly achieve virtuous performance in the testing stage 
and had relative stability. On the other hand, Mohsenzadeh Karimi et al., 2021, revealed 
that implementing SVR could predict river-flow time series with decent accuracy in Ala-
viam Dam, Soofi-Chai River in Iran. This is also relevant to the current research because 
the outcome of implementing SVR indicates that this machine learning method can be 
applicable and reliable but not with significant accuracy. Moreover, Yu et al., 2020, showed 
the result of their experiment on Three Gorges Dam (TGD) in China and demonstrated that 
a hybrid model that consists of Fourier transform and SVR is able to drive near-perfect 
10-day streamflow forecasting. Meanwhile, Al-Suhili & Karim, 2015, revealed that their 
developed ANN model was successfully capable of predicting daily inflow at Dokan dam 
with a correlation coefficient of 0.94. The result of the current study is consistent with the 
results of the previous studies in the literature. For example, Babaei et al., 2019, applied 
ANN and SVR for predicting monthly inflow and SVR outperformed ANN according to 
the findings. On the other hand, Wang et al., 2014, could achieve a well-performed results 
for predicting monthly inflow utilizing SVR with the adaptation of RBF. Moreover, Halik 
et al., 2015, showed that WSVM with selecting RBF could accurately predict inflow. It can 
be mentioned that the only suitable kernel for SVR was RBF since the other kernels could 
not perform well with the three statistical indices (RMSE,  R2, and NSE). Therefore, it is 
recommended to develop SVR with adaptation of RBF for predicting other hydrological 
parameters such as rainfall, temperature, wind, evaporation, and humidity.



12537Ensuring a generalizable machine learning model for forecasting…

1 3

Based on the previous literature and the current study, it is shown that the SVR model 
is one of the good models for forecasting reservoir inflow but not the best one. Table 16 
shows the best model (Model-2) for the first scenario of Dokan dam.

In order to check if the model can resemble the overall mean and variance, the daily 
means, and variances were performed using the t-test and F-test (Table 17).

When the null hypothesis is correct, there is a good chance of getting a t-value 
between -2 and + 2. The model performs better with the larger F value. Therefore, the 

Table 16  Model-2 daily first 
scenario

Model-2 SVR

RMSE R2 MSE

Overall 145.7 0.85 2.07
Training 145.1 0.84 2.74
Testing 145.5 0.88 8.51

Table 17  T-test and F-test values 
for Dokan dam

Dams T-test value F-test value

Dokan dam 0.1 8.225

Table 18  Extreme values for 
observed and forecasted inflow 
of Dokan dam

Time indices Minimum value Maximum value

Actual Predicted Actual Predicted

Daily 3 21.2 3608 2650
Weekly 7.57 27.8 2298 692.97
Monthly 8.74 74.34 1569.16 795.38
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Fig. 15  Autocorrelation function value for the daily time-series inflow data at Dokan dam
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Table 19  Summarization 
of all SVR results for 
different scenarios based on 
hyperparameters, time horizons, 
and proposed models

Timescale SVM kernels Models RMSE R2 NSE

Daily Linear Model-1 159.1 0.83 0.50
Model-2 157.5 0.84 0.52
Model-3 160.7 0.83 0.50
Model-4 160.4 0.83 0.50
Model-5 160.2 0.83 0.50

NP Model-1 701.3 0.22 −8.67
Model-2 695.2 0.24 −8.34
Model-3 698.9 0.22 −8.65
Model-4 699.3 0.21 −8.66
Model-5 700.2 0.21 −8.66

RBF Model-1 148.2 0.84 0.57
Model-2 145.7 0.85 0.59
Model-3 149.2 0.85 0.57
Model-4 156.1 0.85 0.53
Model-5 161.6 0.85 0.49

Sigmoid Model-1 719.1 0.83 −8.98
Model-2 716.4 0.84 −8.92
Model-3 720.7 0.83 −8.99
Model-4 718.9 0.82 −8.95
Model-5 721.3 0.83 −9.01

Weekly Linear Model-1 148.9 0.78 0.46
Model-2 142.6 0.80 0.47
Model-3 149.8 0.77 0.46
Model-4 148.3 0.78 0.46
Model-5 148.1 0.78 0.46

NP Model-1 631.8 0.20 −8.25
Model-2 629.4 0.21 −8.23
Model-3 630.9 0.20 −8.24
Model-4 631.4 0.20 −8.25
Model-5 630.5 0.20 −8.24

RBF Model-1 133.2 0.70 0.58
Model-2 131.9 0.71 0.59
Model-3 133.5 0.70 0.58
Model-4 134.7 0.70 0.58
Model-5 133.9 0.70 0.58

Sigmoid Model-1 644.8 0.80 −8.22
Model-2 641.3 0.81 −8.16
Model-3 643.2 0.80 −8.21
Model-4 644.9 0.80 −8.22
Model-5 645.1 0.79 −8.23
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results of t-test and F-test for observed and forecasted inflow was acceptable. In order to 
check if the proposed model could accurately predict the extreme values, the minimum 
and maximum values for observed and forecasted inflow were compared (Table  18). 
According to the results, the model was not capable of forecasting extreme values; how-
ever, it was capable of forecasting the overall values except extreme values. Moreover, 
the ACF resemblance by comparing the correlogram for the original and the forecasted 
time-series up to 14 lags was performed (Fig. 15).

In order to show the performance of the proposed models clearly, Table 19 represents 
the summarization of all SVR results for different scenarios based on hyperparameters, 
time horizons, and proposed models. 

3.9.1  Warragamba dam results

SVR techniques were not performed acceptable results. Figure 16 shows the performance 
accuracy of the overall set of Model-2 for SVR, for forecasting daily reservoir inflow at 
Warragamba dam in Australia.

Table 19  (continued) Timescale SVM kernels Models RMSE R2 NSE

Monthly Linear Model-1 143.7 0.77 0.44

Model-2 141.8 0.78 0.45

Model-3 143.2 0.77 0.44

Model-4 144.1 0.77 0.44

Model-5 143.7 0.77 0.44

NP Model-1 620.4 0.18 −8.19

Model-2 618.7 0.19 −8.17

Model-3 620.3 0.18 −8.20

Model-4 621.1 0.18 −8.20

Model-5 620.8 0.18 −8.19

RBF Model-1 133.2 0.54 0.50

Model-2 131.3 0.55 0.52

Model-3 133.8 0.54 0.50

Model-4 132.9 0.54 0.50

Model-5 133.4 0.54 0.50

Sigmoid Model-1 640.4 0.76 −8.38

Model-2 638.1 0.78 −8.35

Model-3 641.1 0.77 −8.33

Model-4 640.8 0.77 −8.32

Model-5 640.5 0.77 −8.30
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Fig. 16  The performance of overall set of Model-2 for SVR regression type 2 RBF kernel (first scenario) a 
actual vs predicted daily reservoir inflow and b scatter plot

Table 20  Daily time-series 
reservoir inflow prediction at 
Warragamba dam (first scenario)

Model-2 SVR

RMSE R2 MSE

Overall training + testing 429.32 0.66 53.0
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In contrast, SVR had good accuracy. Depending on the results, the developed SVR 
model in this study provided a suitable accuracy in Kurdistan region of Iraq. Furthermore, 
the current SVR models could not be utilized to forecast inflow for ensuring flood protec-
tion and increasing water supply efficiently in Warragamba dam. Since inflow is a primary 
input into reservoirs, its accurate forecasting can aid reservoir development and manage-
ment. Based on the previous studies, the majority of the results showed the highest perfor-
mance when using SVR model. Table 20 represents the overall result of the first scenario at 
Warragamba dam.

3.9.2  The most appropriate selections for the best‑performed model

Selecting inflow leads to superior performance than selecting inflow and rainfall together. 
The main reason is that rainfall and inflow rates at Dokan dam are different from one 
another. Sometime, there is only precipitation since Dokan dam will not get inflow from 
Tigris river as the sharing source from Iran side. Sometime, there will be precipitation, as 
well as receiving inflow. Therefore, selecting inflow as the only parameter will lead to bet-
ter accuracy prediction in the proposed models. Meanwhile, daily time-series data will get 
better performance in terms of accuracy since the more data added to the proposed models, 
the model will train better. SVR regression type 2 outperformed SVR regression type 1 
with a very little rate. Regarding the input selection, Model-2 has a significant result since 
it is the most correlated value to the actual values.

4  Conclusion

The objective of this study is to implement a machine learning method, namely, SVR 
for forecasting reservoir inflow. Two scenarios were proposed in this research. The first 
scenario includes reservoir inflow only as an input parameter. In contrast, the second 
scenario had a combination of inflow and rainfall as the input parameters. The first sce-
nario outperformed the second scenario with a significant difference in the accuracy 
level. Daily, weekly, and monthly reservoir inflow data were the three selected time-
lags in the current research. The findings showed that daily time-series reservoir inflow 
obtained the highest accuracy in comparison with the weekly and monthly time-lags. In 
contrast, weekly outperformed the monthly time-lags. Two locations (Kurdistan region 
of Iraq and Sydney, Australia) were selected in the current research in order to ensure if 
the proposed model could be generalized for different climates. The outcomes indicate 
that the proposed models could not be generalized. The proposed models performed 
well for Dokan dam only. This study has contributed to the field of water resources 
engineering in relation to forecasting models by directing the attention of researchers, 
instructors, and policymakers. Although many research studies have been conducted on 
a particular model or benchmarking models of reservoir inflow prediction, there has not 
been any study thus far, to the best knowledge of this researcher, to implement SVR for 
predicting reservoir inflow on both Kurdistan regions of Iraq and Australia in terms of 
accuracy. Therefore, the present study has served to fill this gap in the literature. It is 
recommended for future studies to apply other machine learning methods for different 
climate zones in order to ensure that it can be generalized.
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