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Abstract
Water, sanitation, and hygiene are essential components of the 2030 agenda for sustain-
able development. Goal 6 is dedicated to guarantee all societies have access to water and 
sanitation. Water quality (WQ) assessment is crucial to ensure the availability of clean 
water. This paper presents an approach called AHA–XDNN for predicting WQ. The 
proposed approach is based on three pillars to predict WQ with high accuracy and con-
fidence, namely, deep neural networks (DNN), artificial hummingbird algorithm (AHA), 
and explainable artificial intelligence. The proposed approach involves five phases: data 
preprocessing, optimization, training, and evaluation. In the first phase, problems such as 
unwanted noise and imbalance are addressed. In the second phase, AHA is applied to opti-
mize the DNN model’s hyper-parameters. In the third phase, the DNN model is trained 
on the dataset processed in the first phase. The performance of the optimized DNN model 
is evaluated using four measurements, and the results are explained and interpreted using 
SHapley additive exPlanations. The proposed approach achieved an accuracy, average 
precision, average recall, average F1-score of 91%, 91%, 91.5%, and 91% on the test set, 
respectively. By comparing the proposed approach with existing models based on artificial 
neural network (ANN), the proposed approach was able to outperform its counterparts in 
terms of average recall and average F1-score.
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1 Introduction

In response to human ambitions for a better life and the potential repercussions on the 
planet’s sustainability, the United Nations developed the 2030 agenda for sustainable 
development, which encompasses 17 sustainable development goals (SDGs) and 169 
targets. Among the 17 goals, goal 6 is dedicated to the provision and management of 
water and sanitation for all, highlighting the importance of water on the global political 
agenda. Because water is essential to human health and life, as well as the welfare and 
sustainability of the planet, it is also a main condition for development. Water is essen-
tial for coping with climate change, as it serves as a link between the environment, the 
climate system, and human society (Delanka-Pedige et al., 2021; Nhamo et al., 2019). 
But as urbanization and industrialization expand, a number of harmful chemicals are 
produced (Jahangard et  al., 2022). Heavy metals such as mercury, organic pollutants 
such as pesticides and microbiological illnesses are just a few of the forms in which the 
manufactured wastes are released into water bodies.

All of these water contaminants are harmful to local wildlife and people’s health. 
There is an urgent need to monitor WQ levels. Water is said to be of good quality if it is 
free of potentially dangerous biological forms and organisms that might be distasteful. 
It is translucent, colorless, and has no flavors or odor. It does not include any chemical 
concentrations that might be harmful to your health, unsightly, or disastrous to your 
finances. Each year, many people suffer from kidney failure, cancer, etc., as a result of 
contaminated water (Abdulla, 2021). Classification of WQ in laboratories requires labo-
rious processes and a lot of resources. Currently, there are many ways for classifying 
WQ; however, they are not accurate. The majority of research uses two sorts of studies 
to help determine WQ: regular laboratory tests and data analysis. Having an automated 
system that can quickly and easily assess the WQ is therefore imperative.

Recently, artificial intelligence (AI) has provided automated methods for problem-
solving using vast amounts of data that cannot be processed by humans for the purpose 
of decision-making, including equipment selection, operation optimization, and prob-
lem-solving. AI techniques can effectively duplicate this behavior and make up the defi-
cit for this purpose. Different studies use AI-based methodologies to assist identify the 
most efficient approach to solve the WQ problem. The challenge of predicting WQ has 
started to be solved using traditional machine learning (ML) approaches (Khoi et  al., 
2022). ML is a branch of AI which refers to a system’s capacity to gather, combine, and 
create knowledge from massive amounts of data without programming. Support vector 
machine (SVM), decision tree (DT), random forest (RF), and adaptive boosting (Ada-
Boost) are examples of ML models.

As a response to the limitations of ML, deep learning (DL) was developed. DL 
networks such as ANN, recurrent neural network (RNN), and convolutional neural 
network (CNN) can tackle the industrial issue of executing sundry operations on big 
amounts of data. Despite promising results in predicting WQ in either DL- or ML-
based approaches, the lack of transparency in the currently presented AI-based methods, 
which prevents the evaluation of model outputs, is a fundamental defect in the valid-
ity and fairness of these models. Explainable AI (XAI), which describes an AI model, 
its expected impact, and any prospective biases, has lately been utilized to address this 
issue. It contributes to determining the validity, reliability, and transparency of AI mod-
els. An organization must first build trust and confidence before using AI models in 
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production. An organization can adopt a responsible and ethical approach developing 
traditional AI models with the assistance of XAI.

Therefore, this paper introduces XAI approach-based deep neural network (DNN) and 
artificial hummingbird algorithm (AHA) for predicting WQ. The proposed XAI approach 
consists of five phases, namely data pre-processing phase, optimization phase, training 
phase, model evaluation phase, and results explanation phase. In the data pre-processing 
phase, the dataset used is processed from undesirable noise and imbalance. In binary clas-
sification problems, data imbalance refers to the case when one class has more samples 
than the other class resulting in a dominated class and a minority class. This causes the 
classifiers to give biased results in favor of the majority class. Several methods exist for 
handling this problem including random under-sampling and random oversampling (John-
son & Khoshgoftaar, 2019). In the under-sampling method, randomly chosen samples from 
the dominant class are eliminated. This results in decreasing the number of the majority 
class to reach that of the minority one. In the oversampling method, a randomly samples 
from the minority class are repeated so that the number of samples becomes equal to the 
number of samples in the dominant class. The problem with random oversampling is that 
the repeated samples do not append any additional knowledge to the model. As an alterna-
tive, the synthetic minority oversampling technique (SMOTE) oversampling (Chawla et al., 
2002) synthesizes similar samples to those of the minority class. In the optimization phase, 
the AHA is employed to choose the DNN’s hyper-parameters’ ideal values that signifi-
cantly affect its results before using it in the next phase in WQ prediction. In the training 
phase, the DNN model learns from the dataset that was processed in the first phase and 
then presented and then its results are presented and interpreted in the model evaluation 
and results explanation phases, respectively. A list of this paper’s significant contributions 
is provided below:

• An approach based on AHA and explainable deep neural network (XDNN) is presented 
to address the problem of WQ prediction.

• AHA is utilized to optimize the hyper-parameters of XDNN to increase prediction per-
formance.

• The results of the proposed approach AHA–XDNN are very competitive, achieving an 
accuracy level of 91% in the test set.

• The XAI technique SHAP was adopted to explain the internal prediction mechanism of 
the AHA–XDNN approach.

The breakdown of the paper’s remaining sections is as next. Section 2 offers a review 
of numerous cutting-edge models for WQ prediction including AI-based models and XAI-
based models. Section 3 presents the relevant theories and detailed information about the 
dataset that was utilized in this paper. Section 4 presents the proposed approach, Sect. 5 
offers the experimental findings, the conclusion and discussions about future work can be 
found in Sect. 6.

2  Literature review

There is a mounting interest in assessing WQ; there has been a larger need for trustworthy, 
precise, and adaptive prediction models. This paper’s primary goal is to predict WQ in 
order to ensure that it is safe to consume. In order to meet the need for adaptable models, 
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in this paper an approach that does not require human intervention is provided, in which 
an optimization algorithm was utilized to choose the ideal values for the hyper-parameters 
of the DL model used. Moreover, an XAI method has been used to guarantee the reliabil-
ity and validity of the proposed approach’s results. Lately, a number of researchers have 
employed AI systems to predict WQ, with encouraging results. Some of these systems have 
incorporated XAI methods to interpret the obtained results. However, at the time of writing 
this paper, an approach similar to the one presented in this paper that is based on hyper-
parameters optimization of DL models with incorporation of interpretation methods has 
not been proposed. In this section, recently developed models that employ either AI-based 
methods or XAI-based methods will be explored.

2.1  AI‑based methods for water quality prediction

Different ML techniques have been utilized to address WQ prediction problems. Khan and 
See (2016) has created a WQ prediction model utilizing time series analysis and ANNs. 
The WQ was estimated by Khan and See (2016) utilizing 12 ML models. As a way to 
assess the performance of each model, different methods of regression analysis were used 
such as root-mean-squared error (RMSE).

Yahya et al. (2019) attempts to develop a useful model using SVM to assess the WQ 
by analyzing six parameter data for twin reservoirs situated in the watershed. The primary 
gain of the suggested model is that catchments without gauges or with insufficient moni-
toring stations for WQ indicators may find it useful. Nair and Vijaya (2021) used a variety 
of ML and big data approaches utilizing sensor network-based prediction models. Several 
methods have been applied in Hassan et al. (2021) to forecast WQ such as RF, XGB, DT, 
and Ada-Boost, and among the models used, XGB yielded the highest accuracy of 83%. 
The challenge of having outliers in the dataset was resolved, and the accuracy of the WQ 
prediction was increased by the automatic WQ prediction method in Juna et  al. (2022). 
Juna et al., (2022) recommended resolving the missing value issue by combining a mul-
tilayer perceptron (MLP) of a nine-layer and a K-nearest neighbor (KNN) imputer. Pani-
grahi et al., (2023) proposed a ML-based model for the purpose of predicting ground WQ 
for drinking suitable in accordance with WHO guidelines; the intended issue is expressed 
as a multiclass categorization issue. AI approaches like decision trees, Ada-Boost, KNN, 
XGBoost, logistic regression, and many SVM versions were used. Results reported in 
Panigrahi et al. (2023) showed that Ada-boost, XGBoost, and the polynomial SVM model 
all correctly identified the WQ classes, according to prediction findings. It would assist in 
selecting the safest source of drinking water.

Many DL models have lately been employed to address the problem of WQ predic-
tion. An ANN-based model was proposed in Rustam et  al. (2022) for predicting WQ 
and water consumption. The ANN model was able to achieve very accurate and reliable 
results for estimates of WQ and water use. It yielded an accuracy of 0.96 for predict-
ing WQ and achieved 0.997 R2 for producing water consumption, outperforming other 
approaches with these results. On the other hand, CNN is unable to learn sequence asso-
ciation. Long short-term memory (LSTM) architecture is particularly evolved to handle 
issues that are closely related to time series because of its superior information memory 
and sequential modeling capabilities, such as process monitoring. Various WQ predic-
tion models based on LSTM and DNN were introduced in Wang et al. (2017), Bi et al., 
(2021), Farhi et  al., (2021), Venkata Vara Prasad et  al., (2022), Wang et  al., (2023), 
Zhao et al., (2020), Zheng et al., (2021), Qin et al., (2017), Liang et al., (2018); Rasheed 
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Abdul Haq and Harigovindan (2022), and Zhou et al., (2018). The academics presented 
a unique feature selection and categorization system in Charles et al. (2021) for precise 
real-time WQ prediction. The complexity of the proposed system is reduced by select-
ing the optimal set of attributes utilizing a learning-based model and quantum teaching.

2.2  XAI‑based methods for WQ prediction

The XAI is a cutting-edge technique that offers an explanation of a ML model’s out-
comes based on its features the connections between these features. Consequently, 
it gets around a key problem with black box-based ML models and makes advanced 
ML models more useful (Adadi & Berrada, 2018). In Park et  al., (2022a) investiga-
tion, SHAP, a unique XAI technique, was employed to evaluate the model’s results and 
offer a clear explanation of the predictions. In this work, the performance of the model’s 
input variables was interpreted in an understandable manner using SHAP analysis. The 
SHAP values in the XGB model reflect the affined weighting of the input features (Park 
et  al., 2022a). An XGB model was created to forecast the pace at which the WQ in 
a water treatment facility recovered following a disruption to the water treatment pro-
cess. A pre-processing steps were conducted on the used data to enhance the model’s 
prediction based on how the recovery rate was defined. Additionally, a brand-new XAI 
technique has been applied to examine the model’s findings. An acceptable interpreta-
tion of the model’s outcomes was supplied by the study of model predictions utilizing 
the SHAP values for and the target plots of the input features. The findings of this study 
show how a ML model may be utilized to predict recovery in water treatment opera-
tions following errors. In light of the features of the input variables, the significance of 
pre-processing of the data utilized in the model building has also been underlined. This 
study’s suggested approach offers a helpful strategy for more reliable and efficacious 
control of water treatment systems. A comparison of various ML techniques, includ-
ing SVM, DT, Ada-Boost, and RF, utilized for the classification of WQ is presented in 
Patel et al. (2022). The WQ index dataset from Kaggle  is utilized to train each model. 
The dataset is normalized and balanced using Z-score and SMOTE, respectively, before 
the model is started to be trained. The findings of the experiments indicate that RF and 
gradient boost provide a maximum accuracy of 81%. In order to decide which aspects 
are most crucial, the authors employed XAI. To determine the effect of each feature in 
the obtained findings, local interpretable model-agnostic explanations (LIME) are used.

This work (Park et al., 2022b) effectively illustrated a solid example of how to apply 
XAI to enhance the explication of ML model’s results in forecasting WQ. The influ-
ence of input feature selection on model’s output was assessed, with the three indicators 
SHAP, feature importance (FI), and variance inflation factor (VIF) being used to rank 
the relevance of input variable selection. The study demonstrates that the model’s per-
formance is consistently better when relying on SHAP to determine the order of impor-
tance of the input variables. This reveals that it is possible to lower the cost of the entire 
WQ analysis by designing on-site monitoring to gather the chosen input variables from 
the SHAP analysis. The study in Madni et  al. (2023) used also the SHAP to explain 
the significance of various features after applying the stacked ensemble  H2O AutoML 
model and utilizing the KNN imputer to handle the omitted values. Several learning 
models were used in experiments to analyze the effectiveness of the KNN imputer and 
the suggested  H2O AutoML model.
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3  Material and methods

3.1  Artificial hummingbird algorithm

The AHA is a metaheuristic method for handling optimization problems and was developed 
in Zhao et al. (2022). The initialization and foraging phases make up the two main stages of 
the AHA algorithm. There are three foraging strategies which are the guided, territorial, and 
migration foraging. Next, an explanation will be provided for each of the stages. In the Initiali-
zation phase by using the equation below, a population of N randomly initialized humming-
birds is set on N food places:

where zi denotes the location of the i th food place that is the solution of a given problem, L 
and U are the lower and upper bounds for a d-dimensional problem, respectively, and r is a 
random vector in the range [0, 1]. Each hummingbird favors the food place with the great-
est visit level when choosing where to forage. The initialization of this visit table is as in 
the following way:

where for i = j , VTi,j = null denotes that a hummingbird takes food at its particular food 
place; for i ≠ j , VTi,j = 0 means that the j th food place has just been explored by the i th 
hummingbird in the current iteration.

As mentioned above, there are primarily three foraging strategies: guided, territorial, and 
migration. In guided foraging, the target food place is one that the hummingbird has not vis-
ited in a while because it is already full and has the highest rate of refilling nectar. After con-
suming food from the intended food place, territorial foraging begins, during which humming-
birds seek out new food places rather than going to other known food places. In an attempt to 
find a neoteric food place that is richer than the current one, it makes an effort to travel to a 
nearby location. The hummingbird has 50% probability of making a guided or territorial for-
aging. When the most frequently frequented area is deficient in food, migration foraging takes 
place. The hummingbird will then depart its zone and search for a more remote food place. 
Figure 1 illustrates the three foraging strategies.

The hummingbird has three different flight patterns when it is foraging. These flights are 
axial, diagonal, and omnidirectional. A hummingbird can fly along any coordinate axis. Any 
flying direction could be projected to each of the three coordinate axes, as seen by the omni-
directional flight. In a d-dimension space, the axial flight is computed as Eq. (3), the diagonal 
flight is represented as Eq. (4), and the omnidirectional flight is given as Eq. (5).

(1)zi = L + r ⋅ (U − L) i = 1,… ,N

(2)VTi,j =

{
0 , if i ≠ j

null , if i = j
, i = 1,… ,N and j = 1,… ,N

(3)�i =

{
1 if i = randi([1, d])

0 else
, i = 1,… , d

(4)

�i =

{
1 if i = P(j), j ∈ [1, k]

0 else
, P = rand perm (k), k ∈

[
2, r1.(d − 2) + 1

]
, i = 1,… , d

(5)�i = 1, i = 1,… , d
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where randi([1, d]) produces a random integer from 1 to d , randperm(k) gets a random per-
mutation of integers from 1 to k , and r1 is a random number in range [0, 1]. The flight pat-
tern of a hummingbird affects the choice of candidate food places. In guided foraging, the 
following mathematical equation is to determine a candidate food place vi(t + 1):

where zi,tar(t) is the location of the intended food place that the i th hummingbird likes to 
visit. zi(t) is the location of the i th food place at time t , � is the flight pattern vector, and a 
is a guided factor that follows the normal distribution N(0, 1) with mean = 0 and standard 
deviation = 1 . In territorial foraging, a food place vi(t + 1) is discovered as:

The location update rule of the i th food place is given as:

where zi(t) refers to the i th food place at iteration t and f  denotes the function fitness value. 
The migration foraging occurs when a hummingbird departs to a more distant food place 
since the area it often visits is likely to be food scarce. The hummingbird at the food place 
with the lowest rate of nectar refilling will move to a neoteric food place generated at ran-
dom throughout the search area when the amount of iterations exceeds the stated value of 
the migration coefficient. In relation to population size, the migration coefficient is calcu-
lated as follows:

(6)vi(t + 1) = zi,ttar (t) + a ⋅ � ⋅

(
zi(t) − zi,tar(t)

)

(7)a ∼ N(0, 1)

(8)vi(t + 1) = zi,tar(t) + b ⋅ � ⋅ zi(t)

(9)b ∼ N(0, 1)

(10)zi(t + 1) =

{
zi(t) f

(
zi(t)

)
≤ f

(
vi(t + 1)

)

vi(t + 1) f
(
zi(t)

)
> f

(
vi(t + 1)

)

(11)M = 2N

Fig. 1  The foraging strategies. 
The food place is depicted by the 
black circle
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The visit table is then adjusted as the hummingbird switches from the old source to the 
new one at this moment. One way to describe a hummingbird’s journey foraging from one 
nectar source to another created randomly is as follows:

where zworst(t + 1) stands for the new position after being in the place with the worst fitness 
value, L and U are the lower and upper bounds for a d -dimensional problem, respectively, 
and r is the randomization coefficient used to choose the new position. Figure 2 summa-
rizes the AHA algorithm. It starts with the initialization phase and then calculation of the 
fitness value of the initial candidate solution. Then, the flight pattern is chosen followed by 
the foraging strategies. Iterations are performed until stopping criteria are met. In the end, 
the best reached solution is returned.

3.2  Explainable artificial intelligence (XAI)

An AI model is viewed as a “black box” that is capable of providing “yes” or “no” 
responses without elaborating on how they were arrived at. To guarantee trust and trans-
parency, many applications require a justification of how an answer was generated. In order 
to make the black-box AI systems understandable, this gave rise to a new branch of AI 
research known as XAI (Gohel et al., 2021). The main objective is to deliver “wh” answers 
regarding an output. For instance, XAI should be able to respond to questions like “why 
a specific output was attained?” “how a specific output was attained?”, and “when a spe-
cific AI-based system can fail?” (Garcia et  al., 2018; Neerincx et  al., 2018; Zhou et  al., 
2018). Accordingly, the objectives of XAI are to provide transparency and trustworthiness 
to the used AI techniques in various applications. Transparent AI models must be expres-
sive enough for humans to understand them. Trust can be acquired by having a logical 
and rational justification for any decision made by the AI model. The most famous XAI 

(12)zworst(t + 1) = L + r ⋅ (U − L)

Fig. 2  Flowchart of AHA
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techniques are the local interpretable LIME (Ribeiro et al., 2016) and SHAP (Lundberg & 
Lee, 2017).

The SHAP framework is a game theoretic approach for explainable AI. It enables us to 
explain the reason behind the outputs of ML models using Shapely values. SHAP utilizes 
coalitional game theory to determine Shapley values. It is a technique for rewarding game 
players in accordance with their contribution to the game, as described by Shapley (1953). 
In AI, the input features act as the players and the model’s decision is considered as the 
game outcome. Applying SHAP explains how every feature in the input data contributes 
to every prediction. Given a group of features F , a set of possible features coalitions S ⊆ F 
results in output O(S). The Shapely value 

(
�i

)
 is the average marginal contribution of a 

specific feature i acquired using various possible coalitions; it is given by:

C is a normalization term that considers the number of choices for the subset S ; cont(i, S) is 
feature i ’s marginal contribution w.r.t. coalition S.

3.3  Dataset characteristics

The WQ dataset that employed in this paper was acquired from Kaggle (https:// www. kag-
gle. com/ datas ets/ mssma rtypa nts/ water- quali ty). The dataset consisted of 21 features and 
7999 samples. Table 1 depicts the features of the WQ dataset, and the ranges and unsafe 
limits of each feature.

4  Proposed approach

The proposed AHA–XDNN approach consists of five phases as depicted in Fig. 3. Data 
pre-processing is the first phase, followed by the optimization phase, the training phase, 
the model evaluation phase, and the results explanation phase. The proposed approach for 
predicting WQ is based on DNN. DNN comprised in several hidden layers between the 
input layer and the output layer (Awad & Khanna, 2015). For classification, the number 
of neurons in the output layers is equivalent to the number of classes. Through synapses, 
each layer’s neurons are connected to the subsequent layer’s neurons. Each synapse has a 
weight for neurons activation. During training, the network learns the values of the weights 
to learn a certain function. The network learns from training samples, while how much it 
has learned is tested using test samples. The training samples contain data samples and 
their corresponding class labels. The test samples are usually samples with unknown class 
labels. In addition, a DNN can contain many different types of layers than previously men-
tioned. These layers can be such as the activation layer that proposes nonlinearity, drop-
out layers used for regularization (Srivastava et  al., 2014), batch normalization (Ioffe & 
Szegedy, 2015) utilized to normalize the outputs of the neurons, and was found to have a 

(13)𝜑cont(i) =
∑

S⊆F�{i}

c ⋅ cont(i, S)

(14)C =
|S|!(p − |S| − 1)!

p!

(15)cont(i, S) = (cont(S ∪ {i}) − cont(S))

https://www.kaggle.com/datasets/mssmartypants/water-quality
https://www.kaggle.com/datasets/mssmartypants/water-quality
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good impact on the model accuracy. Although the use of these additional layers improves 
the results of DNN models, the values of the hyper-parameters of any DNN model signifi-
cantly affect the performance and results. If inappropriate values are set for these hyper-
parameters, this will negatively affect the results (Darwish et al., 2020). To overcome this 
hurdle, in the second phase of the proposed approach, the hyper-parameters of the used 
DNN model are tuned to their ideal values using AHA. In the following subsections, each 
phase will be thoroughly explained.

4.1  Data preprocessing phase

In data preprocessing phase, first a statistical analysis of the WQ dataset was performed 
as shown in Table 2. Through this analysis unwanted noise was observed in the dataset as 
three samples in WQ dataset had missing values in the ammonia feature and target label. 
As the number of missing values is not many and ineffective, the three indicated samples 
were removed from the dataset. From the statistical analysis, it was noticed that the dis-
tribution of values in the dataset varies from 0.0 to 60.01. Therefore, the entire dataset 
was normalized to make all the values in it have the same distribution. To deal with the 
imbalance ratio of the dataset which is 7.76, 2000 samples were picked at random from 
the dominated class and the number of samples in the minority class was increased to 
2000 samples using SMOTE. After making the dataset balanced, it was split into training 
set, validation set, and test set. The training set comprises 70% of the total samples of the 

Table 1  Features of the WQ 
dataset and its ranges and 
impermissible limits

Features Range per liter of water Impermissible limits

Aluminum [0, 5.05] Above 2.8
Ammonia [− 0.08, 29.8] Above 32.5
Arsenic [0, 1.05] Above 0.01
Barium [0, 4.94] Above 2
Cadmium [0, 0.13] Above 0.005
Chloramine [0, 8.68] Above 4
Chromium [0, 0.9] Above 0.1
Copper [0, 2] Above 1.3
Fluoride [0, 1.5] Above 1.5
Bacteria [0, 1] Above 0
Viruses [0, 1] Above 0
Lead [0, 0.2] Above 0.015
Nitrates [0, 19.83] Above 10
Nitrites [0, 2.65] Above 1
Mercury [0, 0.01] Above 0.002
Perchlorate [0, 60.01] Above 56
Radium [0, 7.99] Above 5
Selenium [0, 0.1] Above 0.5
Silver [0, 0.5] Above 0.1
Uranium [0, 0.09] Above 0.3
Is_safe Target class (0 = not safe, 1 = safe)
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dataset, the validation set includes 15% of the total samples of the dataset, and the test set 
includes 15% of the total samples of the dataset.

4.2  Optimization of the hyper‑parameters phase

At the second phase of the proposed approach, the AHA is implemented to optimize the 
hyper-parameter values of the 6-layer DNN model used in the proposed approach. The DNN 
model consists of six layers as depicted in Fig. 3, which are the input layer, the output layer 
activated by the sigmoid function, and there are four layers between them. These four layers 

Fig. 3  The architectural form of the proposed approach

Table 2  Summary statistical 
analysis of the WQ dataset

WQ dataset

Class distribution 0: 7084,
1: 912,
undefined: 3

Imbalance ratio 7.76



 D. Ezzat et al.

1 3

are two hidden layers activated by ReLU function, one dropout layer and one batch normaliza-
tion layer. Each of the hidden layers and the dropout layer is tied to a hyper-parameter. The 
first hidden layer is associated with a hyper-parameter called number of neurons FNn ; the sec-
ond hidden layer is also associated with the number of neurons SNn , where the FNn stands 
for the number of neurons in the first hidden layer and SNn stands for the number of neurons 
in the second hidden layer of the DNN model. The dropout layer is tied to a hyper-parameter 
called the dropout rate Dr . FNn , SNn , and Dr are all optimized using AHA. In other words, the 
search space is three-dimensional and each point in the space acts as a combination of these 
three hyper-parameters.

4.3  Training phase

At this phase, after the AHA determines the hyper-parameter values of the 6-layer DNN 
model, the 6-layer DNN model is trained for a number of iterations = Nt using the training set. 
The 6-layer DNN model’s performance is assessed during the training on the validation set.

4.4  Model evaluation and results explanation phases

In the model evaluation phase, after the training of the 6-layer DNN model is ended, it is 
assessed on the test set. The 6-layer DNN model’s performance is assessed utilizing a various 
of metrics including confusion matrix, accuracy, precision, recall, and F1-score. The most uti-
lized criteria for gauging the effectiveness of classification models are accuracy. As indicated 
in Eq. (16), it is computed by counting the successfully categorized samples and then divid-
ing this number by the total number of samples. As may be observed in Eq. (17), precision is 
defined by dividing the true positives by the total of true and false positives. As demonstrated 
in Eq. (18), recall, also known as sensitivity, is computed by dividing the true positives by the 
total of false negatives and true positives. F1-score is calculated using Eq. (19) and depends on 
precision and recall. It is employed to strike a balance between recall and precision. The con-
fusion matrix can be thought of as a summary of a classifier’s prediction outcomes. The con-
fusion matrix sheds light on the classifier’s mistakes and the kinds of mistakes made (Goutte 
& Gaussier, 2005; Tharwat, 2018; Ting, 2011).

where T positive = true positives, T negative = true negatives, F positive = false positives, 
and F negative = false negatives.

(16)Accuracy =
T positive + T negative

T positive + T negative + F positive + F negative
× 100%

(17)Precision =
T positive

T positive + F positive
× 100%

(18)Recall =
T positive

T positive + F negative
× 100%

(19)F1 − score = 2 ×
Precision × Recall

Precision + Recall
× 100%
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In the results explanation phase, the XAI method “SHAP” is used to explain the results 
of the 6-layer DNN model by figuring out how much each feature contributed to the predic-
tion. The SHAP method has the ability to identify the most important features and their 
impact on model prediction.

5  Results and discussion

This part introduces and evaluates the proposed approach results. All operations of the 
proposed approach were implemented using Python and Keras (Chollet, 2015) and imple-
mented on Google Colaboratory (Carneiro et al., 2018). The results section is divided into 
four sub-sections so that the results of data preprocessing phase, optimization phase, train-
ing phase, model evaluation phase, and results explanation phase of the proposed approach 
are clearly presented.

5.1  Data preprocessing phase of AHA–XDNN

In addition to the statistical analysis performed for the dataset, as described earlier in 
Sect.  4.1, it was also important to use the correlation matrix heatmap. The correlation 
matrix heatmap can provide a visual representation of which features of a dataset are most 
closely correlated to each other. Because highly correlated features add a degree of redun-
dancy and also have an impact on the stability of any ML model. By examining the cor-
relations in the heatmap of the WQ dataset as seen in Fig. 4, it was observed that the fea-
tures of this dataset are not significantly correlated. The highest value of direct or positive 
correlation between the dataset’s features is only 0.62, and it is between “bacteria” and 
“viruses.” The highest value of inverse or negative correlation between the dataset’s fea-
tures is only -0.16, and it is between “cadmium” and “silver.”

5.2  Optimization phase of AHA–XDNN

The search space for FNn , SNn , Dr whose values will be figured out by AHA has been con-
strained as follows. The search range for FNn was restricted to [50, 1000], and the search 
range for SNn was restricted to [50, 1000]. The search space for Dr was restricted to [0.1, 
0.9], as shown in Table 3. The AHA hyper-parameters’ values were chosen at random, with 
population size and Nt tuned to 15 and 10, respectively. By experimenting with several val-
ues, Nt of 3-layer DNN model was determined. The results of the experiment revealed that 
the time of the optimization phase required significantly more time when more than ten 
iterations were employed. The results of the 3-layer DNN model were insufficiently precise 
when Nt of 3-layer DNN model was set to a value less than 10.

The AHA seeks to lower the three-layer DNN model’s loss rate on the validation set. In 
a more thorough explanation, after each iteration of the AHA, the appropriateness of the 
proposed solutions for the FNn , SNn , Dr is assessed based on the loss rate of the 3-layer 
DNN model on the validation set after training this model 10 iterations on the training 
set. When Nt of AHA reached 10, optimal values for FNn , SNn , and Dr were determined. 
Table 4 displays the optimal values for the FNn , SNn , and Dr determined by AHA, where 
the values for FNn , SNn , and Dr were determined to be 400, 350, and 0.2, respectively.
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Fig. 4  Correlation matrix heatmap of the WQ dataset. The color value of the right bar from highest to low-
est indicates that the features are not correlated

Table 3  The values given to 
the hyper-parameters of the 
AHA and 3-layer DNN model 
during the optimization phase. 
N
t
 = number of iterations

Parameters Assigned value

N
t
 of AHA 10

Population size 15
FN

n
[50,1000]

SN
n

[50,1000]
D

r
[0.1, 0.9]

N
t
 of 3-layer DNN model 10
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5.3  Training phase of the AHA–XDNN

At this phase, the three-layer DNN model was trained the hyper-parameter settings speci-
fied by AHA. With Nt = 100, the 3-layer DNN model employs the training set and valida-
tion set for training and assessment, respectively. To reduce the overfitting, the training 
procedure was pushed to end before Nt = K if no progress occurred after ten iterations. This 
dominance was carried out utilizing early stopping (Prechelt, 2012). Since the WQ dataset 
is a binary class classification problem, the three-layer DNN model was compiled using 
binary cross-entropy (Bosman et al., 2020). A step decay learning rate scheduler with ini-
tial value = 1e − 3 was applied to the Adam optimizer algorithm (Kingma & Ba, 2014; Sen-
ior et al., 2013).

5.4  Model evaluation and results explanation phases of AHA–XDNN

This section presents the AHA–XDNN approach’s outcomes. Accuracy, loss rate, pre-
cision, recall, and F1 score were utilized to gauge how well the proposed approach per-
formed. The proposed AHA–XDNN achieved 91% accuracy on the test set. The average 
precision, recall, and F1-score for the proposed AHA_XDNN on the test set are  91%, 
91.5%, and 91%, respectively. As depicted in Table 5, the precision, recall, and F1-score 
had identical macro- and weighted average values of 91%.

The proposed AHA–XDNN approach’s ability to correctly classify test samples, as 
well as the number of examples it was unable to correctly classify, was both determined 
utilizing a confusion matrix, as depicted in Fig. 5. In the confusion matrix, samples that 
were successfully classified into each class are represented by the dark-colored shaded 
cells. Samples misclassified for each class are shown as light-colored shaded cells in the 

Table 4  Optimum values of the 
3-layer DNN model’s hyper-
parameters determined by AHA

Hyper-parameters of 3-layer DNN model Optimal values

FN
n

400
SN

n
350

D
r

0.2

Table 5  Performance of the 
proposed approach AHA–XDNN 
on the test set

Precision (%) Recall (%) F1-score (%)

Class 0 94 88 91
Class 1 88 95 91
Average 91 91.5 91
Macro-average 91 91 91
Weighted average 91 91 91

Fig. 5  The confusion matrix gen-
erated by evaluating the AHA–
XDNN approach on the test set
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confusion matrix. It should be noted that addressing the imbalance in the dataset helped a 
lot in preventing the proposed AHA–XDNN from biasing the once-dominant category. The 
proposed AHA–XDNN approach misclassified 54 samples from the test set, where it clas-
sified 36 samples from class 0 as being within class 1 and classified 16 samples from class 
1 as being within class 0.

To interpret how the proposed AHA–XDNN determines to predict the test samples 
based on the input features’ contribution to the model’s performance, the SHAP analysis 
was used. As shown in Fig. 6, the SHAP summary plot demonstrates how each input fea-
ture impacts on the model performance. According to SHAP value, the input features in 
Fig. 6 are sorted so that a feature having the greatest influence on model’s performance is 
displayed at a higher place. The colored points represent the SHAP value for each sample 
in the test set. The gradation of the colored points represents the data’s actual value, rang-
ing from low values (blue) to high values (red). In other words, positive SHAP values are 
expressed by the red colored points as can be seen in Fig. 6, while negative SHAP values 
are expressed by the blue colored points. The SHAP plot offered an explanation of how 
input features affect the predictions of AHA–XDNN approach. For instance, aluminum is 
at the top of the figure, indicating that aluminum had the most influence on the predic-
tions. Therefore, from Fig. 6a, it can be explained that very low aluminum values tend to 
increase the prediction of the proposed approach for class 0. A higher value of ammonia 
was expressed by the red points on the right edge of Fig.  6a, indicating that the higher 
value of ammonia tends to increase the prediction of the proposed approach for class 0. 
On the contrary, a lower value of ammonia was represented by the blue points on the right 
edge of Fig. 6b, indicating that the lower value of ammonia tends to increase the prediction 
of the proposed approach for class 1.

SHAP analysis can also provide a detailed explanation of individual observations. The 
SHAP force plot can indicate exactly which features had the greatest influence on a model’s 

Fig. 6  SHAP summary plot. a Represents SHAP summery for class 0 and b represents SHAP summary for 
class 1
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prediction for a single observation. This is ideal for being able to explain exactly how the 
model made a specific decision for a single observation. Figure 7 shows two SHAP force 
plots, one for each target class in the WQ test set. The binary target is class 0 which indi-
cates that the water is not safe, and class 1 which indicates that the water is safe. Higher 
scores drive the model to predict class 0 and lower scores driving the model to predict 
1. In Fig. 7, features that are crucial for making the prediction of the randomly selected 
observation are displayed in red and blue. Red denoting the features impulses the model’s 
prediction score higher. Blue denoting the features impulses the model’s prediction score 
lower. The features that had a greater effect on the score are situated near the red-blue 
splitter boundary, and the magnitude of this effect is represented by the bar’s size. There-
fore, in Fig. 7a the proposed approach has been pushed to predict that the water is not safe 
(class 0) by the influence of the factors shown in red which are: nitrites, aluminum, copper, 
cadmium, selenium, chloramine, and radium, respectively. On the other side, in Fig.  7b 
the proposed approach has been pushed to predict that the water is safe (class 1) by the 
influence of the factors shown in blue which are: nitrites, aluminum, copper, cadmium, 
chloramine, and selenium, respectively. If the force plots of all the observations in the test 
set are combined, rotated 90°, and stacked horizontally, the combined force plot as shown 
in Fig. 8 will be obtained. As shown in Fig. 8, aluminum is the most influential feature in 
most but not all predictions.

The AHA–XDNN was contrasted with other published models that were introduced for 
the same aim of predicting WQ using the same dataset as utilized in this paper to ensure its 
performance. After examining all the literature reviewed in Sects. 1 and 2, it was found that 
there was only one model for predicting WQ using the same dataset as utilized in this paper 
(Rustam et  al., 2022). In (Rustam et  al., 2022), accuracy, precision, recall, and F1-score 
were the four metrics utilized to assess the proposed ANN model. As depicted in Table 6, 
the ANN model achieves higher accuracy than the proposed approach. But this is because 
the ANN model has been trained on the WQ dataset without being treated from the imbal-
ance issue. Since accuracy is not a good measure if the dataset is unbalanced, it is better to 
compare the AHA–XDNN’s performance and ANN model in terms of F1-score, precision, 
and recall measurements. These measurements should be high to indicate perfect classifi-
er’s performance. ANN model and the proposed approach AHA–XDNN achieved an equal 

Fig. 7  SHAP force plots. A SHAP force plot for a single observation of class 0 from the test set and B 
SHAP force plot for a single observation of class 1 from the test set
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average precision rate of 91%. ANN model achieved a low recall rate of 87% which means 
it has a higher number of false-negative predictions (water is safe but was incorrectly pre-
dicted as not safe). The proposed approach outperformed the ANN model, achieving an 
average recall rate of 91.5% and an average F1-score rate of 91%.

6  Conclusion and future work

Water is pivotal to sustainable development since it is required for social and economic 
growth, healthy ecosystems, and human life. WQ is vital to society and ecology, making 
it a significant aspect in reaching the SDGs. This paper presents an XAI approach called 
AHA–XDNN for predicting WQ. The proposed approach is split into five phases. The first 
is data preparation, which addresses issues in the used dataset such as undesired noise and 
imbalance. The second phase is the optimization phase, in which AHA is implemented 
to select the ideal values for the DNN model’s hyper-parameters, which have a signifi-
cant influence on its performance. The DNN model, optimized using AHA, is trained on 
the dataset in the third phase, which is the training phase. In the fourth phase, four meas-
urements are utilized to measure how well the optimized DNN model performs. These 
measurements are accuracy, recall, precision, and F1-score. On the test set, the proposed 
AHA–XDNN accomplished a competitive accuracy level of 91%. The results of the opti-
mized DNN model are explained using the most common XAI technique “SHAP” in phase 
fifth. SHAP measures the interplay between each parameter and the contribution to the 
final result, convincing the fundamental nature of the ML models. Furthermore, SHAP 

Fig. 8  SHAP force plot across all observations in the test set

Table 6  Performance assessment 
of the AHA–XDNN approach in 
comparison with existing models

Performance measurement Proposed AHA–
XDNN (%)

ANN model 
(Rustam et al., 
2022) (%)

Accuracy 91 96
Average precision 91 91
Average recall 91.5 87
Average F1-score 91 89
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offers the causality and an interpretation of the inner workings of proposed approach to 
increase end-user trust in AHA–XDNN’s decisions. These recent breakthroughs in inter-
pretable ML allow us to see inside the black box and explain how each observation’s pre-
diction works. Despite the promising results of DL-based methods in predicting WQ, the 
large number of features can negatively affect the performance of classifiers and make them 
more complex. As a future direction, the SHAP might be employed as a feature reduction 
tool, which would increase the accuracy of the proposed approach while reducing compu-
tational costs.
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