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Abstract
In recent years, due to the rapid growth of the world’s population, the demand for agricul-
tural products and food is growing increasingly. Therefore, the agricultural supply chain 
optimization has been grabbed by researchers to reduce food security concerns. On the 
other hand, the production amount of farmers is affected by various factors, including envi-
ronmental conditions. In this paper, a supply chain network is investigated by developing a 
Mixed-Integer Linear Programming (MILP) model to effectively improve economic objec-
tives under uncertainty. Then, a scenario-based robust optimization approach is employed 
to deal with the uncertainty. One of the novelities of our paper is considering weather 
conditions and economic fluctuations in different scenarios. The effectiveness of the pro-
posed mathematical model has been confirmed by a real case study of dates farms. Dates 
and its by-products have a significant role in GDP, job creation, export, and the creation 
of various packaging and processing. Moreover, three meta-heuristic algorithms includ-
ing Whale Optimization Algorithm (WOA), Particle Swarm Optimization (PSO), and a 
hybrid algorithm based on them (WOA–PSO) are adapted to deal with the NP-hardness 
of the problems. Moreover, the parameters of the proposed algorithms are improved by 
the Taguchi method, and to achieve more exact measurements, sensitivity analysis is per-
formed. Finally, the numerical results confirmed that the accuracy of the hybrid algorithm 
was between 1.9 and 2.8%. Therefore, this approach could be practical and efficient for 
solving large-sized problems. The obtained outcomes demonstrated that the planned model 
provides tactical considerations for the related managers.
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Abbreviations
ASC  Agricultural supply chain
MILP  Mixed-integer linear programming
PIs  Processing industries
WOA  Whale optimization algorithm
SCs  Sorting centers
DCs  Distribution centers
VIs  Valorization industries
PSO  Particle swarm optimization

1 Introduction

Nowadays, many countries consider agricultural supply chain (ASC) management an 
essential research topic (Roghanian and Cheraghalipour, 2019). Many researchers have dis-
tinguished the ASC from other products’ supply chains, due to their notable differences, 
such as corruption and different product qualities (Jolai, 2022). Moreover, the agriculture 
sector faces new challenges, such as an uncertain environment that complicates manage-
rial decision-making (Borodin et  al., 2016). According to Food and Agriculture Organi-
zation (FAO) in 2010, agricultural products have a significant role in GDP, job creation, 
export, and the creation of various packaging and processing industries (Seif et al., 2023). 
Recently, agriculture is also considered one of the major drivers of economic growth in 
many countries (Cheraghalipour et al., 2019). While a large portion of the harvested prod-
uct is consumed fresh, lower-quality products are used in the processing industry to make 
products such as juice, jam, jelly, powder, syrup, etc. (Oladzad et al., 2021). In addition, 
agricultural residues are rich in carbohydrates, making them a suitable feedstock to make 
a variety of value-added products (Oladzad et al., 2021). The agricultural products value 
chain includes production, processing, wholesaling, and retailing (Fatima et al., 2016) (see 
Fig. 1).

Due to the unique characteristics and the unstable environment of ASC, managers 
should consider the uncertainty in decision-making processes (Gholian-Jouybari et al., 
2023). In the real world, there are some uncertain paramerters such as fluctuations 
in the product price (Boronoos et al., 2021). The demand for agricultural products is 
strongly influenced by the price and quality of the product, and climate change also 

Fig. 1  Structure of agricultural 
products value chain (Fatima 
et al., 2016)
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has a significant effect on the farmer’s yield (Cheraghalipour and Roghanian, 2022). 
Besides, the production cost of this product could experience a high fluctuation rate 
during the cultivation period for its farmers (Rajabi-Kafshgar et al., 2023). Therefore, 
the demand for these products, their price, production cost, and the amount of har-
vested products are affected by environmental uncertainty. Considering the importance 
of environmental, economic, and social effects in the decision-making process, it is 
necessary to use analytical tools for quantitative evaluation of different options (Chera-
ghalipour et al., 2019).

Robust optimization is an appropriate and proven methodology for dealing with 
uncertainty. Mulvey et  al. (1995) used scenario-based robust optimization approach 
to predict the scenarios that date supply chain managers consider to predict future 
conditions. In this research, we attempt to present a robust model by considering sce-
nario-based stochastic programming, which optimize the robustness, by utilizing the 
variance of the objective function. However, the literature review shows a research gap 
in ASC optimization by using this approach. One of the innovations of this research 
is to design a supply chain for agricultural products and their by-products, consider-
ing uncertain weather conditions and economic fluctuations, which has been rarely 
investigated.

In this study, a Mixed-Integer Linear Programming model (MILP) is planned to opti-
mize the ASC supply chain’s profit. In order to fill the research gap mentioned above, 
some parameters are uncertain, including the demand, price, production cost, and the 
amount of the harvested crop. One of the novelities of our paper is considering weather 
conditions and economic fluctuations in different scenarios. A scenario-based robust 
technique is used to reduce the impacts of uncertainty. In addition, three meta-heuristic 
algorithms are employed as the solution methods, namely, Particle Swarm Optimization 
Algorithm (PSO), Whale Optimization Algorithm (WOA), and a new hybrid algorithm 
based on them (PSO–WOA). Furthermore, the validity of the proposed is checked using 
a real case study. Therefore, the novelities of this paper are presented in three significant 
aspects:

• Designing a supply chain network for agricultural products considering their by-
products.

• Developing a mathematical model to optimize total profit under uncertainty includ-
ing demand, weather conditions, and economic fluctuations in different scenarios.

• Presenting a hybrid meta-heuristic algorithm based on PSO and WOA to solve the 
planned model in large-sized scale.

This article is organized into six sections so that an overview of the literature related 
to the research background is provided in Sect. 2. The scenario-based robust approach is 
detailed in Sect. 3, and the proposed network and robust model are presented in Sect. 4. 
The solution methods and meta-heuristic algorithms are described in Sect.  5. Moreo-
ver, the evaluation of the planned model is checked on a real case of date fruit supply 
chain in Iran, and the model parameters are tuned. Moreover, the numerical results are 
analyzed in this section. Finally, conclusions and managerial insights are provided in 
Sect. 6.

As stated, the main goal of this research is to optimize an ASC under uncertainty. In 
this section, an introduction to this topic was given. In the next sections, the mathemati-
cal model used to optimize the objectives and its solution approach, and the obtained 
results will be stated and described.
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2  Literature review

Most recently, many researchers have proposed various mathematical models for opti-
mizing many agricultural products logistics (Shafiee Roudbari et  al., 2023). From the 
literature review, researchers can identify the barriers, enablers, and performance indi-
cators of ASC and propose different methodologies to enhance the ASC performance 
(Srikanta and Astajyoti, 2016). However, ASC management will be more complex due 
to unpredictable weather conditions, uncertainty in harvest yield, being perishable, and 
having characteristics like the seasonality of agriculture production (Aramyan et  al., 
2006).

The current research aims to study the ASC under uncertainty. Given that agricultural 
products are of economic importance in the countries that produce them, there are numer-
ous articles in the literature that evaluate and analyze agricultural products such as Cas-
tillo et  al. (2023), Chandrasekaran and Bahkali (2013), and Oladzad et  al. (2021); how-
ever, according to our knowledge, a few research studies have been performed proposing 
a mathematical model for optimizing the ASC under uncertainty. Therefore, some papers 
published in the scope of agricultural products are examined in two categories: papers in 
the scope of ASC and papers considering uncertainty in ASC optimization models.

2.1  ASC

In developing countries, ASC plays a vital role in social, economic, and environmental 
attitudes (Cheraghalipour et  al., 2018). So, operational mathematical approaches were 
improved the structure of this sector, since the late 1940s. In the first attempt to reveal this 
field, van Berlo (1993) planned a mathematical model for vegetable supply chain optimiza-
tion and used an objective programming approach for solving the model. Addressing the 
fresh food supply chain network was another research performed by Tsao (2013). In this 
paper, a mathematical model was planned for the optimal discovery of appropriate services 
for agricultural markets.

Ge et  al. (2016) studied the possibility of cost minimizing in wheat logistics by 
planning a simulation model in Canada. Mogale et  al. (2018) designed the food grain 
logistics network and presented a mathematical model to obtain optimal transporta-
tion, allocation, and capacity of silos in India. Cheraghalipour et al. (2018) designed a 
mathematical model for the citrus supply chain. In other research, Cheraghalipour et al. 
(2019) addressed the rice supply chain network and used meta-heuristic algorithms to 
optimize the chain’s costs. Furthermore, Anderson and Monjardino (2019) discussed 
arranging supply chain contracts, considering performance risk to reduce wheat prices 
in Australia. The results of their research showed that this arrangement is related to 
the risk aversion of farmers. Some meta-heuristics algorithms are employed to opti-
mize the chain’s costs. Salehi-Amiri et  al. (2021a, 2021b) formulated a new model to 
optimize walnut logistics costs. They used some hybrid meta-heuristics algorithms to 
solve the planned model. Computational results confirmed the supremacy of hybrid 
approach. Baratsas et al. (2021) presented a novel circular economy system engineering 
framework and decision-making tool for the modeling and optimization of food supply 
chains. Rajabi-Kafshgar et al. (2023) considered environmental impacts of agricultural 
wastes and proposed a MILP model for an agriculture supply chain network to minimize 
total costs. Some well-known meta-heuristic algorithms are used to solve their model. 



20811A mathematical model for the optimization of agricultural supply…

1 3

Gholipour et  al. (2023) presented an agricultural closed-loop supply chain aiming at 
minimizing the costs of supply chains and reducing the supply risks considering intel-
ligence technology.

2.2  Uncertainty in ASC

Since the production of agricultural products is affected by climatic conditions, and the 
market for agricultural products is susceptible to economic fluctuations, ASC managers 
should consider the uncertainty (Motevalli-Taher et  al., 2020). In many studies in the 
field of ASC optimization, uncertainty in the model has been considered. For example, 
Grillo et al. (2019) designed a model for optimizing the oranges supply chain in Spain. 
They used a triangular fuzzy method for managing uncertainty.

Carvajal et al. (2019) proposed an efficient model for managing the sugarcane logis-
tics, which included many operational and strategic choices for optimizing the facto-
ries’ profit. Also, a robust technique was applied to deal with the uncertain weather 
conditions in Colombia. Wang and Chan (2020) planned a combined decision model, 
in agricultural production systems.  Motevalli-Taher et al. (2020) developed a model to 
optimize wheat production considering sustainability aspects. Gilani and Sahebi (2021) 
proposed a bi-objective model to optimize total profit and minimize the pollutants in 
pistachio supply chain, considering uncertainity of demand and cost. In their research, 
a robust fuzzy optimization approach was used to handle uncertainty. Gholian-Jouybari 
et  al. (2023) addressed an ASC network considering marketing practices. A stochas-
tic mathematical model was formulated to optimize total costs and environmental fac-
tors under uncertainty. Some meta-heuristics algorithms were used to solve their model. 
D’Adamo (2022) used the analytic hierarchy process method to assign relevance to sus-
tainability criteria in ASC and proposed stakeholder engagement as an order winner for 
sustainable strategies.

3  Research gap

In this section, to identify the research gaps related to the agricultural logistics network, 
a brief overview of the past studies is reported in Table  1. Reviewing previous stud-
ies, we conclude that there are few researches focusing dates supply chain considering 
uncertainty. Moreover, employing robust approaches to deal with uncertainty especialy 
in environmental conditions in the scope of ASC is rarely seen. To fill the research gap, 
in this paper, a scenario-based robust optimization model is planned for ASC optimiza-
tion. The model’s objective is to obtain the maximum profit, considering uncertainty on 
some parameters. By solving this model, the optimal flow of products between facilities, 
inventory level, and the amount of by-products production will be determined in each 
period.
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4  Robust optimization

Several approaches are used to control the uncertainty in mathematical models by different 
researchers. The robust approach can help controlling system perturbations and is considered 
a reliable technique to tackle uncertainty (Sahinidis, 2004). There are two types of robustness: 
solution and model robustness. The solution stays near-optimal by considering the solution 
robustness type, and it is relatively achievable in a scenario set for the model robustness type. 
Before providing a robust model, we define two sets of variables:

x ∈ Rn1 : Design variables vector
y ∈ Rn2 : Control variables vector

The structure of the scenario-based robust optimization model is defined below:

Equation (2) represents the structural constraint, whose coefficients are constant and have 
no noise. Equation  (3) defines the control constraint with noise in the coefficients. Non-
negative vectors are maintained in Eq. (4). A series of scenarios including Ω = {1, 2, ..., S} 
are defined so that  ps is the chance of each scenario occurring and 

∑S

s=1
ps = 1 . In general, 

the scenario-based robust model is formulated as follows:

The model robustness principles are formulated in the second segment of the above objec-
tive function. It denotes that specific scenarios can result in inapplicable designs, based on an 
input parameter set, where ω means the scenario’s inapplicable weight (Safaei et al., 2017). 
Yu and Li (2000) proposed an appropriate formulation for this objective function’s first term, 
which is defined as below:

(1)MincTx + dTy

(2)Ax = b

(3)Bx + Cy = e

(4)x.y ≥ 0 and x ∈ Rn1;y ∈ Rn2

(5)min z = �
(
x.y1.y2.… .ys

)
+ � × Σ�

(
�1.… .�s

)

(6)Ax = b

(7)Bsx + Csys + �s = es, s ∈ Ω

(8)x ≥ 0 ⋅ ys ≥ 0, s ∈ Ω

(9)Minz =
∑

s∈S

ps�s + �
∑

s∈S

ps

[(
�s −

∑

s�∈S

ps��s�

)
+ 2�s

]

(10)�s −
∑

s∈S

Ps�s + �s ≥ 0
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5  Problem definition

Although, the production of agricultural products shows an increase in many countries, 
due to the inefficiency and lack of logistics management, vast amounts of these products 
are rotten. Therefore, optimal supply chain control with minimal loss of quantity and 
quality during transportation and production and its by-products is critical.

In this paper, a five-level supply chain network for agricultural products is desiged. 
Moreover, a MILP mathematical model for optimizing the chain’s profits is presented. 
The multi-period network includes farmers, sorting centers (SCs), distribution centers 
(DCs), processing industries (PIs), valorization industries (VIs), and markets (custom-
ers). As illustrated in Fig. 2, in the proposed network, farmers at the lowest level send 
their harvested products to the SCs for packaging in the harvest periods. Then, low- and 
high-quality products are sent to the DCs, and the rotten products are sent to the VIs 
for processing into various value-added products. The DCs can hold products for a lim-
ited time. Then, low-quality products are shipped to the PIs, and high-quality products 
are sent to the markets to meet customer’s demands. Moreover a portion of the stored 
products is rotten which is sent to the VIS. After that, PIs produce some kinds of by-
products, such as syrup and sent them to the markets. Moreover, the refined product 
residues such as seeds are sent to the valorization industries. It is assumed that all of the 
locations are fixed except for new PIs. The proposed model seeks to find optimum flows 
of products transferred between different facilities in each period under uncertainty of 
demand, price, production cost, and the amount of the harvested crop.

Fig. 2  The proposed supply chain for agricultural products
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5.1  Assumption

1. Both facility capacities and transportation costs are predetermined.
2. Each farmer sends its products to only one SCs.
3. The locations of all facilities are known, but some potential sites for opening new PIs 

are considered.
4. A time horizon of 1 year is considered.

5.2  MILP model

5.2.1  Indices

i ∈ I:  Index for farmers
j ∈ J:  Index for SCs
d ∈ D:  Index for DCs
n1 ∈ N1:  Index for current PIS
n2 ∈ N2:  Index for new PIS
n ∈ N = N1 ∪ N2:  Index for all PIs
q ∈ Q:  Index for the quality of products
c ∈ C:  Index for by-product types
m ∈ M:  Index for markets
v ∈ V:  Index for VIs
t ∈ T =

{
1.2… .t� … .t

}
:  Index for time periods

s ∈ S:  Index for scenarios

5.2.2  Parameters

fcn2:  Fixed cost of establishing PI n2
cpas

i
:  Production cost per unit for farmer i under scenario s

chad:  Holding cost for per unit of product by Dc d
cpccn:  Producing cost per unit of by-product c in the PI n
ctaij:  Shipping cost from farmer i to the PC j
ctbjd:  Shipping cost from SC j to the DC d
ctcjc:  Shipping cost from SC j to the VI c
ctgdm:  Shipping cost from DC d to PC m
ctkdv:  Shipping cost from DC d to VI v
ctfdn:  Shipping cost from DC d to PI n
cthnv:  Shipping cost from PI n to VI v
ctinm:  Shipping cost from PI n to market m
capcnt:  Production capacity of PI n for by-product c in time period t
capdd:  Holding capacity of DC d
capfn:  Holding capacity of PI n
as
i
:  Waste percentage of the harvested product by farmer i under scenario s

das
mt

:  Demand for fresh productwith by market m in period t under scenario s
dbs

cmt
:  Demand for by-product c by market m in time period t under scenario s
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cas
t
:  High-quality product price in period t under scenario s

ccs
t
:  By-product c price in period t under scenario s

M:  A big positive number
Ps:  The probability of occurrence of scenario s
�:  Waste percentage of the received product in SCs
�:  Waste percentage of held products in DCs
�c:  The conversion rate of low-quality product to by-product c

5.2.3  Decision variables

Xhaqjts:  Quantity of the product with quality q stored in DC d in period t under scenario s
Xaijt′s:  Quantity of the product transported from farmer i to SC j under scenario s in 

period t′
Xbqjdt′s:  Quantity of the product with quality q transported from SC j to DC d under sce-

nario s in period t′
Xgs

dmt′
:  Quantity of high-quality product transported from DC d to market m in period t′ 

under scenario s
Xf s

dnt
:  Quantity of low-quality product transported from DC d to PI n in period t under 

scenario s
Xcjvt′s:  Quantity of the rotten product shipped from SC j to VI v under scenario s in 

period t′
Xkdvt′s:  Quantity of the rotten product shipped from DC d to VI v under scenario s in 

period t′
Xhnvt′s:  Quantity of the rotten product shipped from PI n to VI v under scenario s in 

period t′
Xis

cnmt
:  Quantity of by-product c transported from PI n to markets m in period t under 

scenario s
�s:  Linearization variable under scenario s

5.2.4  Binary variables

Aiming at maximizing total profit, the objective function is defined as follows:

Wn2
=

{
1 if new PI n2 is estblished

0 otherwise

Vij =

{
1 if farmer i sends goods to SC j

0 otherwise
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The objective function (11) seeks to find the maximum profit, which includes the selling 
value of the product and by-products minus the shipping cost between facilities, the produc-
tion cost for farmers and PIs, the holding cost for DCs, and fixed opening costs. We present 
the model and constraints as follows:

5.2.5  Constraints

(11)

z =
∑

m∈M

∑

d∈D

∑

t∈T

cas
t
× Xgs

dmt
+
∑

c∈C

∑

p∈P

∑

t∈T

ccs
ct
× Xqs

cpt

−
∑

i∈I

∑

j∈J

∑

t�∈T

ctaij × Xas
ijt�

−
∑

j∈J

∑

d∈D

∑

t∈T

∑

q∈Q

ctbjd × Xbs
qjdt

−
∑

d∈D

∑

m∈M

∑

t∈T

ctgdm × Xgs
dmt

−
∑

d∈D

∑

n∈N

∑

t∈T

ctgdn × Xf s
dnt

−
∑

v∈V

∑

j∈J

∑

t�∈T

ctcjv × Xcjvt�s −
∑

d∈D

∑

v∈V

∑

t∈T

ctkdv × Xkdvt�s

−
∑

n∈N

∑

v∈V

∑

t∈T

cthnv × Xhnvts −
∑

c∈C

∑

n∈N

∑

m∈M

∑

t�∈T

ctinm × Xis
cnmt

−
∑

c∈C

∑

n∈N

∑

m∈M

∑

t∈T

cps
ct
× Xis

cnmt

−
∑

n2∈N2

fcn2 × wn2
+
∑

q∈Q

∑

d∈D

∑

t∈T

chad × Xhas
qdt

−
∑

i∈I

∑

j∈J

∑

t�∈T

cpas
i
× Xas

ijt�

(12)max z =
∑

s∈S

ps ⋅ z + � ×
∑

s∈S

ps

{
z −

∑

s∈S

ps ⋅ z + 2�s

}
− � ∗

∑

s∈S

�(s)

(13)mincapit� ≤
∑

j∈J

Xas
ijt�

≤
(
1 − as

i

)
× capit� ∀i ∈ I.t� ∈ T .s ∈ S

(14)
∑

i∈I

∑

t�∈T �

Xas
ijt�

=
∑

d∈D

∑

t∈T

∑

q∈Q

Xbs
qjdt

+
∑

v∈V

∑

t∈T

Xcs
jvt

∀j ∈ J.s ∈ S

(15)

Xhas
qdt

= Xhas
qdt−1

+
∑

j∈J

Xbs
qjdt

−
∑

m∈M

Xgs
dmt

−
∑

n∈N

Xf s
dnt

− �(s) ∀q ∈ Q, j ∈ J, s ∈ S, t, t� ∈ T

(16)
∑

j∈J

∑

q∈Q

∑

t�∈T �

Xbs
qjdt

=
∑

n∈N

Xf s
dnt

+
∑

m∈M

Xgs
dmt

− �(s) ∀d ∈ D, s ∈ S

(17)� ×
∑

i∈I

∑

t�∈T �

Xas
ijt�

=
∑

v∈V

∑

t∈T

Xcjvt�s − �(s) ∀j ∈ J.s ∈ S

(18)
∑

j∈J

Xkdvt�s = � × Xhas
qdt−1

− �(s) ∀q ∈ Q.d ∈ D, t ∈ T .s ∈ S

(19)
∑

j∈J

Xgs
dmt

=
∑

j∈J

∑

j∈J

Xis
cnmt

− �(s)

(20)
∑

d∈D

Xf s
dnt

=
∑

c∈C

∑

v∈V

(1 − �c) × Xhnvt�s − �(s) ∀n ∈ N.t ∈ T , s ∈ S
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Considering the product quality, constraint (13) guarantees that the amounts of trans-
ported products from farmers to DCs are between the minimum and maximum antici-
pated production rates. Constraint (14) ensures that the amount of product received in SCs 
should be equal to the amounts of product transported to the DCs under scenarios. Con-
straint (15) balances the inventory level in DCs. So, the stored product amount should be 
equal to the stored amount of the previous month and the quantity of received product 
minus the amount of product transported to DCs and Vis. Constraint (16), similar to the 
constraint (14), balances the flow in DCS. Constraints (17), (18), (19), (20), and (21) state 
that the amount of rotten product sent to the VIs is equal to the amount of received product 
multiplied by its conversion rate to waste. Constraint (21) states that the amount of by-
products shipped to the markets is equal to the amount of received product multiplied by 

(21)�c ×
∑

d∈D

∑

t∈T

Xf s
dnt

=
∑

m∈M

∑

t∈T

Xis
cnmt

− �(s) ∀c ∈ C.n ∈ N, t ∈ T , s ∈ S

(22)
∑

d∈D

∑

t∈T

Xf s
dn2t

≤ M × wn2
∀n2 ∈ N2.s ∈ S

(23)
∑

t�∈T

Xas
ijt�

≤ M × vij ∀j ∈ J, i ∈ I, s ∈ S

(24)
∑

j∈J

vij = 1 ∀i ∈ I

(25)
∑

m∈M

Xis
cnmt

≤ capccnt ∀c ∈ C, n ∈ N, t ∈ T .s ∈ S

(26)
∑

j∈J

∑

q∈Q

Xbs
qjdt

≤ capdd ∀d ∈ D, t ∈ T.s ∈ S

(27)
∑

j∈J

∑

q∈Q

Xf s
dn1t

≤ capfn1 ∀n1 ∈ N1.t ∈ T .s ∈ S

(28)
∑

j∈J

∑

q∈Q

Xf s
dn2t

≤ capfn2 × wn
2

∀n ∈ N2.t ∈ T .s ∈ S

(29)
∑

d∈D

Xgs
dmt

≥ das
mt

∀m ∈ M.s ∈ S.t ∈ T

(30)
∑

n∈N

Xis
cnmt

≥ dbs
cmt

∀c ∈ C.t ∈ T .s ∈ S,m ∈ M

(31)z −
∑

s�

ps� .z + �s ≥ 0 ∀s ∈ S

(32)Xaqijt� ,Xb
s
qjdt

,Xcs
jvt
,Xgs

dmt
,Xf s

dnt
,Xis

cnmt
,Xhas

qdt
≥ 0,wn2

, vij ∈ {0.1}
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its convertion rates to each by-products. We define constraint (22) ensures that the products 
are transported to new PIs, if it is opened. Constraint (23) allows shipping product to SCs, 
if the farmers decide to send to them. Constraint (24) ensures that each farmer sends its 
products to only one DC. Constraint (25) ensures that the amount of shipped by-products 
is limited to the maximum production rate under scenarios. Constraints (26), (27), and (28) 
ensure that the quantity of the transported product to the DCs and PIs should be less than 
or equal to their capacities. Constraints (29) and (30) ensure that the quantity of the trans-
ported product and its by-prodcuts to the markets should be more than or equal to their 
demands. Finally, we define a linearization constraint (31) with the robust model, and con-
straint (32) presents the type of decision variables.

6  Solution approach

In this paper, a MILP model was planned for maximizing total profit in ASC. Also, 
GAMS software is applied to achieve optimal solutions for problems with small-scale 
approximation. This software cannot solve large-scale problems, so we should use several 
effective meta-heuristics approaches to find the best solutions. Here, the proposed solu-
tion approaches with both encoding and decoding are detailed. In this respect, we employ 
WOA, PSO, and a new hybrid based on them (WOA–PSO) to find the best solution. The 
mentioned approach is detailed in the next section.

6.1  Encoding and decoding

In this study, we employ a priority-based encoding, using the presented approach in Gen 
et al. (2006) study, representing the solution as an array in implementing the meta-heuristic 
algorithms. In this method, an answer is displayed as a array with |K + J| cells, where K 
represents the number of origins, and J represents the number of destinations. Then, ran-
dom numbers between zero and one are generated, and after sorting, they are assigned to 
each cell as a priority (see Tables 2 and 3). At one of the supply chain network levels with 
four suppliers and three customers, encoding is based on a permutation of the number of 
nodes, as shown in this figure as 2–5–3–7–4–1–6. It has been shown that the priorities 
(4–1–6) are customer-related and (2–5–3–7) supplier-related. The following two steps must 
be taken to encoding.

Table 2  Capacity and demand and transportation costs

Transportation costs

Customer

Supplier Capcity Customer Demand Supplier 1 2 3

1 800 1 300 1 19.57 14.22 16.56
2 750 2 450 2 14.85 19.16 10.34
3 900 3 500 3 18.00 17.9 18.49
4 750 4 11.42 19.59 19.34
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6.1.1  Step 1

First, the largest priority among the selected suppliers (priority 7 to the fourth supplier), 
and if this supplier can meet all customer demand, the priority of the rest of the donation 
centers will be reduced to zero. In the example, the fourth supplier capacity is 850, while 
the total customer demand is 1050. In that case, the next supplier will be selected with the 
next largest priority (priority 5 to the second supplier). Now, the capacity of two suppliers 
(1600 amount) is greater than the total customer demand (1050 amount). In this case, the 
priorities of the first and third suppliers will be reduced to zero.

6.1.2  Step 2

After determining the number and location of suppliers, the optimal allocation is made 
between the selected suppliers and the customers. At this stage, the highest priority (prior-
ity 7 to the fourth supplier) is selected, and the lowest shipping cost associated with this 
supplier is identified (the first customer cost is 11.42) and the minimum amount of capacity 
selected, and customer determined as optimal allocation (minimum value is 300). Priority 
is reduced to zero after updating residual capacity or unmet demand. Repeat the second 
step until all values of all priorities are reduced to zero.

Examine a small-size case to evaluate the solutions, and how the proposed procedure 
can satisfy the constraints. Presume that the numbers of farmers, PCs, DCs, PIs, and VIs 
and markets be 2 1,1,2,1, and 1, respectively. The presented array is a twelve-row and 
i + 3j + 2d + 2m + 3n + v + 5 column matrix. As shown in Fig. 3, the proposed array consists 
of two parts; one part is related to the allocation sequence between levels, and another one 
corresponds to each scenario. Each row is related to one period ( t).

For clarification, segment 1 shows the amount of transported product from farmers to 
SPs in scenarios. After generating this array, the cells of this matrix are filled randomly, 
with some numbers in the interval [0, 1]. After ordering these numbers, we introduce a 

Table 3  The priority-based encoding in the example

Fig. 3  The schematic description of the presented array
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priority-based matrix and sort these numbers separately for each sub-segment, accord-
ing to Fig. 4. In addition, the corresponding sector of each scenario will be filled by dis-
crete numbers between [1, S]. Constraints (13), (14), and (23) can be satisfied accord-
ing to the allocation procedures of part 1 described in Fig. 5. Also, the inventory level 
can be controlled in DCs by allocation procedures of segment three described in the 
“Appendix.” The amount of inventory is recorded in another matrix and applied in the 
next period. Other constraints will be satisfied similarly.

Fig. 4  Proposed priority-based array of the first part in the first time period and random key

Fig. 5  Decoding procedure considering priority for part one
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6.2  Particle swarm optimization (PSO)

PSO is a meta-heuristics algorithm, based on the social behavior of birds’ flocks. In this 
algorithm, the particles move in the search space as a population of candidate solutions, 
which we obtain from basic mathematical formulas with respect to the velocity of the par-
ticle and its position, as below formulation. In every iteration, particles update their posi-
tion and velocity by Eqs. (33) and (34).

where Vij(t + 1) and xij(t) are the particle’s velocity and position, respectively.pij(t) is the 
individual local of best position, and gj(t) is the global best solution at that iteration. More-
over, W is the inertia weight factor, C1 and C2 represent the acceleration constants, and 
xij(t + 1) is the particle’s position in the next iteration. The process will continue till obtain-
ing the best possible solution in pij(t) and gj(t). Otherwise, we should update the particles’ 
velocity and position.

6.3  Whale optimization algorithm (WOA)

Mirjalili and Lewis (2016) created WOA by simulating the hunting process of humpback 
whales. Whales follow a spiral of bubble-net attacking mechanism while encircling prey 
during chasing. They make spiral form bubbles, encircle prey, and then pursue the bubbles. 
In the following subsections, the mathematical models of spiral bubble-net feeding maneu-
ver, circling prey, and prey scanning are discussed.

6.3.1  Encircling prey

The humpback whale searches to hunt the prey and then updates its spot according to the 
most suitable solution using the following equations:

where A and D are coefficient vectors, t is a current iteration, �����⃗X ∗(t) is the position vector 
of the best solution, and X(t) is the position vector in iteration t. The vectors A and D are 
computed according to the below formulation (Mirjalili and Lewis, 2016):

where a is a variable linearly reduced from 2 to 0 during the iterations, and r is a random 
vector in the interval [0, 1].

(33)Vij(t + 1) = W × Vij(t) + c1r1j(t)
[
pij(t) − xij(t)

]
+ c2r2j(t)

[
gj(t) − xij(t)

]

(34)xij(t + 1) = xij(t) + Vij(t + 1)

(35)D⃗ =
|||C ⋅ X⃗ ∗ (t) − X(t)

|||

(36)X⃗(t + 1) = �����⃗X ∗(t) − �⃗A ⋅ D⃗

(37)A⃗ = 2a⃗ × r − a⃗

(38)C⃗ = 2 × r
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6.3.2  Bubble‑net attacking method

This algorithm designs a mathematical model for the bubble-net behavior of humpback 
whales in two ways:

(a) Shrinking encircling mechanism: This strategy is defined by lowering the value from 
2 to 0 and specifying a randomized value for vector A in the interval [− 1, 1].

(b) Spiral updating position: This approach measures the related distance between the 
whale and the prey and gives a helix-shaped equation between them, as shown below:

where l is a random number in the interval [− 1, 1], and b is a constant that defines the 
logarithmic spiral shape.

���⃗D� = X⃗ ∗ (t) − X⃗(t) shows the distance between whale and prey, which means the best-
obtained solution so far. It is assumed that the whales choose to shrink encircling and the 
logarithmic path with the probability of Pe% and  1 − Pe% to update their positions, respec-
tively, and mathematically formulate as follows (Mirjalili and Lewis (2016)):

where p is a random number in the interval [0, 1].

6.3.3  Searching for prey

We can also use vector �⃗A to locate prey which can also take values greater than one or less 
than − 1. There are two prerequisites for the examination:

Throughout the iterations for updating the search agents’ position, a random search 
agent is chosen if |A|> 1, and the best solution is selected if |A|< 1 (Manzoor et al., 2018). 
The pseudo-code of this algorithm is presented in Fig. 20 in “Appendix.”

6.4  Hybrid approach

In the current study, a hybrid algorithm based on WOA and PSO meta-heuristic algorithms 
is presented to get better results. We use the formulas and operators of WOA and PSO 
algorithms to formulate the mentioned hybrid algorithm. The proposed algorithm begins 
with a population of candidate whales at random positions and corresponding velocities 
within the search space. They can memorize their positions and both pbest and gbest simi-
lar to the PSO algorithm. We perform WOA with several secondary sub-iterations for each 
prior iteration just before reaching the exploitation step. If the fitness of the leader whale is 

(39)X⃗(t + 1) = D⃗ × ebt × cos (2𝜋l) + X⃗(t)

(40)X⃗(t + 1) =

{
X⃗(t) − ��⃗A.D⃗ if p < 0.5

D⃗ × ebt × cos (2𝜋l) + X⃗(t) if p ≥ 0.5

(41)D⃗ =
|||C⃗ ⋅ X⃗rand − X⃗

|||

(42)X⃗(t + 1) = X⃗rand − �⃗A ⋅ D⃗1
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greater than the fitness of the gbest, the leader whale is awarded the WOA global best posi-
tion. Following that, tertiary sub-iteration starts with updating the location, velocity, pbest, 
and gbest using the PSO framework described by Eqs. (33) and (34). The gbest of WOA is 
assigned as the gbest of PSO during every tertiary sub-iteration. The fitness of the global 
best obtained by PSO and the best obtained by WOA is compared. If the global best fitness 
of PSO is greater than the global fitness of WOA, the global best position of WOA is allo-
cated to the global best position of PSO, and vise versa, before the primary iterations are 
completed. Figure 21 in “Appendix” illustrates the proposed flowchart of the WOA–PSO.

6.5  Computational experiments and results

Here, a real case study of dates industry in Iran is employed to justify the applicability 
of the planned model. Moreover, ten test problems are generated to examine the perfor-
mance of the model. Furthermore, a comparison is made between the obtained results 
from GAMS and the mentioned algorithms. Finally, a sensitivity analysis is performed to 
achieve a more exact measurement.

6.5.1  Case study

Here, the accuracy of the planned model is checked using a real case study in dates (date 
fruit) industry in Iran. Since 7000 years ago, date fruit has been one of the most valuable 
crops grown in subtropical and tropical regions and has been of great importance to farm-
ers (Chandrasekaran and Bahkali, 2013). South Asia, the Middle East, and Africa widely 
plant the date fruit (Oladzad et al., 2021). According to FAO, in some of its major produc-
ing countries, the production of this product has increased, which is shown in Fig. 6. Dates 
have a significant role in GDP, job creation, export, and the creation of various packaging 
and processing industries (Sarraf et al., 2021). Recently, palm growing is also considered 
one of the major drivers of economic growth in its producing countries. In addition, dates 
residues are rich in carbohydrates, making them a suitable feedstock for making a variety 
of value-added products (see Fig. 7). The dates garden, some fresh dates, date syrup, and 
DCs are shown in Fig. 8.

Fig. 6  Dates production per 
country (FAO)
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Iran is classified as the second producer of date fruit by FAO reports. To gather data, 
some cities in Kerman Province of Iran, namely, Bam, Jiroft, Narmashir, Fahraj, and Rigan 
are considered as farmers, SPs, and DCs. Moreover, some other cities of Iran are the cus-
tomer zones and current and new PIs ’ locations, which are presented in Figs. 9 and 10. 
As shown in Table 4, ten test problems are generated to evaluate the performance of the 

Fig. 7  Date palm fruit by-prod-
ucts and wastes

Fig. 8  Dates garden, fresh dates, date syrup, and DC

Fig. 9  Location of farmers, PCs, 
and DCs
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planned model. These test problems are classified based on the number of farmers (I), 
the number of SCs (J), DCs (D), PIs (N), markets (M), and VIs (V). The shipment costs 
between farmers and DCs are presented in Table  5. These costs are gathered from date 
farmers and correspond to distances between the mentioned cities and fare rates in Iran. 
Table 6 shows the other defined parameters of the proposed model.

Fig. 10  Markets, VIS, and PIs

Table 4  The generated test 
problems

Test I J D N M P

1 9 2 2 2 1 3
2 13 4 4 3 2 5
3 22 7 8 8 2 7
4 30 9 9 6 3 9
5 40 15 14 9 5 14
6 55 20 20 14 9 23
7 65 24 24 16 12 28
8 72 30 28 20 15 35
9 80 34 32 24 19 42
10 82 38 36 28 21 49

Table 5  Shipment cost between the DCs and location of customers (unit: Dollar per ton)

Tehran Isfahan Mashhad Shiraz Semnan Sari Tabriz Kermanshah Qom Hamedan

Bam 50 50 55 42.5 55 42.5 57.5 50 50 50
Narmashir 52.5 52.5 57.5 45 55 45 57.5 52.5 52.5 52.5
Jiroft 50 50 57.5 42.5 55 42.5 55 50 50 50
Fahraj 50 50 57.5 45 57.5 45 55 50 50 50
Rigan 52.5 52.5 60 45 55 45 57.5 52.5 52.5 52.5
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We consider three types of date by-products, including date cookie (c1) , date syrup (c2) , 
and date coffee (c3) which are produced in the current PIs and new ones. Table 7 shows the 
conversion rate of low-quality date fruit to by-product c. For example, 0.3 kg of low-quality 
date fruit is used for making 1 kg of date cookies. Also, Tables 8 and 9 present date fruit 
and its by-product prices in accordance with actual data in 2018 in Iran, respectively.

Four scenarios are defined based on the past data, considering price, demand, and waste 
percentage of harvested products as uncertain parameters. The increase or decrease in the 
parameters will be according to Tables 10 and 11, and we can assume future scenarios to 
fit one of the following four scenarios. In the first scenario, the production cost for farm-
ers is increased to 5% higher. The waste percentage of harvested products for farmers is 
between 10 and 20%, and the price is decreased by 8%. Due to the price reduction, con-
sumers’ demand values show an increase. In the other scenarios, we assume, the product 
price increases consequently, the demand will decrease as well. The occurring probability 
for each scenario is equal to 0.25.

Table 7  Conversion rate of low-
quality dates to by-product type c

c1: date cookie c2: date syrup c3: date coffee

Medium-quality dates 0.3 2 0. 46

Table 8  High-quality dates price 
in period t (unit: Dollar per 
kilogram)

t1, t2 t3, t4 t5, t6, t7, t8 t9, t10, t11, t12

High-quality dates price 0.85 0.875 0.9 0.925

Table 9  By-product c price 
in period t (unit: Dollar per 
kilogram)

t1, t2, t3, t4 t5, t6, t7 t8, t9, t10, t11, t12

c1: date cookie 1.025 1.05 1.05
c2: date syrup 1.1 1.2 1.125
c3: date coffee 1.125 1.155 1.175

Table 10  Percentage of increase 
in dates and by-products price in 
different scenarios

s1 (%) s2 (%) s3 (%) s4 (%)

cas
t

− 8 3 7 10
ccs

cpt
2 4 7 10

Table 11  Amount of post-harvest waste, product demand and by-products, and production costs in different 
scenarios

Parameter s1 s2 s3 s4

as
i

Uniform (0.1, 0.2) Uniform (0.2, 0.3) Uniform (0.3, 0.4) Uniform (0.4, 0.5)
das

mt
Uniform (750, 950) Uniform (650, 800) Uniform (600, 750) Uniform (550, 700)

dbs
cmt

Uniform (550, 650) Uniform (450, 550) Uniform (400, 500) Uniform (350, 450)
cps

i
Uniform (1800, 1900) Uniform (1900, 2000) Uniform (2000, 2100) Uniform (2100, 2200)
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6.5.2  Parameter tuning

In this sub-section, the Taguchi method is performed to obtain the mentioned algo-
rithms’ efficiency using parameter tuning. This method contains a few experiments to 
determine the optimum value of each parameter, instead of full factorial experiments 
(Cheraghalipour et  al., 2019). It employs orthogonal arrays to investigate many deci-
sion variables with fewer experiments (Cheraghalipour et al., 2018). This approach uses 
signal-to-noise (S/N) ratio, where the “signal” term implies the desired value and is 
the response component. Furthermore, "noise" refers to the adverse value, which is the 
standard deviation (Gharye Mirzaei et al., 2022). Consequently, the S/N ratio indicates 
the amount of variance in the response variable. Using Eq. (43), the S/N ratio should be 
optimized to the maximum value.

In this equation, Y and n represent the observed data and the number of observations, 
respectively (Cheraghalipour et al., 2019). This method also uses the relative percentage 
deviation (RPD) as the response variable and computes it as the following:

where Bestsol is the best solution among all solutions, and Algsol is the output of the algo-
rithm. Less value for RPD is desirable (Liao et al., 2020). A Taguchi design is created by 
identifying the specified level of the factors. Three levels are considered for each factor, 
which is presented in Table 12. Figures 11, 12, and 13 show these plots. For example, the 
best value of the max-iteration parameter in the PSO algorithm is 150. We can use these 
suitable levels for all test problems.

(43)SN = −10 log

�∑n

i=1
Y2

n

�

(44)RPD =
Bestsol − Algsol

Bestsol

Table 12  Algorithm parameters 
and their levels

Algorithms Parameter Parameter level Optimal value

Level 1 Level 2 Level 3

PSO Maxit 50 100 150 150
Npop 20 40 60 60
phi1 1.9 2 2.1 1.9
phi2 2.1 2.2 2.3 2.3

WOA Maxit 50 100 150 150
Npop 20 40 60 60
Pe 0.4 0.5 0.6 0.4

WOA–PSO Maxit 50 100 150 150
Npop 20 40 60 60
phi1 1.9 2 2.1 2.1
phi2 2.1 2.2 2.3 2.1
Pe 0.4 0.5 0.6 0.6
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6.5.3  Numerical results

To run the mentioned algorithms and test the proposed models, a PC with 4-GB RAM 
and 2.2-GHz CPU is used. Moreover, ten test problems 1–5 and 6–10 are generated 
as small- and medium-sized problems, respectively, and the efficiency of algorithms 
is investigated in terms of objective functions. Initially, the small-sized problems are 
solved by GAMS software, and then, the mentioned algorithms are encoded in MAT-
LAB software to solve the small- and medium-sized problems. The values of the objec-
tive function and CPU time of the mentioned algorithms are shown in Figs. 14, 15, and 

Fig. 11  SN ratio plot for PSO

Fig. 12  SN ratio plot for WOA



20832 M. Gharye Mirzaei et al.

1 3

16, respectively. According to the graphical solution, the hybrid WOA–PSO provides 
better results by investigating the objective function value.

Moreover, the relative percent deviation (RPD) is used to compare the obtained 
results by GAMS and mentioned algorithm in Tables 13 and 14. The gap between solu-
tions is between 1.9 and 2.8% for all test problems. Furthermore, PSO and WOA are 
faster regarding CPU time, as shown in Table 15 and Fig. 16.

Fig. 13  SN ratio plot for WOA–PSO

Fig. 14  The performance of 
algorithms in terms of the objec-
tive function

Fig. 15  Comparison of the objective values for meth-heuristics and GAMS
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6.6  Sensitivity analysis

Here, for further evaluation of the planned model, the sensitivity analysis has been done on 
two parameters including robustness weight coefficient and demand for the first test prob-
lem. The obtained results are presented in the following sub-sections.

6.6.1  Sensitivity analysis (robustness weight coefficient)

Here, the sensitivity of the variance effect factor ( � ) values on the proposed model is 
examined. In all experiments, it is assumed that the weight coefficient ( � ) is constant. 

Fig. 16  The performance of 
algorithms in terms of CPU time

Table 13  The obtained results with various algorithms in test problems

Test problem Best result (WOA) Best result (PSO) Best result (WOA–PSO) Gams

1 226,366.77 218,725.57 224,469.94 228,951.5
2 313,775.20 300,668.76 315,215.69 322,135
3 546,972.53 526,376.99 558,646.87 569,980
4 698,050.49 680,074.87 711,629.7 732,845
5 944,680.22 896,685.02 961,906.93 988,895
6 1,290,234.66 1,278,548 1,309,922.75 –
7 1,434,957.03 1,390,123 1,450,335.96 –
8 1,754,881.75 1,709,827 1,780,544.36 –
9 2,126,013.21 2,094,518 2,148,721.59 –
10 2,384,951.23 2,346,845 2,414,900.83 –

Table 14  The results obtained 
by algorithms in different test 
problems

Test problem RPD (WOA) RPD (PSO) RPD 
(WOA–
PSO)

1 0.011 0.044 0.019
2 0.025 0.051 0.02
3 0.040 0.076 0.019
4 0.047 0.059 0.028
5 0.044 0.067 0.027



20834 M. Gharye Mirzaei et al.

1 3

According to Sect. 3, a weight coefficient ( � ) is used to illustrate a trade-off between 
model robustness and the solution robustness in the objective function. When � is 
very large, the model cannot generate impossible solutions. Therefore, a large number 
is assigned to � in this research ( � = 500). The variance of the solution gains relative 
importance by � increasing. Figure  17 assesses the presented robust model with sev-
eral � values in the first test problem. As seen, the objective function increases with an 
increase in the � value.

6.6.2  Sensitivity analysis on demand

Here, sensitivity analysis has been done on the demand parameter. This experiment is 
performed under five cases in which the demand for a product decreases and increases 
by 10% and 20%, and the third state is consistent with the base case. The obtained 
results are displayed in Fig. 18, and according to this figure, as the demand increases by 
10%, the objective function also increases about 2%.

Table 15  The performance 
of algorithms in terms of 
computational time (min)

Test problem Time (WOA) Time (PSO) Time 
(WOA–
PSO)

1 106 102 231
2 187 180 463
3 249 243 602
4 332 324 778
5 409 402 972
6 522 517 1251
7 623 611 1623
8 719 711 1979
9 831 822 2240
10 1095 1089 2501

Fig. 17  Sensitivity analysis on 
the variance effect factor (landa)
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7  Conclusion, suggestions for future studies, and managerial insights

Agriculture is considered one of the major economic sectors for its producing countries and 
provides income and employment to their rural farmers. While the subject of supply chain 
network optimization of date fruit has rarely been explored in related literature, this paper 
addressed this issue and provided a framework for distributing this product and reusuing 
its by-product. In this paper, a three-level supply chain network was designed, in which the 
farmers and SPs were defined as the first and second levels. The third level was DCs for 
holding the products. Then, they sent the product to the PIs and VIs then to the markets for 
meeting customer’s demand. A MILP model was formulated to optimize total profit under 
uncertainty, and a scenario-based robust approach was used to handle uncertainty associ-
ated with production cost, demand, price, and wasted percentage of the harvested product. 
One of the novelities of our paper is considering weather conditions and economic fluc-
tuations in different scenarios. Also, an exact method and three meta-heuristic algorithms 
including PSO, WOA, and a new hybrid algorithm based on them, namely, WOA–PSO 
were utilized for solving the mentioned model, then their obtained results were compared.

Moreover, the Taguchi method was used for calibrating the parameters of the men-
tioned algorithms to achieve better results. A real-world case study in dates industry 
in Iran along with some test problems was applied for validating the effectiveness of 
the planned model. According to the obtained numerical results, the hybrid WOA–PSO 
showed the best results by investigating the objective function so that its results had a 
difference between 0.9 and 2.8% with the exact method. Therefore, this approach could 
be practical and efficient for solving large-sized problems.

7.1  Managerial insights

The outcomes demonstrated that the planned model provides tactical considerations for 
the related managers and an efficient plan for the date fruit logistics network. The find-
ings of this research in the areas of uncertainty in ASC can be stated as follows:

7.1.1  Uncertainty in ASC

Decision-making under uncertainty is one of the main issues of the agricultural sector. 
The management of agricultural production is confronted with weather conditions, inter-
regional disparities in climate, and quality of the soil. Moreover, the agricultural market is 
extremely sensitive to economic and financial fluctuations. The current research dealt with 
this issue and designed a supply chain network for dates industry and formulated a MILP to 
make strategic decisions about dates logistics under uncertainty.

Fig. 18  Sensitivity analysis on 
demand for dates
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7.2  Limitations and future studies

Although the main goal of this research was to design a general framework for the 
proper distribution of dates and its waste, it has many limitations. For example, sustain-
ability aspects were not addressed in the current research, which should be investigated 
in the future research due to its importance. Another issue is considering coordination 
decisions in the ASC, such as advertising and pricing, which have rarely received the 
attention of researchers. In addition, utilizing other methods for dealing with uncer-
tainty such as stochastic and fuzzy planning or other robust programming approaches 
can also be used for modeling this problem in uncertain environments. Finally, adding 
some topics such as operational risks, disruption, water resources, etc., to the proposed 
model and solving it with other heuristics or meta-heuristics methods can also motivate 
researchers in this field.

Appendix

See Figs. 19, 20, and 21.

Fig. 19  Decoding procedure considering inventory levels (part 3)
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Fig. 20  The pseudo-code of WOA

Fig. 21  The proposed flowchart of the hybrid WOA–PSO algorithm



20838 M. Gharye Mirzaei et al.

1 3

Data availability The data that support the findings of this study are available from the corresponding 
author.

Declarations 

Conflicts of interest All authors declare that they have no conflicts of interest.

References

Allaoui, H., Guo, Y., Choudhary, A., & Bloemhof, J. (2018). Sustainable agro-food supply chain design 
using two-stage hybrid multi-objective decision-making approach. Computers and Operations 
Research, 89, 369–384. https:// doi. org/ 10. 1016/j. cor. 2016. 10. 012

Anderson, E., & Monjardino, M. (2019). Contract design in agriculture supply chains with random yield. 
European Journal of Operational Research, 277(3), 1072–1082. https:// doi. org/ 10. 1016/j. ejor. 2019. 
03. 041

Aramyan, L. H., Kooten, O. V., & Lansink, A. O. (2006). Quantifying the agri-food supply chain. Quantify-
ing the Agri-Food Supply Chain. https:// doi. org/ 10. 1007/1- 4020- 4693-6

Baratsas, S. G., Pistikopoulos, E. N., & Avraamidou, S. (2021). A systems engineering framework for the 
optimization of food supply chains under circular economy considerations. Science of the Total Envi-
ronment, 794, 148726. https:// doi. org/ 10. 1016/j. scito tenv. 2021. 148726

Borodin, V., Bourtembourg, J., Hnaien, F., & Labadie, N. (2016). Handling uncertainty in agricultural sup-
ply chain management: A state of the art. European Journal of Operational Research, 254(2), 348–
359. https:// doi. org/ 10. 1016/j. ejor. 2016. 03. 057

Boronoos, M., Mousazadeh, M., & Torabi, S. A. (2021). A robust mixed flexible-possibilistic programming 
approach for multi-objective closed-loop green supply chain network design. Environment, Develop-
ment and Sustainability, 23(3), 3368–3395. https:// doi. org/ 10. 1007/ s10668- 020- 00723-z

Carvajal, J., Sarache, W., & Costa, Y. (2019). Addressing a robust decision in the sugarcane supply chain: 
Introduction of a new agricultural investment project in Colombia. Computers and Electronics in Agri-
culture, 157(December 2018), 77–89. https:// doi. org/ 10. 1016/j. compag. 2018. 12. 030

Castillo, A. B., Cortes, D. J. D., Sorino, C. F., Soriño, C. K. P., El-Naas, M. H., & Ahmed, T. (2023). 
Bioethanol production from waste and nonsalable date palm (Phoenix dactylifera L.) fruits: Potentials 
and challenges. Sustainability (switzerland). https:// doi. org/ 10. 3390/ su150 42937

Catalá, L. P., Moreno, M. S., Blanco, A. M., & Bandoni, J. A. (2016). A bi-objective optimization model for 
tactical planning in the pome fruit industry supply chain. Computers and Electronics in Agriculture, 
130, 128–141. https:// doi. org/ 10. 1016/j. compag. 2016. 10. 008

Chandrasekaran, M., & Bahkali, A. H. (2013). Valorization of date palm (Phoenix dactylifera) fruit process-
ing by-products and wastes using bioprocess technology: Review. Saudi Journal of Biological Sci-
ences, 20(2), 105–120. https:// doi. org/ 10. 1016/j. sjbs. 2012. 12. 004

Cheraghalipour, A., Mahdi, M., & Hajiaghaei-keshteli, M. (2019). Designing and solving a bi-level model 
for rice supply chain using the evolutionary algorithms. Computers and Electronics in Agriculture, 
162(May), 651–668. https:// doi. org/ 10. 1016/j. compag. 2019. 04. 041

Cheraghalipour, A., Paydar, M. M., & Hajiaghaei-Keshteli, M. (2018). A bi-objective optimization for citrus 
closed-loop supply chain using Pareto-based algorithms. Applied Soft Computing Journal. https:// doi. org/ 
10. 1016/j. asoc. 2018. 04. 022

Cheraghalipour, A., & Roghanian, E. (2022). A bi-level model for a closed-loop agricultural supply chain 
considering biogas and compost. Environment, Development and Sustainability. https:// doi. org/ 10. 1007/ 
s10668- 022- 02397-1

D’Adamo, I. (2022). The analytic hierarchy process as an innovative way to enable stakeholder engagement for 
sustainability reporting in the food industry. Environment, Development and Sustainability. https:// doi. org/ 
10. 1007/ s10668- 022- 02700-0

Essien, E., Dzisi, K. A., & Addo, A. (2018). Decision support system for designing sustainable multi-stake-
holder networks of grain storage facilities in developing countries. Computers and Electronics in Agricul-
ture, 147(May 2017), 126–130. https:// doi. org/ 10. 1016/j. compag. 2018. 02. 019

Fatima, G., Khan, I. A., & Buerkert, A. (2016). Socio-economic characterisation of date palm (Phoe-
nix dactylifera L.) growers and date value chains in Pakistan. Springerplus. https:// doi. org/ 10. 1186/ 
s40064- 016- 2855-4

https://doi.org/10.1016/j.cor.2016.10.012
https://doi.org/10.1016/j.ejor.2019.03.041
https://doi.org/10.1016/j.ejor.2019.03.041
https://doi.org/10.1007/1-4020-4693-6
https://doi.org/10.1016/j.scitotenv.2021.148726
https://doi.org/10.1016/j.ejor.2016.03.057
https://doi.org/10.1007/s10668-020-00723-z
https://doi.org/10.1016/j.compag.2018.12.030
https://doi.org/10.3390/su15042937
https://doi.org/10.1016/j.compag.2016.10.008
https://doi.org/10.1016/j.sjbs.2012.12.004
https://doi.org/10.1016/j.compag.2019.04.041
https://doi.org/10.1016/j.asoc.2018.04.022
https://doi.org/10.1016/j.asoc.2018.04.022
https://doi.org/10.1007/s10668-022-02397-1
https://doi.org/10.1007/s10668-022-02397-1
https://doi.org/10.1007/s10668-022-02700-0
https://doi.org/10.1007/s10668-022-02700-0
https://doi.org/10.1016/j.compag.2018.02.019
https://doi.org/10.1186/s40064-016-2855-4
https://doi.org/10.1186/s40064-016-2855-4


20839A mathematical model for the optimization of agricultural supply…

1 3

Ge, H., Nolan, J., Gray, R., Goetz, S., & Han, Y. (2016). Supply chain complexity and risk mitigation: A hybrid 
optimization—Simulation model. International Journal of Production Economics, 179, 228–238. https:// 
doi. org/ 10. 1016/j. ijpe. 2016. 06. 014

Gen, M., Altiparmak, F., & Lin, L. (2006). A genetic algorithm for two-stage transportation problem using 
priority-based encoding. Or Spectrum, 28(3), 337–354. https:// doi. org/ 10. 1007/ s00291- 005- 0029-9

Gharye Mirzaei, M., Goodarzian, F., Maddah, S., Abraham, A., & Abdelkareim Gabralla, L. (2022). Investi-
gating a dual-channel network in a sustainable closed-loop supply chain considering energy sources and 
consumption tax. Sensors, 22(9), 3547. https:// doi. org/ 10. 3390/ s2209 3547

Gholamian, M. R., & Taghanzadeh, A. H. (2017). Integrated network design of wheat supply chain: A real case 
of Iran. Computers and Electronics in Agriculture, 140, 139–147. https:// doi. org/ 10. 1016/j. compag. 2017. 
05. 038

Gholian-Jouybari, F., Hashemi-Amiri, O., Mosallanezhad, B., & Hajiaghaei-Keshteli, M. (2023). Metaheuris-
tic algorithms for a sustainable agri-food supply chain considering marketing practices under uncertainty. 
Expert Systems with Applications, 213(PA), 118880. https:// doi. org/ 10. 1016/j. eswa. 2022. 118880

Gholipour, A., Sadegheih, A., Mostafaei Pour, A., & Fakhrzad, M. (2023). Designing an optimal multi-objec-
tive model for a sustainable closed-loop supply chain: a case study of pomegranate in Iran. Environment, 
Development and Sustainability. https:// doi. org/ 10. 1007/ s10668- 022- 02868-5

Gilani, H., & Sahebi, H. (2021). Optimal design and operation of the green pistachio supply network: A robust 
possibilistic programming model. Journal of Cleaner Production. https:// doi. org/ 10. 1016/j. jclep ro. 2020. 
125212

Grillo, H., Alemany, M. M. E., Ortiz, A., & Baets, B. D. (2019). Possibilistic compositions and state functions: 
Application to the order promising process for perishables. International Journal of Production Research. 
https:// doi. org/ 10. 1080/ 00207 543. 2019. 15740 39

Jolai, F. (2022). A multi-objective optimization framework for a sustainable closed-loop supply chain network in 
the olive industry: Hybrid meta-heuristic algorithms A preprint accepted for publication in Expert Systems 
with Applications A multi-objective optimization fra. May. https:// doi. org/ 10. 1016/j. eswa. 2022. 117566

Liao, Y., Kaviyani-charati, M., Hajiaghaei-keshteli, M., & Diabat, A. (2020). Designing a closed-loop supply 
chain network for citrus fruits crates considering environmental and economic issues. Journal of Manufac-
turing Systems, 55(February), 199–220. https:// doi. org/ 10. 1016/j. jmsy. 2020. 02. 001

Manzoor, N., Koushik, L., Indronil, G., Saurav, C., Krishna, C., Baishnab, L., & Paul, P. K. (2018). HWPSO: A 
new hybrid whale-particle swarm optimization algorithm and its application in electronic design optimi-
zation problems.

Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 
51–67. https:// doi. org/ 10. 1016/j. adven gsoft. 2016. 01. 008

Mogale, D. G., Kumar, M., Krishna, S., & Kumar, M. (2018). Grain silo location-allocation problem with 
dwell time for optimization of food grain supply chain network. Transportation Research Part E, 111(June 
2017), 40–69. https:// doi. org/ 10. 1016/j. tre. 2018. 01. 004

Motevalli-Taher, F., Paydar, M. M., & Emami, S. (2020). Wheat sustainable supply chain network design 
with forecasted demand by simulation. Computers and Electronics in Agriculture, 178(August), 105763. 
https:// doi. org/ 10. 1016/j. compag. 2020. 105763

Mulvey, J. M., Vanderbei, R. J., & Zenios, S. A. (1995). Robust optimization of large-scale systems. Operations 
Research, 43(2), 264–281. https:// doi. org/ 10. 1287/ opre. 43.2. 264

Nadal-Roig, E., & Plà-Aragonés, L. M. (2015). Optimal transport planning for the supply to a fruit logistic cen-
tre. International Series in Operations Research and Management Science, 224, 163–177. https:// doi. org/ 
10. 1007/ 978-1- 4939- 2483-7_7

Oladzad, S., Fallah, N., Mahboubi, A., Afsham, N., & Taherzadeh, M. J. (2021). Date fruit processing waste and 
approaches to its valorization: A review. Bioresource Technology, 340(June), 125625. https:// doi. org/ 10. 
1016/j. biort ech. 2021. 125625

Paam, P., Berretta, R., Heydar, M., & García-Flores, R. (2019). The impact of inventory management on eco-
nomic and environmental sustainability in the apple industry. Computers and Electronics in Agriculture, 
163(June), 104848. https:// doi. org/ 10. 1016/j. compag. 2019. 06. 003

Paksoy, T., Pehlivan, N. Y., & Özceylan, E. (2012). Application of fuzzy optimization to a supply chain network 
design: A case study of an edible vegetable oils manufacturer. Applied Mathematical Modelling, 36(6), 
2762–2776. https:// doi. org/ 10. 1016/j. apm. 2011. 09. 060

Rajabi-Kafshgar, A., Gholian-Jouybari, F., Seyedi, I., & Hajiaghaei-Keshteli, M. (2023). Utilizing hybrid 
metaheuristic approach to design an agricultural closed-loop supply chain network. Expert Systems with 
Applications, 217(January), 119504. https:// doi. org/ 10. 1016/j. eswa. 2023. 119504

Roghanian, E., & Cheraghalipour, A. (2019). Addressing a set of meta-heuristics to solve a multi-objective 
model for closed-loop citrus supply chain considering  CO2 emissions. Journal of Cleaner Production, 
239, 118081. https:// doi. org/ 10. 1016/j. jclep ro. 2019. 118081

https://doi.org/10.1016/j.ijpe.2016.06.014
https://doi.org/10.1016/j.ijpe.2016.06.014
https://doi.org/10.1007/s00291-005-0029-9
https://doi.org/10.3390/s22093547
https://doi.org/10.1016/j.compag.2017.05.038
https://doi.org/10.1016/j.compag.2017.05.038
https://doi.org/10.1016/j.eswa.2022.118880
https://doi.org/10.1007/s10668-022-02868-5
https://doi.org/10.1016/j.jclepro.2020.125212
https://doi.org/10.1016/j.jclepro.2020.125212
https://doi.org/10.1080/00207543.2019.1574039
https://doi.org/10.1016/j.eswa.2022.117566
https://doi.org/10.1016/j.jmsy.2020.02.001
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.tre.2018.01.004
https://doi.org/10.1016/j.compag.2020.105763
https://doi.org/10.1287/opre.43.2.264
https://doi.org/10.1007/978-1-4939-2483-7_7
https://doi.org/10.1007/978-1-4939-2483-7_7
https://doi.org/10.1016/j.biortech.2021.125625
https://doi.org/10.1016/j.biortech.2021.125625
https://doi.org/10.1016/j.compag.2019.06.003
https://doi.org/10.1016/j.apm.2011.09.060
https://doi.org/10.1016/j.eswa.2023.119504
https://doi.org/10.1016/j.jclepro.2019.118081


20840 M. Gharye Mirzaei et al.

1 3

Safaei, A. S., Roozbeh, A., & Paydar, M. M. (2017). A robust optimization model for the design of a cardboard 
closed-loop supply chain. Journal of Cleaner Production. https:// doi. org/ 10. 1016/j. jclep ro. 2017. 08. 085

Sahinidis, N. V. (2004). Optimization under uncertainty: State-of-the-art and opportunities. Computers & 
Chemical Engineering, 28, 971–983. https:// doi. org/ 10. 1016/j. compc hemeng. 2003. 09. 017

Salehi-Amiri, A., Zahedi, A., Akbapour, N., & Hajiaghaei-Keshteli, M. (2021a). Designing a sustainable closed-
loop supply chain network for walnut industry. Renewable and Sustainable Energy Reviews, 141(January), 
110821. https:// doi. org/ 10. 1016/j. rser. 2021. 110821

Salehi-Amiri, A., Zahedi, A., Calvo, E. Z. R., & Hajiaghaei-Keshteli, M. (2021b). Designing a closed-loop sup-
ply chain network considering social factors; A case study on avocado industry. Applied Mathematical 
Modelling, 101, 600–631. https:// doi. org/ 10. 1016/j. apm. 2021. 08. 035

Sarraf, M., Jemni, M., Kahramanoğlu, I., Artés, F., Shahkoomahally, S., Namsi, A., Ihtisham, M., Brestic, M., 
Mohammadi, M., & Rastogi, A. (2021). Commercial techniques for preserving date palm (Phoenix dactyl-
ifera) fruit quality and safety: A review. Saudi Journal of Biological Sciences, 28(8), 4408–4420. https:// 
doi. org/ 10. 1016/j. sjbs. 2021. 04. 035

Seif, M., Yaghoubi, S., & Khodoomi, M. R. (2023). Optimization of food-energy-water-waste nexus in a sus-
tainable food supply chain under the COVID-19 pandemic: A case study in Iran. Environment, Develop-
ment and Sustainability. https:// doi. org/ 10. 1007/ s10668- 023- 03004-7

Shafiee Roudbari, E., Fatemi Ghomi, S. M. T., & Eicker, U. (2023). Designing a multi-objective closed-loop 
supply chain: A two-stage stochastic programming, method applied to the garment industry in Montréal, 
Canada. Environment, Development and Sustainability. https:// doi. org/ 10. 1007/ s10668- 023- 02953-3

Soto-Silva, W. E., González-Araya, M. C., Oliva-Fernández, M. A., & Plà-Aragonés, L. M. (2017). Optimizing 
fresh food logistics for processing: Application for a large Chilean apple supply chain. Computers and 
Electronics in Agriculture, 136, 42–57. https:// doi. org/ 10. 1016/j. compag. 2017. 02. 020

Srikanta, R., & Astajyoti, B. (2016). Agriculture supply chain: A systematic review of literature and implica-
tions for future. Journal of Agribusiness in Developing and Engineering Economics, 7(3), 275–302.

Tsao, Y. C. (2013). Designing a fresh food supply chain network: An application of nonlinear programming. 
Journal of Applied Mathematics. https:// doi. org/ 10. 1155/ 2013/ 506531

van Berlo, J. M. (1993). A decision support tool for the vegetable processing industry; An integrative approach 
of market, industry and agriculture. Agricultural Systems, 43(1), 91–109. https:// doi. org/ 10. 1016/ 0308- 
521X(93) 90094-I

Wang, M. Y. Z. X., & Chan, F. T. S. (2020). A decision support model based on the combined structure of 
DEMATEL, QFD and fuzzy values. Soft Computing. https:// doi. org/ 10. 1007/ s00500- 020- 04685-2

Yu, C. S., & Li, H. L. (2000). Robust optimization model for stochastic logistic problems. International Journal 
of Production Economics, 64(1), 385–397. https:// doi. org/ 10. 1016/ S0925- 5273(99) 00074-2

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable 
law.

https://doi.org/10.1016/j.jclepro.2017.08.085
https://doi.org/10.1016/j.compchemeng.2003.09.017
https://doi.org/10.1016/j.rser.2021.110821
https://doi.org/10.1016/j.apm.2021.08.035
https://doi.org/10.1016/j.sjbs.2021.04.035
https://doi.org/10.1016/j.sjbs.2021.04.035
https://doi.org/10.1007/s10668-023-03004-7
https://doi.org/10.1007/s10668-023-02953-3
https://doi.org/10.1016/j.compag.2017.02.020
https://doi.org/10.1155/2013/506531
https://doi.org/10.1016/0308-521X(93)90094-I
https://doi.org/10.1016/0308-521X(93)90094-I
https://doi.org/10.1007/s00500-020-04685-2
https://doi.org/10.1016/S0925-5273(99)00074-2

	A mathematical model for the optimization of agricultural supply chain under uncertain environmental and financial conditions: the case study of fresh date fruit
	Abstract
	1 Introduction
	2 Literature review
	2.1 ASC
	2.2 Uncertainty in ASC

	3 Research gap
	4 Robust optimization
	5 Problem definition
	5.1 Assumption
	5.2 MILP model
	5.2.1 Indices
	5.2.2 Parameters
	5.2.3 Decision variables
	5.2.4 Binary variables
	5.2.5 Constraints


	6 Solution approach
	6.1 Encoding and decoding
	6.1.1 Step 1
	6.1.2 Step 2

	6.2 Particle swarm optimization (PSO)
	6.3 Whale optimization algorithm (WOA)
	6.3.1 Encircling prey
	6.3.2 Bubble-net attacking method
	6.3.3 Searching for prey

	6.4 Hybrid approach
	6.5 Computational experiments and results
	6.5.1 Case study
	6.5.2 Parameter tuning
	6.5.3 Numerical results

	6.6 Sensitivity analysis
	6.6.1 Sensitivity analysis (robustness weight coefficient)
	6.6.2 Sensitivity analysis on demand


	7 Conclusion, suggestions for future studies, and managerial insights
	7.1 Managerial insights
	7.1.1 Uncertainty in ASC

	7.2 Limitations and future studies

	Appendix
	References




