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Abstract
Understanding spatial and temporal characteristics and driving factors of ecological sen-
sitivity are an essential prerequisite for effectively managing environmental changes and 
steering the rational use of land resources. This study employed the Analytic Hierarchy 
Process and Coefficient of Variation methods to calculate the weights of ten indicators 
from 2000 to 2018. Then, spatiotemporal change patterns of ecological sensitivity along 
the Sichuan–Tibet Railway were analyzed. At the same time, four individual parameters, 
including soil erosion, land use status, topographic factors, and climate conditions, were 
evaluated to create a multi-perspective understanding of the entire ecological sensitivity. 
The key factors affecting ecological sensitivity were explored through a geographic detec-
tor model. The results indicate that the ecological sensitivity along the Sichuan–Tibet Rail-
way is predominantly high or moderate, with higher sensitivity observed in the western 
regions and lower sensitivity in the eastern regions. From 2000 to 2018, the ecological 
environment showed a trend of deterioration, and the spatial and temporal distribution 
patterns of the four parameters are closely related to the extensive ecological sensitiv-
ity. Based on the GeoDetector results, the spatial distribution of ecological sensitivity is 
mainly related to digital elevation model, precipitation, and air temperature. The interac-
tion between different factors can enhance the effect on ecological sensitivity. The interac-
tion between precipitation and Vegetation Coverage (FVC) has the largest effect.

Keywords  Ecological sensitivity · Spatiotemporal heterogeneity · Driving factors · 
Geographic detector model · Sichuan–Tibet railway

1  Introduction

In the context of the composite system encompassing resources, environment, and 
development, the ecosystem plays a crucial role in supporting human existence and 
societal development (Duan et al., 2020; Viikari, 2004). Ecological sensitivity refers to 
the extent to which an ecosystem is susceptible to or responsive social or environmental 
changes (Shi et al., 2018; Tsou et al. 2017a). It is an effective and comprehensive meas-
ure of an ecosystem’s self-regulation (Zhang et  al., 2012). Regions with higher levels 
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of ecological sensitivity are typically more vulnerable to disturbances and exhibit lower 
resilience, whereas regions with lower ecological sensitivity tend to be more resistant 
to such changes (Duan & Wu, 2005). Achieving sustainable use of ecosystems requires 
striking a balance between exploitation and protection (Gao et al., 2010; Ouyang et al., 
2000). Therefore, it is necessary to investigate ecological sensitivity that can provide an 
important basis to avoid further deterioration of an ecological environment (Fan et al., 
2019; Miles et al., 2001; J. Wang et al., 2018).

Over time, ecological sensitivity research has undergone significant development, 
with an increasing focus on theoretical deepening and enriching content. The spatial 
scales incline to be diversified, such as parks, mountains, industrial parks, watersheds, 
and plains (Chi et al., 2019a; Su et al., 2021; Tsou et al. 2017b). Ecological sensitivity 
evaluation is also closely related to land carrying capacity (Wu & Hu, 2020), ecologi-
cal land analysis (Beroya-Eitner, 2016), and nature reserve planning (Briceño-Elizondo 
et al., 2006). Research scale mainly involves national, provincial, and municipal areas 
and tends to be microscopic (Wang et  al. 2016; Xiong et  al. 2018). Previous research 
on a national scale mainly focused on eco-environmental issues from a comprehensive 
assessment perspective (Jagtap et al., 2003; Liu & Zhang, 2011). Those at the provin-
cial scale of associated research are also gradually deepening (Peng & Deng, 2021). 
However, studies conducted at the municipal and county level are still in the developing 
stage (Dong et al., 2022; Tong & Shi, 2020). Research methodology of ecological sensi-
tivity has evolved from the early traditional, isolated, and one-sided evaluation method 
to the multifactor comprehensive research (Chi et al., 2019b; Modica et al., 2021; Wil-
liams et al., 2022). Through a comprehensive review and analysis of relevant literature, 
we identified a limited number of quantitative studies investigating the interaction of 
driving factors on ecological sensitivity, particularly regarding the plateau ecosystem 
along the Sichuan–Tibet Railway, which has not received sufficient attention.

As the “Third Pole” of the world, the Qinghai–Tibet Plateau has faced multiple 
threats over the past decades. In addition, climate changes, land use and management, 
and excessive logging have caused desertification and grassland degradation in the 
regional ecological environment (Li & Song, 2021). The Sichuan–Tibet Railway Pro-
ject implemented in the Tibet Plateau is one of the most well-known projects in China. 
Once the railway is in operation, anthropological driving factors coupling with natu-
ral elements might exert profound impact on the local ecosystem in the surrounding 
areas radiating from the railway lines. For ecosystems in those radiating areas in the 
Tibet Plateau, the spatiotemporal characteristics of ecological sensitivity and its driv-
ing mechanisms remain unknown. To meet the demands of ecological restoration and 
sustainable development associated with railway construction, it is necessary to evalu-
ate ecological sensitivity and driving forces in the ecosystems along the Sichuan–Tibet 
Railway. Such studies will provide crucial insights for balancing economic development 
and environmental preservation in this region.

The primary objective of this study is to explore the spatiotemporal characteristics of 
ecological sensitivity and the impacts of eight selected factors: land use (LU), saliniza-
tion index (SRSI), air temperature (TEM), precipitation (PRE), population density (PD), 
digital elevation model (DEM), relief amplitude (RA), and vegetation coverage (FVC). 
Three questions will be investigated: (1) What is the overall ecological sensitivity in 
the various counties along the Sichuan–Tibet Railway?(2) What is the spatiotemporal 
distribution pattern? and (3) What are the key drivers influencing changes in ecological 
sensitivity?
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2 � Materials and methods

2.1 � Study area

The Sichuan–Tibet Railway is one of the key transportation construction projects in Chi-
na’s 13th Five-Year Plan. It is divided into three sections: Chengdu-Kangding Railway, 
Kangding- Nyingchi Railway, and Nyingchi-Lhasa Railway. Our study area includes 21 
counties along the railway from Ya ’an (Sichuan Province) to Nyingchi (Tibet) at a length 
of 1011 km (Fig. 1). Climate zones along the railway range from the subtropical humid 
climate zone of the Sichuan basin to the sub-temperate humid and sub-arid zone of the 
Qinghai-Tibet plateau. Annual rainfall is between 400 and 1900 mm, with the maximum 
air temperature in summer and minimum air temperature in winter of 40 °C and −20 °C, 
respectively (Li et  al. 2017). High mountains and deep valleys are widely distributed 
along the railway, and the spatial difference in natural environment is obvious, with an 
elevation difference of more than 4000 m. The main landscape types in the area along the 
Sichuan–Tibet Railway include grassland, shrub, forest, and wetland. Yucheng District, 
located in the Ya’an city of Sichuan Province, is the only "eco-climate city" in China with 
a forest coverage rate of 74.96% (Peng et  al., 2010). The Chinese government strives to 
protect the ecological environment along the railway. An ecological sensitivity study is of 
great significance for regional sustainable development.

2.2 � Data sources

2.2.1 � Remote sensing data

For the land use (LU) classification, we utilized Landsat 5 TM images of 2000 and 2010, 
as well as Landsat 8 OLI images of 2018 obtained from the United States Geological Sur-
vey. Before performing the classification, the remote sensing data underwent preprocess-
ing steps, including radiometric and geometric corrections, atmospheric correction, and 
orthorectification. The supervised classification technique of maximum likelihood classi-
fier algorithm is used to generate LU maps. This method is widely used for land cover 
classification due to its ability to distinguish between different land cover types. Prior 

Fig. 1   Location of the study area
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physiographical knowledge of the study area, along with supportive ancillary data and 
national classification standards, guided the identification of six LU classes, namely cul-
tivated land, woodland, grassland, water, residential land, and unused land. We employed 
the maximum likelihood classifier algorithm for land use classification, considering prior 
knowledge of the study area, ancillary data, and national classification standards. Specific 
band combinations were selected based on their spectral characteristics and ability to dif-
ferentiate the land covers of interest.

1.	 Cultivated land: To identify cultivated land, Landsat 5 TM utilizes a combination of 
Band 4 (Red), Band 3 (Green), and Band 2 (Blue), while Landsat 8 OLI utilizes Band 6 
(SWIR 1), Band 5 (Near-Infrared), and Band 2 (Blue). The red and green bands capture 
higher reflectance in cultivated areas, while the blue band aids in distinguishing different 
land cover types. The inclusion of SWIR1 in Landsat 8 OLI enhances the differentiation 
of cultivated areas.

2.	 Woodland: Both Landsat 5 TM (Band 4, Band 5, Band 3) and Landsat 8 OLI (Band 5, 
Band 4, Band 3) employ a combination of red, near-infrared, and green bands to identify 
woodland areas. Woodlands display higher reflectance in the near-infrared spectrum and 
relatively lower reflectance in the red and green bands due to vegetation absorption and 
reflection patterns.

3.	 Grassland: By combining different bands, such as red, green, and blue (TM: Band 4, 
Band 3, Band 1; OLI: Band 5, Band 4, Band 2), grassland can be distinguished from 
other land cover types. This combination captures the relatively higher reflectance in 
the red and green bands and lower reflectance in the blue band, which are characteristic 
of grasslands.

4.	 Water: The identification of water is accomplished through the combination of red, 
green, and blue bands in both Landsat 5 TM (Band 4, Band 3, Band 2) and Landsat 8 
OLI (Band 5, Band 6, Band 4). Water exhibits lower reflectance in the red band and 
higher reflectance in the near-infrared and shortwave infrared bands, making this com-
bination effective in identifying water bodies.

5.	 Residential land: To identify residential land, both Landsat 5 TM (Band 7, Band 4, Band 
3) and Landsat 8 OLI (Band 7, Band 6, Band 4) utilize a combination of shortwave infra-
red, red, and green bands. The unique reflectance properties of built-up areas, including 
rooftops and paved surfaces, are captured by the shortwave infrared band, while the red 
and green bands provide additional information for distinguishing residential areas.

6.	 Unused land: By utilizing a combination of red, near-infrared, and shortwave infrared 
bands (TM/OLI: Band 4, Band 5, Band 7), unused or unutilized land areas can be identi-
fied. This combination takes advantage of the relatively uniform reflectance character-
istics exhibited by unused land compared to other land cover types.

By selecting these specific bands, we maximized the discriminative power of the clas-
sification algorithm, allowing for accurate identification and mapping of the land covers 
of interest. To verify the accuracy of the LU classification, we compared the results with 
high-resolution images from Google Earth for the corresponding years. Furthermore, an 
accuracy assessment was conducted using ERDAS IMAGINE software, which involved 
comparing the classified map with ground truth data obtained from field surveys or exist-
ing land cover datasets.

Normalized difference vegetation index (NDVI) and surface reflectance products pro-
vided by the National Aeronautics and Space Administration Data Center were used to 
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compute ecological sensitivity indicators. MODIS NDVI product (MOD13A1) was gener-
ated every 16 days with a spatial resolution of 250 m. We extracted vegetation coverage 
index of vegetation (FVC) growth season (June to August) using the pixel binary model 
(Ge et  al., 2018). The MOD09A1 (8  Day) product with a spatial resolution of 500  m 
was used to compute land salinization index (SRSI). Prior to the computation, the sur-
face reflectance data underwent radiometric and atmospheric corrections to ensure accu-
rate and consistent results. Radiometric correction adjusted the pixel values to account for 
sensor-specific characteristics and atmospheric interference, while atmospheric correc-
tion removed atmospheric effects that could affect the accuracy of the salinization index 
calculation.

2.2.2 � Meteorological data

Numeric-formatted meteorological datasets (daily air temperature (TEM) and precipita-
tion (PRE)) from 2000 to 2018 were obtained from the China Meteorological Science Data 
Center (http://​data.​cma.​cn). Selected meteorological stations are distributed throughout the 
study area and surrounding regions. Spatial distribution maps of air temperature and pre-
cipitation for 2000, 2010, and 2018 were obtained by inverse distance weight interpolation 
using ArcGIS software. The average annual rainfall erosivity (R) was calculated following 
Zhang and Fu (2003).

2.2.3 � Other data sources

The Digital Elevation Model (DEM) derived from Shuttle Radar Topography Mission 
(SRTM) data, which provides elevation information at a resolution of 90 m. The SRTM 
data are collected by radar sensors onboard the space shuttle, enabling the generation of 
digital elevation models for large areas. After undergoing data fusion, correction, outlier 
removal, and cropping preprocessing, the SRTM data yield terrain data that are more pre-
cise and dependable. Subsequently, various terrain-related parameters, including slope, 
aspect, and relief amplitude (RA), are calculated to offer supplementary insights into the 
topography and its distinctive features.

Soil type data were extracted from Harmonized World Soil Database v1.2, which is a 
raster database with a spatial resolution of 30 arc-seconds (1 km). Soil properties include 
soil organic carbon content, sand, silt, and clay content. The specialized population density 
(PD) datasets from 2000 to 2018 were provided by WorldPop (https://​www.​world​pop.​org/) 
at a resolution of 30 arc-seconds.

There are variations in the data sources and spatial accuracy of the datasets employed. 
To ensure consistency and comparability, all the aforementioned datasets were standard-
ized to the WGS_1984_UTM projection and resampled to a resolution of 500 m.

2.3 � Research methods

2.3.1 � Establishment of an indicator system for ecosystem sensitivity assessment

Ecological conditions are distinct in different regions. Due to the various definitions used 
in different disciplines, there is currently no international standard or rule to evaluate eco-
logical sensitivity. Considering data acquisition, environmental characteristics, spatial res-
olution, etc., ten indices from soil erosion (rainfall erosivity, soil texture), land status (land 

http://data.cma.cn
https://www.worldpop.org/
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use and vegetation coverage), topographic factors (elevation, slope, and aspect), and cli-
mate conditions (Annual mean air temperature and precipitation) were employed to estab-
lish an evaluation index system (Table 1). All indicators were divided into five levels from 
insensitive to extremely sensitive, with scores assigned as 1, 3, 5, 7, and 9, respectively.

2.3.2 � Determination of weights of the indices

Analytic hierarchy process (AHP) can evaluate the longitudinal control of an index layer, 
but has difficulty in reflecting internal and horizontal structure control of each single fac-
tor. Quantification of the weight of each factor is subjective. The coefficient of variation 
(CV) method can reveal the relationship between the internal and horizontal structure and 
each factor, eliminating effectively inherent subjectivity of an analytic hierarchy process. In 
particular, indicators of greater differences can better reflect the gap between the evaluated 
units. Therefore, the weight (Table 1) exhibits notable objectivity by combining AHP and 
CV. The expression is as follows:

Average and standard deviation of each indicator layer are:

Coefficient of variation of each indicator layer is:

Weight of each evaluation factor is:

where i is the evaluation index, and j is the evaluation index factor. n is the number of 
indicators. Ai andi are the average value and standard deviation of each index layer, respec-
tively. Vi is the coefficient of variation, Pi is the weight of each factor, and Fi is the compre-
hensive weight of ecological sensitivity.

2.3.3 � Assessment of ecological sensitivity

With geographic information system (GIS) technology, we can map the comprehensive 
ecological sensitivity index by combining all assessment indices as shown in Eq. 5:

where X is the comprehensive ecological sensitivity, n is the number of indexes, Wi is the 
weight of index i, and ui is the ecological sensitivity of index i. The larger the X is, the 
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higher the level of ecological sensitivity will be, and vice versa. Based on the provisional 
regulations on ecological function regionalization—Technical Guide for Delineating Eco-
logical Function Red Line, and other relevant norms and standards, the evaluation results 
were divided into five levels: ecologically insensitive area, mildly sensitive area, moder-
ately sensitive area, highly sensitive area, and extremely sensitive area (Table 2).

2.3.4 � Driving force analysis of ecological sensitivity

A geographic detector model can quantitatively explore driving mechanisms of geographi-
cal phenomena without any restrictions or hypothesis in terms of variables (Li et al., 2013; 
Onozuka & Hagihara, 2017; Ren et al., 2014). This model includes factor detector, ecolog-
ical detector, risk detector, and interaction detector. In this study, factor detector and inter-
action detector were applied to analyze the driving factors of ecological sensitivity. Factor 
detector can quantitatively identify the explanatory capability of independent variable X for 
dependent variable Y with the q-value. And the interaction detector can detect the interac-
tive effects of two explanatory variables X1 and X2 on Y. We opted for eight indices, DEM, 
RA, LU, TEM, PRE, FVC, SRSI, and PD as the independent variables (influence factors) 
and the comprehensive ecological sensitivity index as the dependent variable for the geo-
graphic detector model.

3 � Results and analysis

3.1 � Spatiotemporal variation characteristics in ecological sensitivity

In general, the ecological sensitivity of the Sichuan–Tibet Railway has an obvious geo-
graphical spatial variation (Fig. 2a–c). The region with highly sensitive and extremely sen-
sitive levels were macroscopically scattered and locally concentrated. The extremely sensi-
tive areas are distributed in the western regions (e.g., Bomi and Basu counties) along the 
Sichuan–Tibet Railway. In these areas, the surface structure is simple, soil erosion is seri-
ous, resulting in poor ecological environment quality. The highly and moderately sensitive 
areas were distributed widely, covering more than 50% of the study area. Regions with a 
moderately sensitivity level were clustered around lightly and insensitive areas. Highly and 
moderately sensitive areas are mainly located in the central regions and western regions 

Table 2   Classification of ecologically sensitive areas

Category Extremely 
sensitive

Highly sensitivity Moderate sensitiv-
ity

Lightly sensitivity Insensitivity

Soil erosion  ≥ 4.7 3.8 ~ 4.7 3.2 ~ 3.8 2.5 ~ 3.2  ≤ 2.5
Land use Status  ≥ 6.3 5.3 ~ 6.3 3.5 ~ 5.3 2.4 ~ 3.5  ≤ 2.4
Topographic factor  ≥ 7.0 5.8 ~ 7.0 5.2 ~ 5.8 4.1 ~ 5.2  ≤ 4.1
Climatic condition  ≥ 8.3 6.8 ~ 8.3 4.7 ~ 6.8 3.0 ~ 4.7  ≤ 3.0
Comprehensive 

assessment
 ≥ 6.4 5.8 ~ 6.4 5.3 ~ 5.8 4.7 ~ 5.3  ≤ 4.7

Hierarchical value 9 7 5 3 1
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(e.g., Milin, Luolong, and Baiyu counties). The areas with light and intensive sensitivity 
are located in the eastern regions (e.g., Litang, Yajiang, Kangding, and Yingjing counties).

From 2000 to 2018, the study site was dominated by areas of moderately sensitive, 
highly sensitive, and extremely sensitive. Taking year 2018 as an example, areas of these 
three levels accounted for 28.28%, 33.97%, and 5.23% of the total, respectively (Fig. 2d). 
After assignment, average ecological sensitivity level was 5.17, 5.43, 5.37 in 2000, 2010, 
and 2018, respectively, indicating that the ecological environment of the study area might 
have deteriorated from 2000 to 2010. However, there was a slight decline from 2010 to 
2018. This phenomenon may be due to the resilience of the ecological environment 
(Wohlfart et al., 2016). Over the study period, extremely sensitive areas increased first and 
then decreased with an overall changing rate of 1.18%, while insensitive areas decreased 
first and then, increased. Mildly sensitive and moderately sensitive areas showed a continu-
ous downward trend. The average proportion of moderately sensitive areas was 28.82%. 
During 2000–2010 and 2010–2018, the main dynamic type was converted from the mod-
erately sensitive level to the highly sensitive level, concentrated in the western part of the 
study area.

3.2 � The variation characteristics of parameters

Evaluating the effects of each parameter will be helpful for ecological conservation and 
management since it will give us insight into which parameters are the most important. At 
the same time, decision-makers can better understand the relationship between soil erosion, 
land status, topography, climatic conditions, and ecological sensitivity.

With regard to change in soil erosion, as shown in Fig. 3a–c, the central area is highly 
sensitive to soil erosion due to its large terrain fluctuation. In eastern areas such as Tian-
quan County and Baoxing County, soil erosion sensitivity is low. From 2000 to 2018, soil 

Fig. 2   Spatially distributed ecological sensitivity and areal proportion of different levels in 2000, 2010 and 
2018
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erosion tended to deteriorate in the surrounding area of the metropolis region. Conversely, 
there was an obvious improvement in remote mountain areas. Specifically, the situation in 
the west has improved, such as in Bomi County. Soil erosion worsened in the eastern, espe-
cially in Litang and Yajiang counties.

Fig. 3   Spatial distribution of ecological sensitivity due to a single factor. a–c show soil erosion in 2000, 
2010, and 2018; d–f show land status in 2000, 2010, and 2018; g shows topographic factors; and h–j show 
climatic conditions in 2000, 2010, and 2018
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As can be seen from Fig. 3d–f, the land use status in the western region was generally 
worse than that in the eastern region. This might relate to poor vegetation coverage due 
to land desertification (Karamesouti et  al., 2018; Xu et  al., 2019). From the west to the 
east, the sensitivity level decreased, implying that the land condition gradually improved. 
From 2000 to 2018, the moderately sensitive areas showed a trend of increasing eastward, 
while the low sensitive (lightly sensitive and insensitive) areas in the east showed a trend of 
decreasing.

The map of topographical factors (Fig.  3g) displays the interactive distribution of 
regions with high and low sensitivities. The overall distribution pattern is high in the west 
(e.g., Bomi, Basu, and Milin counties) and low in the east (e.g., Litang, Yajing, and Tian-
quan counties). Different slope directions have deferent solar radiation intensities and illu-
mination times, which resulted in significant differences in regional ecological effects. 
Among them, higher and steeper terrains will lead to higher ecological sensitivities.

Figure 3h–j indicates that areas of high sensitivity to climate change were concentrated 
in the western and central regions. From 2000 to 2010, the high-sensitive areas such as 
Milin, Bayi, Bomi and Litang counties showed an increasing trend. From 2010 to 2018, the 
high-sensitive area decreased obviously, and the low sensitive area expanded significantly 
(e.g., Milin, Baiyu, Litang, and Batang counties). These results emphasize the importance 
of climate changes in the growth of vegetation at the local level (Gratani, 2014; J.-F. Wang 
et  al. 2016). For instance, as an important factor for large-scale change of land surface, 
air temperature and rainfall can directly influence crop production, vegetation growth, and 
water content in soil (e.g., Yucheng and Baoxing counties).

3.3 � Determinants and interactions of ecological sensitivity

3.3.1 � Significance analysis of driving factors

The geographical detector model was applied to identifying the impacts of driving fac-
tors on ecological sensitivity. Independent variables were composed of both anthropo-
genic and natural factors, and the values of ecological sensitivity in 2000, 2010 and 2018 
were selected as the dependent variable. From Fig. 4, the average power of determining 
ecological sensitivity for the driving factors in descending order is: DEM (0.444) > PRE 
(0.358) > TEM (0.342) > FVC (0.257) > SRSI (0.169) > LU (0.163) > PD (0.161) > RA 
(0.072). This means that DEM, PRE, TEM were the key factors for the ecological sensitiv-
ity. Although the explanatory power of other factors was less than 30%, they also exerted 
an influence on the spatial differentiation to some extent. From 2000 to 2018, the explana-
tion intensity of PRE and TEM tended to increase. Especially, the PRE experienced a con-
tinual increase from 0.190 in 2000 to 0.514 in 2018. Comparatively, except for the DEM, 
LU, and PD, which slightly changed with time, the other three indices all decreased to 
some extent.

3.3.2 � Interaction of influencing factors of ecological sensitivity

From Table  3, it can be inferred that the interaction of any driving factor with 
another factor has a more significant impact on the ecological sensitivity than 
a driving factor itself. The results from the interaction are mostly bi-enhanced 
(q(× 1 ∩  × 2) > Max(q(× 1), q(× 2))), with a few being nonlinearly enhanced 
(q(× 1 ∩  × 2) > q(× 1)). The nonlinearly enhanced effect means the synergetic effect of 
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X1 and X2 exceeds the sum of their separate effects, e.g., SRSI and PRE (59.4%), LU 
and PRE (52.7%), and DEM and RA (52.5%). Meanwhile, the bi-enhanced effect means 
that the synergetic effect of X1 and X2 is stronger than each individual effect, e.g., FVC 
and TEM (43.7%), LU and DEM (48.4%), and SRSI and PD (20.7%). Unlike the results 
of single-factor detection, the impact of LU, PD, and RA on ecological sensitivity was 
highlighted after interacting with several other factors, and approximately 47% of the q 
values of the pairwise interaction exceeded 0.4. Notably, interaction between PRE and 

Fig. 4   Importance of driving factors influencing ecological sensitivity. Land use, Salinization Index, Tem-
perature, Precipitation, Population density, Digital Elevation Model, Relief Amplitude, and Vegetation Cov-
erage are represented by LU, SRSI, TEM, PRE, PD, DEM, RA, FVC, respectively

Table 3   Results of interactive detector

Land use, Salinization Index, Air temperature, Precipitation, Population density, Digital Elevation Model, 
Relief Amplitude, and Vegetation Coverage are represented by LU, SRSI, TEM, PRE, PD, DEM, RA, FVC, 
respectively
**Bi-enhanced (q(× 1 ∩  × 2) > Max(q(× 1), q(× 2)))
*Nonlinearly enhanced (q(× 1 ∩  × 2) > q(× 1) + q(× 2))

LU SRSI TEM PRE PD DEM RA FVC

LU 0.145
SRSI 0.204** 0.105
TEM 0.345** 0.345** 0.295
PRE 0.527* 0.594* 0.620** 0.368
PD 0.235** 0.207** 0.364** 0.560* 0.163
DEM 0.484** 0.491** 0.487** 0.637** 0.478** 0.465
RA 0.185** 0.152** 0.358* 0.466* 0.223* 0.525* 0.055
FVC 0.324** 0.277** 0.437** 0.656* 0.342** 0.549** 0.295** 0.256
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FVC yielded the largest effects that further confirmed the importance of PRE and FVC 
in ecological sensitivity.

4 � Discussion

4.1 � Spatial and temporal characteristics of ecological sensitivity

The spatiotemporal analysis of ecological sensitivity is commonly applied to quantify the 
interaction between ecosystems and human activities as well as environmental changes. 
It serves as a crucial foundation for ecological and environmental protection, providing a 
scientific basis for the sustainable development of the ecological environment (Jiang et al., 
2021). The Sichuan–Tibet Railway, being an important transportation route in China, trav-
erses diverse ecological landscapes, making it imperative to assess its ecological sensitiv-
ity. However, previous studies in this area have been limited. Understanding the ecologi-
cal sensitivity of this region is vital for the implementation of appropriate conservation 
measures and the promotion of sustainable development (Andriantiatsaholiniaina et  al., 
2004). Our findings revealed a high temporal variability and spatial correlation of ecologi-
cal sensitivity along the Sichuan–Tibet Railway. Notably, the western and central regions 
exhibited significant spatial clustering of highly sensitive areas, which can be attributed 
to the unique natural environmental characteristics and human activity density in these 
areas. Importantly, we observed an eastward expansion of high-sensitivity areas from 2000 
to 2018, indicating a gradual deterioration of the ecological environment in the eastern 
regions. This trend may be influenced by changes in land use, climate, and the cumulative 
impact of human activities in the eastern regions.

In this study, the sensitivity of four parameters was analyzed individually. With remote 
sensing and GIS, the spatial distribution of soil erosion, land use status, topographic fac-
tors, and climate conditions could be visualized more intuitively and quantitatively 
(Fig.  4a–j). Overall, the dramatic spatiotemporal changes of various parameters had a 
complicated influence on the ecological sensitivity along the Sichuan–Tibet railway. Our 
results highlight the importance of factors such as soil erosion and land use conditions in 
shaping ecological sensitivity patterns. Previous studies (Borrelli et al., 2020; Wang et al., 
2017, 2021) have emphasized that higher rainfall erosivity and looser soil texture can lead 
to soil erosion, while vegetation cover plays a crucial role in reducing soil erosion. The 
robust ecosystem structure, high resistance capacity, suitable climatic conditions, and fast-
growing natural vegetation observed in the eastern regions have been found to contribute 
to their lower susceptibility to rainfall-induced soil erosion. This finding supports the con-
clusions drawn in previous studies (Cardinale et al., 2011; J. (Jingle) Wu 2006) that have 
emphasized the importance of ecosystem characteristics in enhancing the ability of ecosys-
tems to withstand environmental pressures. Furthermore, the relief amplitude, which refers 
to the variation in elevation within a given area, has emerged as a significant driver of soil 
erosion. Studies by Shi et al. (2012) have shown that relief amplitude not only influence the 
amount and velocity of surface runoff but also affect the distribution and concentration of 
water flow. Areas with irregular terrain and pronounced relief amplitudes tend to experi-
ence concentrated flow in certain channels or depressions, which can lead to localized ero-
sion and the formation of gullies (Wang et al., 2016a, 2016b; Tang et al., 2019). Moreover, 
the convergence of runoff in these areas can result in increased erosion rates, as the erosive 
force is concentrated in specific locations (Xu et al., 2022a, 2022b; Tang et al., 2022).
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Topographic and climatic conditions exert a significant influence on the ecological sen-
sitivity of the study area. The characteristics of the terrain, including altitude, slope, and 
aspect, play a crucial role in shaping the distribution and composition of ecosystems (Wu 
et al., 2022; Zhao et al., 2021). These topographic factors directly impact the availability of 
resources such as sunlight, moisture, and nutrients, thereby influencing vegetation coverage 
and biodiversity patterns (Cui et al., 2022; Hou et al., 2021a, 2021b). Research has shown 
that climate change and variability have already impacted the region’s ecological systems, 
particularly the vegetation cover and water resources (Scheiter et al., 2020;  Li et al., 2013;  
Zhang et  al., 2018). For instance, a study by  Xu et  al., (2022a, 2022b) found that the 
warming and drying trends in the region have led to significant reductions in the vegetation 
cover, which has increased the soil erosion and reduced the ecosystem services. Similarly, 
Krishnaswamy et al., (2014) and  Dai et al. (2011) observed that the increase in precipita-
tion intensity has exacerbated the soil erosion and landslides in the study area, posing a 
significant threat to the railway’s stability and safety.

4.2 � Ecological sensitivity attribution

The application of the geographic detection model has provided quantitative evidence 
supporting the significance of DEM, PRE, and TEM as influential factors in determining 
ecological sensitivity along the Sichuan–Tibet Railway. This model allows for a compre-
hensive analysis of these factors and their relationships with ecological conditions. The 
positive relationship between DEM and ecological sensitivity highlights the role of ter-
rain characteristics in determining the sensitivity of the ecosystem. This aligns with the 
understanding that topographic factors influence the distribution of resources such as sun-
light, moisture, and nutrients, thereby shaping vegetation coverage and biodiversity pat-
terns (Cao et al., 2018; Sun et al., 2014). Additionally, the model reveals the importance 
of climatic factors, specifically PRE and TEM, in influencing ecological sensitivity. Pre-
cipitation and temperature are fundamental components of the climatic regime, and their 
variations can significantly impact ecosystems (Peñuelas & Filella, 2001; Walther et  al., 
2002). Adequate precipitation levels are crucial for maintaining soil moisture and support-
ing vegetation growth (W.-Y. Shi et al. 20; B. Wang et al., 2014), while temperature affects 
the metabolic processes of organisms and regulates ecosystem functions (YVON-DURO-
CHER et al., 2011).

Moreover, the interaction detector analysis offers valuable insights into the combined 
effects of driving factors on ecological sensitivity. By considering the interactions between 
variables, such as the interaction between PRE and SRSI, the model enhances its explana-
tory power and provides a more comprehensive understanding of the factors influencing 
ecological sensitivity. This finding implies that the availability of precipitation and the 
characteristics of the terrain can interact to influence ecological conditions in the study 
area. These results are consistent with the research conducted by Ke et al. (2022) and Sun 
et al. (2022), who emphasize the importance of considering the interactions between driv-
ing factors in ecological assessments.

The integrated analysis of the geographic detection model and the interaction detector 
provides policymakers with invaluable knowledge for decision-making regarding conserva-
tion and sustainable development along the Sichuan–Tibet Railway. This knowledge allows 
for the prioritization of conservation efforts, the implementation of targeted measures, the 
restoration of degraded ecosystems, and the promotion of sustainable land use practices 
(Kang et  al., 2021). By incorporating these findings into policy and planning processes, 
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policymakers can ensure the long-term ecological health and resilience of the region while 
facilitating sustainable development.

While our study provides valuable insights, we acknowledge several limitations. Firstly, 
the assessment cells were set to a resolution of 500 m x 500 m, which may limit the ability 
to capture local sensitivity characteristics at smaller scales. Consequently, some small-scale 
sensitivities may not have been fully accounted for in the ecological sensitivity manage-
ment. To address this limitation, further research could consider conducting a comparative 
analysis at multiple scales to assess the necessity for downscaling and to capture finer-
grained variations in ecological sensitivity. Secondly, while this study comprehensively 
evaluated the impact of soil erosion, land use status, topographic factors, and climate con-
ditions on ecological sensitivity, there may be other indicators that could potentially impact 
ecological sensitivity, albeit to a lesser degree due to their relative stability over time but 
with spatial differences. It would be valuable for future long-term evaluations to incorpo-
rate a more comprehensive theoretical framework that considers additional indicators, pro-
viding a more holistic understanding of ecological sensitivity dynamics. By acknowledging 
these limitations, future studies can build upon the current research and address these gaps 
to further enhance the accuracy and applicability of ecological sensitivity assessments. 
The incorporation of multiple scales and additional indicators would contribute to a more 
nuanced understanding of ecological sensitivity patterns and aid in the development of a 
comprehensive theoretical framework for long-term evaluations.

5 � Conclusions

In this study, our objective was to assess the ecological sensitivity along the Sichuan–Tibet 
Railway by considering multiple factors, including soil erosion, land status, topographic 
factors, and climate conditions. We employed the Analytic Hierarchy Process (AHP), coef-
ficient of variation (CV), and a geographical detector model to quantitatively evaluate 
ecological sensitivity and analyze its spatial and temporal evolution patterns, as well as 
identify the key driving factors over an 18-year period. The findings of our study indicate 
that the ecological sensitivity levels were predominantly characterized by areas of high and 
moderate sensitivity, which accounted for more than 50% of the study area. Specifically, 
the western regions, such as Bomi, Basu, and Milin counties, exhibited high ecological sen-
sitivity due to their simple surface structure and severe soil erosion. Conversely, the eastern 
regions, characterized by more favorable natural conditions, demonstrated lower ecological 
sensitivity. Furthermore, the analysis of ecological sensitivity levels in 2000, 2010, and 
2018 revealed a progressive deterioration of the ecological environment over time. This 
highlights the urgency and importance of implementing effective ecological restoration and 
management measures to mitigate further degradation along the Sichuan–Tibet Railway. 
Regarding the influence of different factors on ecological sensitivity, our study identified 
a complex relationship among soil erosion, land status, topographic factors, and climate 
conditions. The digital elevation model (DEM) emerged as the most significant influenc-
ing factor, followed by precipitation (PRE), air temperature (TEM), vegetation coverage 
(FVC), salinization index (SRSI), land use (LU), population density (PD), and relief ampli-
tude (RA). Moreover, the interaction between these driving factors played a crucial role in 
enhancing ecological sensitivity, with the largest enhanced effects observed between pre-
cipitation (PRE) and vegetation coverage (FVC).
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Overall, our study provides important insights into the ecological sensitivity along the 
Sichuan–Tibet Railway. The findings highlight the dominant areas of ecological sensitiv-
ity, the temporal deterioration of the ecological environment, and the complex influence of 
various factors on ecological sensitivity. These findings contribute to a better understand-
ing of the region’s ecological dynamics and provide a basis for decision-making processes 
related to ecological restoration, sustainable development, and environmental protection. 
Moving forward, it is crucial to consider multiple scales, incorporate additional indicators, 
and develop a comprehensive theoretical framework to further enhance the accuracy and 
applicability of ecological sensitivity assessments in the region.
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