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Abstract
Climate change has ability to intensify the magnitude of flood and drought episodes, as 
well as their amplitude; also it has the potential to exacerbate hydrological extremes. It is 
crucial to forecast changes to hydrological regimes and determine the level of uncertainty 
around them to increase resilience and prepare for future changes. In order to enlighten 
long-term estimates, an attempt has been made to sustain the available water resources 
through Calibration and Validation of river discharge data using SWAT model for Upper 
Yamuna River Basin. Spatial climatic data were further crystallized to forecast climatic 
projection scenarios for Base line period, Mid-Century and End Century considering RCPs 
2.6, 4.5 and 8.5. Result reveals that the average annual minimum temperature is estimated 
to be increased 1.4 °C in Mid-Century and 2.2 °C in End Century from the Base line Sce-
nario while the average annual maximum temperature is found to be increased 1.5 °C in 
Mid-Century and 2.1 °C in End Century from the Base line Scenario. Further, while ana-
lyzing the hydrological components, Soil water percentage is expected to be increased in 
Mid-Century, whereas Percolation rate is found to be increased for all scenarios other than 
BL-MC (4.5) which is an indication of rise in Ground water. In addition to it, Surface flow 
is observed as a considerable increase from 4.33 to 72.69% in all scenarios. Also the Sur-
face flow is more in case of End Century as compared to the Mid-Century. The estimated 
Ground water flow is found to be increased except BL-MC (4.5 & 8.5). Overall water yield 
has been estimated as a relative change from 7.06 to 18.70% based upon the specified con-
ditions. The prediction for Evapotranspiration values is found as decreased in all scenarios 
except BL-MC (4.5 & 8.5). The outcome of the present study is very useful for planning of 
development strategies in the project area.
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1 Introduction

Climate change has direct impact on natural available resources, ecosystem and baseline 
services of the water supply chain (Aghion et  al., 2019). Change in global and regional 
water presence will be impacted due to the long-term impact of changing climatic condi-
tions and anthropogenic forces (IPCC, 2007). It will also affect the socio-economic growth 
of the rural as well as urban societies (Radhakrishnan et  al., 2018). Additionally, rapid 
urbanization leads to emission of greenhouse gases and thus affects the environment (Gud-
mundsson et al., 2012).

The effects of climate change on catchment hydrology are likely to exhibit significant 
regionalism, given the spatially varied climate change and the frequently distinct physi-
ographic characteristics of different catchments. Numerous studies have been conducted to 
estimate the hydrological response of the catchment area to a scenario of climate change 
under various climate zones while taking into account physiographic parameters as topog-
raphy, geology, geomorphology, land cover/use, etc., which shows that climate change and 
land use have adverse impact on hydrological cycle (Ma et al., 2009; Wang et al., 2008). In 
recent years, various studies have shown that climate change is likely to impact on natural 
water resources considering different factors viz. precipitation pattern, increased surface 
temperature, runoff variation, changes in soil characteristics due to de-silting and erosion, 
groundwater recharge, surface runoff and rise in evaporation etc. (Ficklin et al., 2018). It 
will create a need of fresh water availability and related ecosystem which consequently 
create a pressure on the sustainability of natural resources (Pham et al., 2019). The water 
availability mainly depends upon the climatic condition like monsoon in the project area.

In India, there is a variability in the distribution of the precipitation with respect to the 
location and time (Diwan, 2002). The effect of global change on available water resources 
is a serious issue (Githui et al., 2009). With a view toward sustainability of natural water 
resources and sustainable ecosystem, it is important to estimate the climate change future 
scenarios (Kumar et al., 2016).

Since climate change has impacts on the hydrology of the region and water resources, 
changes in the hydrological process such as evapotranspiration, surface runoff, etc. can be 
quantified and understood with a SWAT model (Zhang et al., 2002; Arnold et al., 1998; 
Neitsch et  al., 2002). SWAT is a hydrological model which can be used to analyze the 
impact of climate change on the sensitivity of crop yield (Xie & Eheart, 2003) and crop 
market scenarios (Mishra, 2013). Basically SWAT is a semi-distributed hydrological model 
which is used for the flow simulation, sediment and crop yield estimation in a river basin 
(Arnold et al., 2012). Garg et al. (2012) used the SWAT model in their study for character-
izing irrigation water requirements in the Upper Bhima Catchment in India. Nowadays, 
terrifying with the limited availability of freshwater, almost all the countries over the world 
are using the SWAT model for future predictions of water and soil conservations (Patel 
et al., 2015; Spruill et al., 2000). In another study, the SWAT model is used for predicting 
the changes in land use because of the Land Change Modeler and attribution of changes in 
the water equilibrium of the Ganga basin to land-use change (Anand et al., 2018).

Climate Forecast System Reanalysis (CFSR) datasets have been used widely for hydro-
logical simulation through SWAT Modeling (Globalweather.Tamu.Edu—CFSR, n.d.). The 
least inputs of SWAT Model involve precipitations data and minimum–maximum tem-
perature datasets for the particular location. Multi-objective Calibration is the next rec-
ommended step to simulation of data in SWAT which is a remedy for equifinality of the 
parameters (an accuracy issue occurs during Calibration) (Odusanya, 2019). Moreover, in 
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order to assess the impact of agricultural production trends on crop yield, erosion (soil and 
water) and nutrient losses under future climatic circumstances, Global Circulation Model 
(GCM) forecasts can be used in combination with the SWAT model (Panagopoulos et al., 
2014).

Climate indices and estimates depend upon the analysis of experimental readings, moni-
toring methods and used climate models. All these factors are overlaid using statistical and 
dynamical downscaling techniques to develop the climate projections at accurate spatial 
and temporal scales. Further, a comparative analysis of historical data as well as the pro-
jected data for few coming years is examined to reach out the conclusions.

The Upper Yamuna River Basin is one of the most critical basins under climate change 
in Northern India, and from the best of knowledge of the authors, it is understood that 
several studies with limited scope of work have been conducted in and around the Upper 
Yamuna River Basin; however, the objective and area of concerns are different for the 
respective authors/researchers (Khan et al., 2020; Misra & Misra, 2010; Sarkar & Shek-
har, 2018). Moreover, the spatio-temporal impact up to the extent of sub-basin level has 
not been explored yet which can help the policy makers for better management of water 
resources and their conservation on subbasin scale. The outcomes of this study are 
expected to come up with value added informative inputs on spatio – temporal heterogene-
ity to the water resource planners at a fine scale for future water management, conservation 
and sustainable development of water resources along with the identified critical sub basins 
of the watershed.

Objective of the study The main objective of the present study is to predict the spatio-
temporal impact along with climate change scenarios through natural climatic conditions 
(temperature and precipitation) based upon hydrological components within the project 
area, i.e., Upper Yamuna River Basin in India. In this connection, this study consists of fol-
lowing objectives:

(a) To perform Calibration, Validation and sensitivity analysis of the SWAT model for 
UYRB.

(b) To predict the Climate change Scenarios for Water Balance components and assessing 
its spatio temporal impacts on sub basin scale.

2  Material and methods

2.1  Study area

The Upper Yamuna Basin has been taken as a study area to understand a spatio-temporal 
climate change using the SWAT model. The area under study is located between the lati-
tudes  28048′ 00″ N to 31° 12′ 00″ N and longitudes 76° 48′ 00″ E to 78° 24′ 00″ E. The 
total basin (watershed) area was 17,591.65 Sq.km. consisting of 25 sub-basins as shown 
in Fig. 1. The river Yamuna originates from the Yamunotri glacier in the Mussorie range 
of lower Himalayas above 6300 m and then flows through the Indo-Gangetic Plains. The 
Upper Yamuna River flows through multiple valleys carved by snow masses during the 
previous snow-age. Most of the Upper Yamuna River is contained in the Himalayan and 
Upper segments of the basin which is upto Delhi (Basin Details: | Yamuna Basin Organisa-
tion, 2021).
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2.2  Data used

The geo-spatial information used for the analysis includes Digital Elevation Model (DEM), 
Soil data, Land use land cover (LULC), stream network, etc. The delineation of catchment 
area and sub-basin area was done using DEM through SWAT Model. Thereafter HRUs 
were created by overlaying LULC map (Pasture 3%, Range grass 11%, Agriculture land 
36%, Urban area 2.98%, Water bodies & snow 0.02%, Forest 47%,); Soil information 
(Loam, Clay loam, Sandy loam, Clay and Sandy loam clay); and Topographic elevation 
(1–3%, 3–10%, 10–15% and > 15%) of the study area. Climatic variables such as precipi-
tation and temperature (minimum and maximum) were further used to predict the future 
climate change scenarios (Table 1).

The LULC map, Soil classification map and the Slope classification maps are shown in 
Fig. 2.

2.3  SWAT model

The SWAT model (Arnold et  al., 1998) is a river basin-scale model created to evaluate 
the effects of land management techniques in substantial, intricate watersheds. This semi-
conveyed catchment (stream bowl) model is created to measure effects of land on surface 
waters by mimicking evapotranspiration, plant development, penetration, permeation, spill 
over and supplement burdens, and disintegration (Neitsch et al., 2011). Catchment meas-
ures in SWAT are demonstrated in two stages—the land stage covering the loadings of 
water, dregs, supplements and pesticides from all sub-bowls to a principle channel; and 
the water steering stage covering measures in the primary channel to the catchment out-
let (Neitsch et al., 2011). The model is used to analyze the spatial–temporal heterogeneity 

Fig. 1  Study area map of Upper Yamuna Basin and major streams
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considering different scenarios of the watershed (Mishra, 2013). In SWAT, a "catchment" 
is additionally separated into sub-basins and Hydrologic Response Units (HRUs), of which 
the last are interesting mixes of land use, soil and slope. The SWAT model principally 
requires five sorts of information, namely a Digital Elevation Model (DEM), land use/land 
cover data, soil data, environmental data and other yield data. The SWAT model develop-
ment and runoff simulation process is shown in Fig. 3.

2.4  Calibration, validation, sensitivity and uncertainty analysis

Calibration and Validation processes were performed using the available discharge data 
which were divided into two predefined sets. Calibration process is very challenging as it 
involves various uncertainties. The source of uncertainty may be a part of model process, 
input dataset or operational portion (Uniyal et al., 2015). Also sensitivity is a reflection of 
any minor change in any one parameter keeping other values as constant. All four tasks, 
namely Calibration, Validation, sensitivity and uncertainty, were performed using the algo-
rithm in Sequential Uncertainly Fitting (SUFI-2) which is an in-build component under 

Table 1  Spatial data input into the SWAT model for the Upper Yamuna Basin

S. N Data used Specification Source of data

1 DEM 30 m × 30 m https:// earth explo rer. usgs. gov/
2 Land use/Land cover Landsat 8–15 m panchromatic and 

30 m multi-spectral spatial reso
https:// earth explo rer. usgs. gov/

3 Soil Map 30 m × 30 m https:// swat. tamu. edu/ data/ india- datas 
et/

4 Slope 30 m × 30 m https:// swat. tamu. edu/ data/ india- datas 
et/

5 Precipitation Annual https:// globa lweat her. tamu. edu/
6 Temperature Minimum & Maximum https:// globa lweat her. tamu. edu/
7 Stream flow data 

for calibration & 
validation

2001 to 2020 for Palla, Delhi, gauge 
station

Central Water Commission (CWC)

Fig. 2  a LULC map, b soil classification map, c slope classification map

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://swat.tamu.edu/data/india-dataset/
https://swat.tamu.edu/data/india-dataset/
https://swat.tamu.edu/data/india-dataset/
https://swat.tamu.edu/data/india-dataset/
https://globalweather.tamu.edu/
https://globalweather.tamu.edu/
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the SWAT Cup model (Abbaspour et al., 2007). Further, P and R-factor values were used 
to explain the model performance, wherein P factor may be described as percentage of the 
available data and R factor is average thickness of 95 PPU divided by standard deviation of 
available dataset (Abbaspour et al., 2007; Kumar et al., 2017a). The definition of satisfac-
tory output is P factor close to 1 while R value < 1 or close to zero (Kumar et al., 2017a).

The Calibration of Upper Yamuna River Basin model through SWAT is a challenging 
task because of few uncertainties such as input variability, model uncertainty and common 
parameter (Abbaspour, 2010; Schuol & Abbaspour, 2006). In case of model Calibration, 
the SUFI-2 process using SWAT-CUP has been used, which was developed by Abbaspour 
(Schuol & Abbaspour, 2006). Further, in case of SUFI-2, the uncertainty of each parameter 
takes into consideration all the uncertainties. These uncertainties can be expressed as a per-
centage of observed data lying inside the 95% prediction uncertainty (95PPU) band, which 
is measured by the p-factor. Additionally, the r-factor is crucial in describing the 95PPU 
range. The p-factor number should be as high as feasible, and the r-factor value should be 
as low as possible, in order to achieve better outcomes (Schuol & Abbaspour, 2006).

The R2 is a metric for the goodness of fit of a linear regression model that shows how 
much of the variance in the dependent variable each independent variable individually and 
collectively accounts for. On a practical scale (0–100%), it quantifies the strength of the 
association between our model and the dependent variable. It is a statistical measurement 
to know that how close the data’s are to the fitted regression line. Further, R2 ranges from 
the 0 to 1 with higher values indicating the less error variance. The R2 value should be 

Fig. 3  Methodology of the model development: calibration and validation
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more than 0.5 (Van Liew et  al., 2003). The output values of other factors such as NSE, 
PBIAS, KGE and bR2 (Knoben et al., 2019) showed that for a good simulation NSE value 
should be greater than 0.75, whereas it is more than 0.36 for satisfactory.

Further, Calibration and Validation procedure required the bifurcation of the whole 
time in to Calibration and Validation epochs (Bouslihim et al., 2016). In the Calibration 
phase, the stream flow (output) was adjusted using SWAT-CUP so that the observed inflow 
data matched the stream flow. Additionally, the Validation period enables us to determine 
whether the model setup has been appropriately designed utilizing certain time frames 
(other than Calibration period). Here the epochs have been decided, considering the avail-
ability of inputs for following major input parameters such as Stream flow, Rainfall data, 
Max and Min Temperature. The SWAT model has been calibrated using the time period 
from 2002 to 2013. By comparing observed and simulated values, the Calibration tech-
nique steps involved optimizing the model performances. These parameters are still used 
for Calibration following the sensitivity analysis. For Calibration, statistical criteria of 
goodness (fit curve) have been calculated; thereafter, the prepared model is tested to check 
its performances through Validation procedure for 7 years (2014–2020).

2.5  Climate change projections

Climate change is considered to be the biggest threat of the twenty-first century and sus-
tainable development in the entire world (IPCC, 2014; Lema & Majule, 2009). Despite 
numerous climate change adaptation strategies, these efforts have been deemed insufficient 
for long-term climate change (IPCC, 2014). Future precipitation is anticipated to be more 
variable, according to IPCC (2014). Literature review showed that the SDSM daily pre-
cipitation data at weather station are almost problematic predicted along with the variable 
used for the downscaling. Reason behind it is because values at individual sites are com-
paratively poorly resolved by the regional-scale predictors (Wilby & Dawson, 2004; Wilby, 
2007; Gachon et al., n.d.; Hassan et al., 2011). This problem occurs due to low predictabil-
ity of the daily precipitation data at local scale by the regional forcing factors. Moreover, 
the other factors highlighting the complexity of modeling precipitation are related to some 
characteristics such as intermittency, rain extreme events, rain intensity variability and the 
multiple scaling regimes.

In the present study, data interpolation method was used for monthly climatic dataset 
gathered from weather stations. Monthly precipitation and temperature (minimum and 
maximum values) variables were used for the study. A set of future data were obtained 
for each CFSR grid (Fuka et al., 2014), (Dile & Srinivasan, 2014). Delta change approach 
(Hipt et al., 2019) was used to derive monthly bias coefficient value which was obtained 
from the CCAFS projected month-wise data. The following formula applies:

�
CCAF

 = Bias coefficient of CCAF weather datasets
V denotes climatic variables such as precipitation and temperature;j = Monthly values as 

1, 2, 3….up to 12.
V
CCAF

 = Monthly data set variable of CCAF weather datasets.
V
BASE

 = Base period.

(

�
CCAF

)

j
=

(

V
CCAF

)

j
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The crop yield is indirectly affected by the temperature. Warmer regions yield less as 
compared to the colder areas due to climate change in warm regions; the negative effect of 
precipitation is on higher side. Higher mean temperature will lead to the increase in evapo-
transpiration (ET) as well as accumulated Growth degree day’s. Further, faster crop yield 
growth will be there along with early ripening stage. It will also decrease soil moisture by 
rising water demand in the atmosphere with increased stress and lower yield (Hipt et al., 
2019). Evapotranspiration and yield of crop are inversely correlated with crop ET; how-
ever, ET depends upon precipitation and temperature; therefore, climatic factors will affect 
the crop yield. The SWAT model uses the same idea to determine the change in crop yield 
dependent on meteorological parameters.

2.6  Downscaling the climate model (GCM)

The Global Climate Model (GCM) is an accurate tool for forecasting information on ranges 
of about 1000 by 1000 km that encompass a diverse range of landscapes and have different 
potential for extreme events including floods, droughts and other occurrences. Regional cli-
mate models (RCM) and empirical statistical downscaling (ESD), both powered by global 
climate models (GCMs), are used across a specific area and provide information at lower 
scales with supporting details for planning and assessing adaptation. Further, GCM pro-
vides projections of climate change scenarios for the future which helps in decision making 
on the climate change mitigation strategies. Further, Regional Climate Downscaling (RCD) 
provides projections with more accurate representation of the localized extreme events. 
The downscaling process is explained through Fig. 4.

The IPCC has chosen a trajectory for greenhouse gas concentrations (not emissions), 
known as the Representative Concentration Pathway (RCP). Various climate scenarios are 

Fig. 4  Climate change projections flow chart
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depicted in the pathways, all of which are thought to be feasible given the level of green-
house gas (GHG) emissions in the years to come. Here, in this research RCP 2.6, RCP 4.5 
& RCP 8.5 have been used to quantify the future climate change.

A program called CMhyd (Climate Model data for hydrological modeling) is available 
for extracting and bias-correcting data from regional and global climate models. In order 
to make hydrological simulations powered by corrected simulated climate data reasonably 
match simulations utilizing observed climate data, bias correction processes are utilized 
to reduce the difference between observed and simulated climate variables on a daily time 
step. According to (Teutschbein & Seibert, 2012), the use of simulated climate data as 
direct input data for hydrological models is hampered by simulations of temperature and 
precipitation frequently exhibiting significant biases caused by systematic model errors or 
discretization and spatial averaging within grid cells.

The underlying physics can be translated to finer spatial and temporal scales by downs-
caling GCM results. GCM projections are useful for both short-term seasonal forecasts and 
long-term climate projects when downscaled spatially using either statistical or dynamical 
methods (Robertson et al., 2020; Vitart & Stockdale, 2001). In order to analyze the future 
climate and assess its effects, downscaled GCM forecasts are frequently utilized in estimat-
ing droughts, floods, etc.

3  Results

3.1  Sensitivity and uncertainty analysis

Based upon the analysis, it is found that some of the sensitive parameters (Jha et al., 2006; 
Narsimlu Boini et al., 2013; van Griensven et al., 2006) affect the simulation more com-
monly such as base flow recession factor, percolation coefficient values, aquifer storage 
range which allow return flow, water capacity, Soil moisture, Soil evaporation constant, 
Groundwater revamp factor, etc. In this connection, the considered factors under the study 
are termed as CN2, ALPHA BF, GW REVAMP, ESCO, GWQMN, SOL_K, SOL_AWC, 
OV_N and RCHRG_DP in the model. Results indicate that among all factors taken into 
consideration for the analysis, ESCO, CN2, SOL K, SOL AWC and RCHRG DP are the 
most sensitive parameters (Fig. 5).

Fig. 5  Parameters sensitivity 
analysis
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Based upon the specified interrelationship as per hydrological model, it is considered 
that among all parameters, uncertainty is an important component. In this study, data from 
simulations and observations are limited to 95PPU; also it is found medium discharge flow 
for medium uncertainty estimation and details are shown in Fig. 6 as the best fit values.

In this connection, 95PPU band was calculated for the study using SUFI-2 model of 
SWAT-CUP wherein it is observed that the outcomes of the Calibration and Validation of 
observed and simulated flow for 95% prediction uncertainty (95PPU band) are within the 
permissible limit as shown in Fig. 6.

3.2  Model calibration and validation

The monthly discharge data from 2001 to 2020 for Palla, Delhi, gauge station were used 
for Calibration and Validation purpose. During the Calibration, 2000 simulations were run 
using the final optimized values of the 10-parameters as shown in Table 2 and the same no. 
of simulations was catered for the Validation period. The result shows all positive values 
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Table 2  Model input parameters for the SWAT model for calibration and validation

Sl. no Parameter name Description Fitted value Min value Max value

1 V_ESCO.hru Soil evaporation compensation factor 0.25 0.00 1.00
2 V_RCHRG_DP.gw Deep aquifer percolation fraction 3.96 2.00 10.00
3 R_CN2.mgt SCS Curve number for soil moisture − 1.99 − 2.00 0.20
4 V_GW_REVAP.gw Groundwater evaporation coefficient 0.17 0.02 0.20
5 R_SOL_K.sol Saturated hydraulic conductivity 10.26 10.00 40.00
6 V_ALPHA_BF.gw Alpha base flow factor 0.30 0.00 1.00
7 R_SOL_AWC.sol Available water capacity of the soil 

layer
0.48 − 0.50 0.50

8 V_OV_N.hru Manning’s ’n’ value for the channel 0.08 0.01 1.00
9 V_GWQMN.gw Threshold water depth in shallow aqui-

fer for return flow to occur
3193 0.00 5000

10 V_SURLAG.bsn Surface runoff lags time, days 7.41 1.00 24.00
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except CN2 (fitted values, minimum and maximum values) and minimum values under 
Available water capacity of the soil layer.

The fitted value of all the parameters shows good performance within the permissible 
limits as notified by the SWAT document. The results during Validation phase showed a 
remarkable enhancement as compared with the Calibration phase results.

Further, the observed and simulated flow of Yamuna River Basin was compared at Pala 
Delhi site and the value of R2 has come out as 0.71 for Calibration period (2002–2013) and 
0.91 for Validation period (2014–2020) which showed a good performance of the SWAT 
model regarding water balance of the project area during Calibration and Validation as pre-
sented in Fig. 7. Moreover, the flow was under-estimated during the years 2002–2004 and 
2015–2020 and was over-estimated during the years 2005–2014.

Figure  8 represents the observed and simulated discharge plotted against river dis-
charge data and rainfall. It shows the highest peak in July–September 2008 (simulated) 
followed by peak obtained in July–September 2008 (observed data) during Calibration. In 
case of Validation period, the peak was highest during July–September 2018 followed by 
July–October 2020 under (observed data). Further, the underestimation of few peaks could 
be identified due to non-uniform metrological data values and model limitation to analyze 

Fig. 7  Scatter plot of the observed versus simulated flow a calibration, b validation

Fig. 8  Observed and simulated discharge, rainfall during calibration and validation
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the complex climatic scenarios. Additionally, there could be a chance of error in the geo-
morphologic data entered in the model for the project area (Table 3).

3.2.1  Model statistics for accuracy assessment

The r-factor is 0.3 for Calibration (2002–2013) and 0.33 for Validation (2014–2020), 
whereas p-factor was obtained 0.16 and 0.23 for Calibration and Validation, respectively. 
As per (Moriasi et al., 2015), if NSE > 0.75 and PBIAS is <  ± 10%, the stream flow simula-
tion is considered as very good on monthly basis; however, PBIAS (> 25%), unsatisfactory 
performance can be observed due to some bias input which creates wrong peak flow simu-
lation events based upon the rainfall data.

3.3  Projected change in climate for different periods (baseline, mid‑century 
and end century)

This section focuses over the prediction of climate change scenarios for Mid-Century 
(2031–2050) and End Century (2081–2100) along with corresponding Baseline period 
(1980–2000) considering parameters such as Temperature, Precipitation and Watershed 
Hydrology. The other factors considered for analyzing the Watershed Hydrology are 
Ground water, Evapotranspiration, Soil Water, Percolation and Surface water under RCP 
2.6, 4.5 & 8.5.

3.3.1  Future climate change—temperature change

The scenarios have been estimated considering mean monthly temperature (minimum and 
maximum) for two future centuries, namely Mid-Century (2031–2050) and End Century 
(2081–2100), along with one Base line period (1981–2000). As mentioned in Fig. 9, the 
Baseline minimum temperature varied from 5.4 to 22.4 °C; however, in Mid-Century it is 
between 6.6 and 23.8 °C and in End Century it is found to be ranging from 7.6 to 24.8 °C. 
Similarly, the maximum temperature during Base line period is found to be ranging from 
17.2 to 34.1 °C and in the Mid-Century it is 18.4–36.4 °C, whereas in the End Century it 
became 19.2–37.1 °C. It can be seen from Fig. 9a, b that the trend in rise in temperature is 
almost uniform for all month with respect to the considered period.

3.3.2  Future climate change—precipitation change

The average monthly precipitation is shown in Fig.  10, wherein the maximum rise has 
been observed in the month of July followed by August and September for Mid-Century 
among all three considered periods. The average precipitation in the month of November 
has been observed as the lowest values which could be probably due to change in climatic 

Table 3  Model statistics for accuracy assessment of the SWAT model for calibration and validation period

Site Period Year p-factor r-factor R2 NSE PBIAS KGE bR2

Palla Delhi Calibration 2002–2013 0.16 0.3 0.71 0.6 − 4.3 0.49 0.64
Validation 2014–2020 0.23 0.33 0.91 0.91 2.2 0.88 0.78
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conditions. In order to prevent water from percolating through the soil to the aquifer and 
increasing surface runoff, the expected increase in urbanization will lead to more imperme-
able surfaces. It will result in to reduced Ground water recharge affecting the water table 
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Fig. 9  Comparison of the mean monthly a minimum and b maximum temperatures of the RCPs 2.6, 4.5 & 
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level. A similar trend in surface runoff has been observed in different Indian researches 
using SWAT Model (Kumar et al., 2017b; Uniyal et al., 2015). In the month of June, pre-
cipitation is decreased in both the Mid- and End Centuries which might be the result of 
climate change in delaying the onset monsoon.

3.3.3  Future impact on watershed hydrology

Many researchers have used the SWAT model (Gosain et  al., 2011; Mishra & Lilhare, 
2016; Abeysingha et al., 2017) to determine the impact of climate change on the hydrol-
ogy aspect and the availability of water resources in the Indian River basins using different 
projected climate change scenarios from GCMs.

Maximum values of Groundwater flow are obtained in End Century RCP 8.5 followed 
by EC RCP 2.6 and EC RCP 4.5. Further, Evapotranspiration is observed highest in Mid-
Century 4.5 followed by MC RCP 8.5 and Base line historical data. On the same lines, the 
Soil water is projected as higher in Mid-Century 8.5 followed by MC RCP 4.5 and MC 
RCP 2.6. Percolation factor shows high projection under End Century RCP 2.6 followed by 
EC RCP 8.5, whereas the lowest case is in Mid-Century RCP 8.5. Similarly, Surface flow 
is higher in EC RCP 8.5 and lowest for Base line historical data (Figs. 11 and 12).

As shown in Table 4, the precipitation is found to be increased in the mid-century by 
0.72% while in case of End Century, decreased value has been estimated with respect to 
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the Base line period in all considered RCPs. Further, while predicting the Evapotranspira-
tion values (Fig. 13), the ET is decreasing in all scenarios except BL-MC (4.5 & 8.5).

Results of Mid-Century and End Century were compared to Baseline values which 
showed an increase in annual average precipitation of 0.72% (RCP 2.6), 2.51% (RCP 
4.5) and 0.91% (RCP 8.5) for Mid-Century; however, in End Century the same is 
expected to be decreased by of 22.14% (RCP 2.6), 20.57% (RCP 4.5) and 22.95% (RCP 
8.5). The decreased value is an indication for drought situation due to climate change. 
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Fig. 12  Water budget components (GW, ET, SW, percolation and surface flow)

Table 4  Relative percentage change in the hydrological components

Period PRECIP (%) ET (%) SW (%) PERC (%) SURQ (%) GW_Q (%) WYLD (%)

BL-MC (2.6) 0.72 − 0.86 2.02 5.53 18.26 0.45 7.06
BL-EC (2.6) − 22.14 − 13.80 − 29.83 16.80 58.85 16.39 18.34
BL-MC (4.5) 2.51 6.86 0.13 − 0.21 8.23 − 1.68 8.61
BL-EC (4.5) − 20.57 − 20.33 − 26.50 12.93 69.35 17.55 16.76
BL-MC (8.5) 0.91 3.77 4.73 1.66 4.33 − 1.53 14.68
BL-EC (8.5) − 22.95 − 13.79 − 30.03 13.71 72.69 18.43 18.70
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Soil water percentage has been increased in MC (2.6, 4.5 & 8.5), whereas Percolation 
rate is increasing in scenarios other than BL-MC (4.5) which is an indication of rise in 
Ground water. The corresponding rise in Surface flow is observed from 4.33 to 72.69% 
in all scenarios. The rise is more in case of End Century as compared to the Mid-Cen-
tury. Also Ground water flow (Fig. 14) estimation is in positive except BL-MC (4.5 & 
8.5).

Basin-wise spatial analysis showed a variation in average annual Ground water (Base 
line) from 14.30 to 60.37 mm while in case of Mid-Century considering Scenarios 2.6, 
4.5 and 8.5, the values range from 16.17 to 65.95 mm, 15.26 to 67.11 mm and 14.35 
to 68.26  mm, respectively. The variation is considerable due to the topography, Land 
use land cover and other geographical parameters. Further, the water yield parameter 
reflects a wide range of data observed basin-wise. The minimum 22.48 mm and maxi-
mum value is 91.14 mm for Base line considered scenario; however, in case of Mid-line 
century, the data vary from 14.35 to 68.26 mm for all three RCPs. Furthermore, the val-
ues calculated for End Century have a variation from minimum 27.53–91.55 mm. Over-
all water yield (Fig. 15) has been estimated as a relative change from 7.06 to 18.70% 

Fig. 13  Basin-wise average annual evapotranspiration in mm for a base line, b mid-century (MC) & c end 
century (EC)

Fig. 14  Basin-wise average annual ground water flow in mm for a base line, b mid-century (MC) & c end 
century (EC)
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due to hydrological water balance. The results of the research implied that changes in 
the climatic parameters, i.e., Precipitation and Temperature, affect the ET, Water Yield 
and Ground water significantly.

As a result, the projected climate change will significantly alter the Upper Yamuna 
River Basin’s water balance, which would therefore have an impact on future water avail-
able resources and river discharge patterns.

4  Discussion

In the present study, climate change scenarios have been predicted through spatio-temporal 
analysis, wherein SWAT model and SUFI-2 algorithm in SWAT-CUP have been used. Fur-
ther water balance components have been predicted for the twenty-first century considering 
different parameters such as Temperature, Precipitation and Watershed Hydrology. Result 
showed that, the trend of rise in monthly temperature is almost uniform for all months 
with respect to the Base line, Mid-Century and End Century. Any unusual change or rise 
in temperature could result stress conditions which may lead to crop yield reduction. As 
mentioned by Anandhi et al., (2009), rise in surface temperature may increase the rate of 
evaporation leading to rise in precipitation. The results of a prior study in India provide 
evidence for the predicted loss in agricultural yields in the watershed as a result of the 
impacts of global warming and the rise in temperature (Gosain et al., 2011). The effects of 
temperature increase will be significant. Globally, a rise in temperature of 1 degree Celsius 
in developing nations will slow the expansion of agricultural output by 2.66% (Dell et al., 
2012).

The main threats of the climate changing scenarios stemming from rising temperature 
include  rising sea level, collapsed ecosystem, frequent severe weather. The prediction 
could be helpful in managing such aspect including exploring the potential regarding adap-
tation of the climate to reduce the risks and also to quantify the development costs associ-
ated with the adaptive actions.

Moreover, the predicted growth in urbanization will result in more impermeable sur-
faces, such as roads and buildings, which will prevent water from percolating through the 
soil to the aquifer, increasing surface runoff. In addition, the higher runoff will result in less 

Fig. 15  Basin-wise average annual water yield in mm mm for a base line, b mid-century (MC), c end cen-
tury (EC)
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groundwater recharge, which will decrease the water table and exacerbate drought condi-
tions. Farmers and other marginal growers who depend on water for their livelihood would 
be impacted by this. A similar trend in surface runoff has also been observed in India, 
according to various other studies using the SWAT model (Kumar et  al., 2017b; Uniyal 
et al., 2015).

In case of water yield parameter, the projection shows a rise for the Mid-Century and 
End Century, which will be beneficial to other water users and agricultural operations. It 
would be practical and efficient to store water in the additional reservoir built to make up 
for the reduced flow and water supply. This will benefit agriculture and raise the catch-
ment’s hydropower generation potential. These findings support (Luhunga et  al., 2018) 
finding that an increase in water yield is influenced by precipitation levels.

Also, when the amount of precipitation rises, the intense downpour of rain will saturate 
the soil, increasing surface runoff. As a result, water will start pouring into the river chan-
nel, raising the discharge level. Several researchers have noted a similar pattern of flow and 
surface runoff for the Indian River Basin (Pandey et al., 2017; Raneesh & Santosh, 2011).

Since the depleting groundwater is one of the major issues for the increasing popula-
tion, development of a strategic planning to conserve the surface runoff, minimize the use 
of Ground water and recharge the Ground water could be initiated on the basis of the esti-
mated water balance components. It will be useful to reducing the wet spell, controlling 
water pollution, adaptation to climate change, early warning to the communities, manage 
agriculture farms in a better way. As the climate change scenarios have direct impact on 
agriculture production, such outcomes could be used to plan a cropping system accord-
ingly. Additionally, it will be helpful to lower the energy cost, controlling flood and drought 
conditions, richer biodiversity, better opportunities for climate resilience, conservation of 
natural water resources, etc. However, the study has the following limitations which impact 
the interpretations of the findings:

(a) The results of the climate model may also be impacted by its coarser resolution. 
Although "downscaling" is a way to reduce the gap between temporal and geographi-
cal resolution, the procedures used are still a source of uncertainty.

(b) The SWAT model makes use of a number of empirical and quasi-physical variables 
that were created based on the climate in the USA and may not be suitable for all 
watersheds. It has become a generally recognized model, nonetheless, as a result of 
numerous modifications added throughout time.

(c) The scenarios have been considered by using hydrological parameters based upon the 
specified land use land cover and other properties. Also, future development projects 
are not considered under the study which may change the water balance of the study 
area. Therefore, the study outcomes may please be viewed keeping the above-men-
tioned facts in consideration.

5  Conclusions

The present study assessed the change in climate by considering different scenarios for 
Yamuna River Basin using SWAT model. During the Calibration and Validation, 2000 
simulations were run using the final optimized values of the specified parameters. The find-
ings of the observed and simulated Calibration and Validation periods, as well as the 95% 
prediction uncertainty, fall within the 95PPU band. The fitted value of all the parameters 



18495Climate change impact assessment on the water resources of the…

1 3

shows good performance within the permissible limits as notified by the SWAT document. 
The results during Validation phase show remarkable enhancement as compared with the 
Calibration phase results. The scenarios have been estimated considering mean monthly 
temperature (minimum and maximum) for two future centuries namely Mid-Century 
(2031–2050) and End Century (2081–2100) along with one Base line period (1981–2000). 
The average annual minimum temperature is found to be increased 1.4 °C in Mid-Century 
and 2.2 °C in End Century from the Base line Scenario while the average annual maximum 
temperature is found to be increased 1.5  °C in Mid-Century and 2.1  °C in End Century 
from the Base line Scenario. Various components for hydrologic budget are simulated such 
as Ground water, Evapotranspiration, Soil Water, Percolation and Surface flow for Base 
line period along with Mid-Century and End Century considering different scenarios, i.e., 
2.6, 4.5 and 8.5. The result shows a considerable rise in Surface flow from 4.33 to 72.69% 
in Mid-Century and End Century which may lead to flush floods. Overall water yield has 
been estimated as a relative change from 7.06 to 18.70% due to hydrological water balance 
based upon the specified conditions. The hydrologic budget of the study area may alter 
substantially because of projected climate change. Introduction of appropriate operations 
is very important to address the problems that may rise due to climate change. Further, the 
output of the present study is useful to introduce the climate change adaption strategies, 
Soil and Water Conservation Measures, Agriculture conservation, Crop rotation, etc.
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