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Abstract
Locations prone to landslides must be identified and mapped to prevent landslide-related 
damage and casualties. Machine learning approaches have proven effective for such tasks 
and have thus been widely applied. However, owing to the rapid development of data-
driven approaches, deep learning methods that can exhibit enhanced prediction accuracies 
have not been fully evaluated. Several researchers have compared different methods with-
out optimizing them, whereas others optimized a single method using different algorithms 
and compared them. In this study, the performances of different fully optimized methods 
for landslide susceptibility mapping within the landslide-prone Kermanshah province of 
Iran were compared. The models, i.e., convolutional neural networks (CNNs), deep neu-
ral networks (DNNs), and support vector machine (SVM) frameworks were developed 
using 14 conditioning factors and a landslide inventory containing 110 historical land-
slide points. The models were optimized to maximize the area under the receiver operat-
ing characteristic curve (AUC), while maintaining their stability. The results showed that 
the CNN (accuracy = 0.88, root mean square error (RMSE) = 0.37220, and AUC = 0.88) 
outperformed the DNN (accuracy = 0.79, RMSE = 0.40364, and AUC = 0.82) and SVM 
(accuracy = 0.80, RMSE = 0.42827, and AUC = 0.80) models using the same testing data-
set. Moreover, the CNN model exhibiting the highest robustness among the three mod-
els, given its smallest AUC difference between the training and testing datasets. Notably, 
the dataset used in this study had a low spatial accuracy and limited sample points, and 
thus, the CNN approach can be considered useful for susceptibility assessment in other 
landslide-prone regions worldwide, particularly areas with poor data quality and quantity. 
The most important conditioning factors for all models were rainfall and the distances from 
roads and drainages.
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1  Introduction

Landslides are natural hazards that frequently occur worldwide and threaten the safety 
of individuals, buildings, and other infrastructures (Iverson, 2000; Kjekstad & High-
land, 2009). Population growth, urban development, and indiscriminate use of natural 
resources have increased the susceptibility of many regions to landslides. It has been 
estimated that landslides are responsible for 1000 deaths and 4 billion USD of damage 
annually (Lee & Pradhan, 2007).

Accurate estimation of the spatial distribution of landslides and the generation of 
susceptibility maps are essential for hazard mitigation and urban development plan-
ning in landslide-prone areas. Classic methods, such as direct mapping through field 
surveying, typically involve measurements of mass displacements, which may be time-
consuming, costly, and impractical over large areas (Kovács et  al., 2019). Alternative 
methods include indirect mapping through the use of modeling techniques, relation-
ships between landslide conditioning factors (e.g., land use, slope class, distance from 
roads or streams, and other site-specific properties that can be predictors of landslide 
susceptibility), and recorded locations of historical landslides (Guzzetti et  al., 2006). 
The premise for using such conditioning factors with historical data is that future land-
slides will likely occur in locations that have similar properties as the regions in which 
past landslides occurred (Guzzetti et  al., 2006). In general, alternative approaches to 
landslide susceptibility mapping (LSM) can overcome the limitations of direct mapping 
techniques and accelerate the production of susceptibility maps to alleviate the hazards 
associated with landslides worldwide.

In recent years, many such alternative approaches have been developed, ranging in 
type from physical models to machine learning (ML) methods (Merghadi et al., 2020). 
For example, deterministic models evaluate landslide susceptibility with physical laws 
and data including rock and soil properties, topography, and hydrological conditions 
(Yilmaz, 2009). However, these models may oversimplify landslide processes, and the 
required data are usually expensive or difficult to obtain, especially when the study area 
is large and heterogeneous. Heuristic approaches for LSM establish classes for judging 
the relative contributions of multiple landslide variables (Dahal et  al., 2008a, 2008b; 
Dai & Lee, 2002). Although these ranking or rating methods are effective, they may be 
highly subjective compared with other data-driven approaches (Lee et al., 2001). Proba-
bilistic models exploit the statistical properties of landslide factors in locations of past 
landslides (Constantin et al., 2011; Jaafari et al., 2014; Shirzadi et al., 2017). Other sta-
tistical models apply logistic regression, binary logistic regression (Shahabi et al., 2015; 
Tien Bui et al., 2016), fuzzy logic (Sur et al., 2021, 2022), and knowledge-based meth-
ods (Althuwaynee et al., 2016; Kumar & Anbalagan, 2016).	

ML models typically use general-purpose learning algorithms that can identify pat-
terns in data, including complex or nonlinear data. Diverse ML techniques have been 
applied to LSM and noted to achieve excellent results. For instance, a highly optimized 
support vector machine (SVM) workflow was noted to attain prediction accuracies 
> 90% (Dou et  al., 2020a). Ensemble methods using random forest and decision tree 
achieved excellent area under the receiver operating characteristic curve (AUC) val-
ues of 0.91 and 0.98, respectively (Arabameri et  al., 2020; Chowdhuri et  al., 2020). 
However, ML workflows may be complicated, and their optimization is often challeng-
ing. Moreover, owing to the rapid development of ML techniques, many methods with 
potential to improve LSM predictions have not been fully evaluated.
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Recent studies have applied deep learning (DL) methods for LSM. The increased com-
plexity or numbers of layers and nodes, which makes these frameworks “deep,” render 
them well-suited for predicting the complicated relationships between landslide condition-
ing factors and geographic landslide likelihoods (Schmidhuber, 2015). For example, Dou 
et al. (2020b) compared the performance of a deep neural network (DNN) against logistic 
regression (LR) and an artificial neural network (ANN) for LSM in Japan. The DNN model 
outperformed the LR and ANN during training and testing. Thi Ngo et al. (2021) compared 
convolutional neural network (CNN) and recurrent neural network (RNN) models for LSM 
in Iran on a national scale and reported that both models achieved AUC values higher than 
0.85. These studies highlighted the potential of DL methods for LSM.

Previous studies that assessed and compared the performances of different DL meth-
ods did not consider optimization process, and thus, their conclusions may be unreliable. 
Although several researchers attempted to optimize their models using different optimi-
zation algorithms, they focused on a single method and compared the effects of different 
optimization algorithms on the model performance. In this study, we combined both objec-
tives. Specifically, we performed a reliable and comprehensive comparison among three 
methods and investigated the possible performance advantage of DL methods (DNN and 
CNN) over ML (SVM) methods. These three methods were selected because although 
they have separately demonstrated strong potential for LSM, their landslide susceptibility 
assessment capabilities have not been comprehensively compared yet. In addition to fol-
lowing the methodologies of existing LSM studies that separately used SVM, DNN, and 
CNN methods, we optimized the model hyperparameters that control the learning process 
to ensure that each model reaches its maximum potential and the results can be reliably 
compared. The performances of the three methods in performing LSM in a landslide-prone 
province in Iran were assessed using a landslide inventory to evaluate the locations of pre-
vious landslides and a set of landslide conditioning factors. The AUC, which has been 
commonly used in ML and DL studies, was adopted as the performance metric to facilitate 
the comparison of the obtained results with those reported in the existing studies, for iden-
tifying the most effective approaches for LSM.

2 � Study area

Iran is a mountainous country with many major population centers located on sloping 
terrains that are exposed to landslide hazards. In this work, the Kermanshah province in 
western Iran (Fig. 1), which is one of the most landslide-prone provinces was selected as 
the study site. Kermanshah has a total area of 95970 km2 and is located between 33°40´ 
N–35°20´ N and 45°20´ E–48°10´ E in the Zagros Mountain range. The elevation in the 
province ranges from 116 to 3359 m above sea level. The region has average low and high 
temperatures of 20.61 °C and 36.1 °C, respectively, and an average annual rainfall of 500 
mm, making it one of the wettest provinces in the country (http://​www.​kerma​nshah​met.​ir/​
met/​amar).

The province is partially covered with high-density vegetation, agricultural lands, regions 
of sparse vegetation, and plains connecting mountains and valleys. Kermanshah is seismically 
active, positioned over the High Zagros Fault (HZF), which is the most active fault in the area. 
The HZF is 1375 km long with a NW-SE bearing. The occurrence of 14 earthquakes (mag-
nitude 4 or higher) was recorded between August 2019 and December 2021, which resulted 
in landslides and severe damage to infrastructure. The area consists of two geological zones, 

http://www.kermanshahmet.ir/met/amar
http://www.kermanshahmet.ir/met/amar
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covering the northeast and southwest regions of the area: Sanandaj–Sirjan, consists of sedi-
mentary and igneous/metamorphic rock zones owing to high volcanic activity and Zagros, 
which covers a much larger portion of the province, consists of mostly sedimentary rock, with 
some ophiolites (Ao et al., 2016; Arian & Aram, 2014).

Landslides in Kermanshah province are mostly triggered by intense rainfall or seismic 
activities such as earthquakes. Some of the most devastating landslides in Iran’s history have 
occurred in Kermanshah, including the largest landslide recorded in the past 20 years, which 
occurred in Mela Kabood with an area of effect of 4.61 km2. This landslide was triggered 
by a 7.3 magnitude earthquake in November 2017. Many other regions of the province were 
also damaged by landslides triggered by this earthquake, such as North Dalahoo and Zan-
ganeh outpost (Fig. 2a–c). Multiple occurrences of rockfall were also reported in Babayade-
gar, Northeast Dalahoo, and Piran (Fig. 2d–f). These phenomena damaged critical infrastruc-
tures, disrupted water supply lines and roads, and led to severe injuries (Bordbar et al., 2022). 
According to reports from Tasnim news agency (https://​www.​tasni​mnews.​com), 20 villages 
were evacuated, and the residents had to be relocated.

In April 2019, multiple regions in Kermanshah province were damaged by landslides 
caused by intense rainfall and flooding (Fig.  3). According to the Islamic Republic News 
Agency (https://​www.​irna.​ir), 281 villages, 134 km of roads, 46 buildings, and the feeding 
pipeline of an oil refinery were damaged due to landslides.

Fig. 1   Location of the study area (Kermanshah, Iran)

https://www.tasnimnews.com
https://www.irna.ir
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3 � Materials and methods

3.1 � Overview

The creation of landslide susceptibility maps through SVM, DNN, and CNN mod-
eling consisted of a multi-step workflow, established with reference to previous studies 
(Fig.  4). First, the sampling points were split into testing and training groups, followed 
by data sourcing and processing to develop a geodatabase. Using the training sample, we 
extracted different formats of data from the geodatabase for model optimization and train-
ing. Multiple batches of models were trained using different sets of hyperparameters for 
each method. The AUC and root mean square error (RMSE) per epoch were recorded for 
each of the models as a graph for future comparison. After training multiple batches of 
models per method, the model with the highest AUC and stable RMSE graph in each batch 
was selected. Next, the AUC and RMSE graphs of the final set of chosen models were 
assessed, and the best model resulting from the optimization of the corresponding method 
was selected. The performances of these optimized models were validated using additional 
metrics. If the models exhibit satisfactory validation results, they were used to generate 
susceptibility maps of the area.

3.2 � Geospatial dataset

Two essential datasets were acquired for this study: (1) a landslide inventory, and (2) a set 
of landslide conditioning factors. These data were sourced from national authorities (e.g., 

Fig. 2   Photographs of landslide and rockfall damage across Kermanshah province (Haghshenas et  al., 
2017) a Mela Kabood b Dalahoo c Zanganeh outpost d Babayadegar e Northeast Dalahoo f Piran (https://​
www.​tasni​mnews.​com)

Fig. 3   Roads damaged by 
landslides due to intense rainfall 
(https://​www.​irna.​ir)

https://www.tasnimnews.com
https://www.tasnimnews.com
https://www.irna.ir
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geological survey and mineral exploration of Iran and Ministry of Agriculture Jihad) and 
various online sources as digital maps. An elevation map and its derivatives (e.g., slope, 
aspect, and curvature) were created using ALOS World elevation tiles that were resampled 
from 30 m to 85 m resolution raster images to ensure uniform resolution across the dataset.

3.2.1 � Landslide inventory

The landslide inventory included 110 landslide location records from across the study area. 
Points for these landslides were generated from the centroid of the landslide scarp. This 
inventory was used to create a landslide density map, which was divided into five density 
classes or regions (very low, low, moderate, high, and very high). Most of the 110 landslide 
locations lay within the “high” and “very high” density regions. A second set of 110 loca-
tions was created to represent non-landslide locations, by randomly sampling points in the 
very-low-density regions. Figure 5 shows the distributions of both types of points and the 
density map.

This dataset was split into two groups of training and testing points. Such sets are typi-
cally partitioned to include 70–80% of the data for training and 20–30% for testing (Nef-
eslioglu et al., 2008; Pourghasemi & Rahmati, 2018). In this study, an 80–20% split was 
chosen. Stratified sampling was performed to create the training and testing sets to ensure 
equal numbers of points from each group of landslide and non-landslide points. The geo-
spatial data were used to generate training data as image patches for the CNN model and as 

Fig. 4   Workflow of this study
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data tables extracted from both vector and raster datasets for the SVM and DNN models. 
The input datasets were extracted at the locations of landslide and non-landslide points.

3.2.2 � Landslide conditioning factors

Four major groups of factors affect landslide susceptibility: geomorphological, hydrologi-
cal, geological, and environmental factors. In this study, 14 landslide conditioning factors 
from these groups were considered: elevation; slope; aspect; planar curvature; rainfall; top-
ographic wetness index (TWI); stream power index (SPI); valley depth; land use; dominant 
soil; lithology; and distances from roads, drainages, and faults. Maps was obtained for each 
factor, which were of different types, such as ordinal data in which the order is relevant 
(e.g., elevation and slope), and nominal data without any ranking or order (aspect, land use, 
dominant soil, and lithology). Table 1 summarizes the properties and importance of the 
factor maps.

Geomorphological factors play a crucial role in landslide susceptibility assessment. Ele-
vation is one of the most commonly used factors in landslide modeling, as elevated steep 
slopes affect the surface reliability and stability (Umar et al., 2014). The slope angle has 
been widely used as a key factor in landslide modeling as it can represent the sheer stress 
and force and considerably affects hydrological processes (Nohani et al., 2019; Pourgha-
semi & Rahmati, 2018). The slope aspect, which indicates the azimuth of maximum slope, 
affects the amount of sunlight and rainfall received, which influences the precipitation and 
vegetation and root development (Jaafari, 2018; Kavzoglu et al., 2015). Curvature indicates 
the concavity or convexity of the surface, which is another morphological factor that can 
affect erosive processes and their intensity to potentially destabilize the surface. The planar 
curvature is the amount of curvature in a horizontal plane that determines the convergence 
or divergence of flows and runoffs (Fallah-Zazuli et al., 2019; Jaafari et al., 2015; Pourgha-
semi & Rahmati, 2018). Valley depth, which indicates the difference in elevation between 

Fig. 5   Landslide density and point distribution across Kermanshah province
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the valley and upstream ridge, affects the slope stability and soil pore water pressure, which 
influence the landslide occurrence probabilities (Hadji et  al., 2018; Hakim et  al., 2022; 
Pourghasemi et al., 2020).

Among hydrological factors, rainfall is a notable landslide-triggering factor in the study 
area, which can also cause erosion, affect vegetation density, and promote the generation 
of runoff (Dou et al., 2019b; Mondini et  al., 2011). TWI is another factor that has been 
commonly used in similar studies as it can clarify the influence of the topography and flow 
accumulation on soil conditions and spatial wetness patterns (Arabameri et al., 2019; Lee 
& Pradhan, 2007; Panahi et al., 2022). The SPI can reflect the erosive power of flows and 
its effect on the surface (Sestraș et  al., 2019; Sevgen et  al., 2019). Drainages and other 
water flow significantly influence the erosive processes, which then affect the slope stabil-
ity and landslide probability (Dou et al., 2019a, 2019b; Fallah-Zazuli et al., 2019; Kadirho-
djaev et al., 2020); therefore, the distance from these sources was selected as a hydrologi-
cal factor.

Geological factors are another set of commonly used factors in landslide modeling. The 
soil texture indicates the strength and permeability of soils, which affect the erosion pro-
cesses and shear stress (Sharma et al., 2012). We used the dominant soil texture or textures 
present in each unit to reclassify and simplify the available dataset. As another key factor, 
the lithology determines the mineral characteristics of different rock types, permeability of 
rocks, and their contribution to the generation of surface runoff (Hong et al., 2015; Reneau, 
2000; Yilmaz & Ercanoglu, 2019). Faults represent notable geological factors as they 
cause tectonic activities that can trigger landslides. Moreover, faults affect the geomorphol-
ogy of the surface by deforming it, thereby influencing the slope stability (Fallah-Zazuli 
et al., 2019; Nguyen et al., 2019; Pham et al., 2020). Therefore, the distance from faults 
was introduced as a factor.

The last set of impact factors used in landslide susceptibility assessment is environmen-
tal factors. In this study, land use and distance from roads were used as environmental fac-
tors. Land being used for different purposes has different properties, with some being more 
susceptible to landslides. Depending on the type of land use or land cover, different units 
can indicate industrial development status or expectations, their effect on soil stability, and 
current or expected vegetation density (Nasiri et al., 2019; Nedbal & Brom, 2018), which 
can alter the landslide probability. The distance from roads and transportation networks 
was used as an impact factor as their development may have destabilized the soil in their 
vicinity, and the force applied to the ground by traversing vehicles can increase the chance 
of landslide occurrence (Fallah-Zazuli et al., 2019; Sestraș et al., 2019).

All the conditioning factor maps were rasterized with a resolution of 85 m. The raster 
layers were resampled, and polygon layers were rasterized using appropriate toolboxes to 
create a raster with the same grid as the other layers. Figure 6 shows an overview of the 
conditioning factor maps.

3.2.3 � Multicollinearity analysis

Before the modeling phase, any multicollinearity among selected parameters must be 
analyzed and identified. Removing factors with high correlation helps decrease the data 
dimensionality and model complexity, which can shorten the training phase and prevent 
models from becoming biased toward certain factors (Tehrany et al., 2019). In this study, 
the extent of correlation between the conditioning factors was evaluated using the variance 
inflation factor (VIF), calculated as
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Fig. 6   Conditioning factor maps
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where Ri is the multi-correlation coefficient between the ith factor and other conditioning 
factors. According to the literature (Kalantar et al., 2019; Roy & Saha, 2019), factors with 
VIF > 5 are considered to have high multicollinearity and should be removed or combined 
with another related variable into a single index (O’brien, 2007).

3.3 � Numerical modeling methods

3.3.1 � SVM

SVM is a supervised learning method that originated from statistical learning theory and 
the structural risk minimization principle (Lee et al., 2017b; Vapnik, 1995). This method 
can be used for both classification and regression (Cristianini & Shawe-Taylor, 2000; Vap-
nik, 1995). SVM determines a line or hyper-plane in the multi-dimensional space of train-
ing samples to separate the samples into two classes with optimal margins (distances from 
the separating surface and closest point) (Xu et al., 2012; Yao et al., 2008). Larger mar-
gins have been noted to be more resistant to noise (Kanevski, 2009). The initial space of 
an SVM can be transformed into a feature space with a higher dimensionality by using a 
kernel function. This transformation can increase the linear separation between the points 
(Abe, 2010; Chang & Lin, 2001) and allow the SVM to function as a nonlinear classifier as 
well. The commonly used kernel functions are the radial basis function (RBF) and linear, 
sigmoid, and polynomial kernels.

The RBF kernel, defined in Eq. (2), has been applied successfully in similar nonlinear 
regression problems, such as flood modeling (Tehrany et al., 2015), and was thus used in 
this work after numerous optimization trials.

where ‖x − x�‖2 is the squared Euclidean distance between the two feature vectors, and � 
is a tuning parameter (Tien Bui et al., 2016). In addition to the kernel function, the SVM 
has two other key hyperparameters: gamma ( � =

1

2�2
 ) and regularization. Gamma deter-

mines the spread of classification boundaries, thereby affecting the flexibility of the model 
in classifying new data samples close to the classification boundaries. The regularization 
parameter is used for error control and relates to the tolerance of misclassification. With 
lower tolerance, the boundaries become stricter, resulting in lower errors and higher accu-
racies. However, the model reliability may not necessarily increase and must be assessed 
using the test dataset after training.

3.3.2 � DNN

The DNN model is an ANN with more than one hidden layer (LeCun et al., 2015). This 
deeper structure allows the model to extract more complex features and patterns from the 
input data (Schmidhuber, 2015). DNN models alter data from one depiction to another and 
are therefore widely used for pattern detection and classification in nonlinear problems 
such as landslide zoning.
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The first and last layers of a DNN are the input and output layers, respectively. Several 
hidden layers are present between the input and output layers. Each node acts as a variable, 
containing the value calculated from the previous layer’s nodes and an activation function 
that transforms the previous values into a new range. Given the structure of a DNN, it is 
necessary to determine the proper combination of the number of layers, number of nodes in 
each layer, and activation function in each layer. Increasing the node and layer counts can 
enable the recognition of more complex data relationships but also increases the number of 
parameters to be calculated, which can hinder the learning process. The activation function 
determines the data transformation between layers, which influences the feature classifica-
tion quality. Various activation functions, such as the rectified linear unit (ReLU) and sig-
moid, linear, and tanh functions, are available to accomplish diverse modeling objectives.

DNNs are large neural networks and are thus susceptible to overfitting and deteriorate 
performance when provided new data samples. Overfitting causes the network to mimic 
sample properties, thereby reducing the model flexibility. Dropout layers are typically used 
to prevent this phenomenon. Through the introduction of dropout layers, a random number 
of layer nodes are ignored, preventing weight update. The dropout rate, as a percentage, 
determines the number of dropout nodes selected. Notably, dropout rates that are too low 
will not prevent overfitting, whereas excessively high rates may result in underfitting and 
prevent convergence.

Other parameters, such as the batch size and learning rate, also affect the DNN train-
ing and convergence speeds. During DNN training, optimal model weights are determined 
over a series of training epochs in which the weights are iteratively updated to decrease the 
overall model error. The batch size controls the number of sample points per epoch and can 
thus be appropriately selected to balance the training accuracy and speed. The learning rate 
controls how much the weights are allowed to change when updated. A high learning rate 
will result in overshooting while updating weights, which may retard or prevent model con-
vergence or destabilize the learning process. In contrast, a low learning rate will drastically 
slow down model convergence and increase the number of training epochs needed to reach 
adequate metrics.

3.3.3 � CNN

CNNs are modified DNNs that specialize in processing images or gridded data with con-
volutional, pooling, flattening, and fully connected layers (Li et al., 2021). Without these 
layers, image processing with a DNN may require excessive data samples and result in a 
slow and process-heavy training phase (Lee et al., 2017a). Convolution layers apply filters 
or kernels over regions of images and then pass results to the next layer, thereby creat-
ing feature maps. Pooling layers decrease the number of pixels, and thus, the image size 
and overall parameter count, while preserving important features. Flattening layers convert 
the resulting feature map to a fully connected layer with an equal number of neurons. The 
product is the input layer of an ANN or DNN, which is responsible for the classification of 
the features extracted from the initial image data.

The number of convolution layers influences feature detection in the input data, in 
addition to the learning speed and parameter count. Similar to the node count in the 
DNNs, the number of filters in each convolution layer determines the amount of data 
transferred from one layer to another, which defines the balance between speed and per-
formance. Two other parameters that affect information preservation are the kernel size 
and stride. The kernel size determines the data window used in each step for feature 
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detection. The optimal choice for this parameter depends on the problem: Choosing a 
small kernel size may result in the loss of possible spatial data patterns or error mitiga-
tion, whereas a large kernel size may increase the number of parameters and negatively 
affect the training process and convergence. In this study, 3 × 3 and 5 × 5 pixel ker-
nels were tested for each layer to optimize the model performance. The stride relates 
to the travel of the kernel or pooling window over the input data. Increased stride may 
decrease the parameter count but result in overshooting and the loss of important data 
features. In this study, stride values of 1, 2, and 3 pixels were tested for the max pooling 
layers.

3.4 � Hyperparameter optimization

The hyperparameters of the CNN, DNN, and SVM models (Table 2) affect their learn-
ing rate and stability, as discussed in the previous sections. Therefore, we determined 
the optimal combination of these hyperparameters for each algorithm.

Hyperparameter tuning was conducted during the training phase. All the process-
ing and modeling steps were programmed in Python (Release 3.7). Keras library was 
used for the CNN and DNN model development, and SciKit-learn library was used for 
SVM modeling. The CNN and DNN models were optimized using the Optuna library 
(Akiba et  al., 2019), and the SVM model was optimized using SciKit-learn’s built-in 
grid search tool. Table 3 summarizes the software and hardware used for the computa-
tional process.

Table 2   Hyperparameters of the 
considered models

Model Hyperparameters

SVM Kernel
Gamma
Regularization

DNN Number of hidden layers
Number of nodes in each hidden layer
Activation function of each hidden layer
Dropout rate of each hidden layer
Learning rate
Batch size

CNN Number of convolution layers
Filter count of each convolution layer
Kernel size for each convolution layer
Activation function for each convolution layer
Stride of each max pooling layer
Number of hidden fully connected layers
Number of nodes in each fully connected layer
Activation function for each fully connected layer
Learning rate
Batch size
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3.5 � Evaluation of results

The model performances were evaluated using the training and testing datasets. The per-
formance metrics used during the testing step were the classification accuracy and AUC 
calculated as follows:

where TPR and FPR are the true positive rate and false positive rate, respectively. TPR 
indicates the percentage of landslide samples correctly classified, and FPR represents the 
percentage of non-landslide samples misclassified. FN, TN, TP, and FP denote the false 
negative, true negative, true positive, and false positive, respectively (Darabi et al., 2021). 
The accuracy was calculated as the ratio of correct predictions among all predictions. The 
error values for all models were calculated as the RMSE.

where YActual and YPredicted are the real and predicted values, respectively, and n is the total 
number of samples. Following Khosravi et al. (2016), AUC values in the ranges 0.5–0.6, 
0.6–0.7, 0.7–0.8, 0.8–0.9, and 0.9–1.0 were used to indicate poor, moderate, good, very 
good, and excellent performances, respectively.

3.6 � Susceptibility mapping

After optimizing the hyperparameters to maximize the model performance, the final 
models were used to generate the susceptibility maps. This process resulted in a ras-
ter map of landslide susceptibility indexes per model, enumerated with values ranging 
from 0 to 1, where 0 indicated similarity to non-landslide samples, and 1 indicated simi-
larity to historical landslide occurrences. The resulting map values were then reclassi-
fied into five categories corresponding to very low, low, medium, high, and very high 

(3)AUC = ∫
1

0

f (FPR)dFPR = 1 − ∫
1

0

f (TPR)dTPR

(4)Accuracy =
TP + TN

TP + FP + TN + FN

(5)RMSE =

�∑n

i=1

�
YActual − YPredicted

�2

n

Table 3   Software and hardware 
specifications

Software/hardware Parameter

Software environment Python (Release 3.7)
TensorFlow (2.3.0) + Keras (2.4.3) 

+ SciKit-learn (0.23.2)
Optuna (2.9.1)
ArcGIS Pro 2.5 + SAGA GIS 7.9.1

CPU Intel Core i7-6700HQ@3.1 GHz
GPU Nvidia GTX 960M
RAM 16 GB DDR4
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landslide-prone areas. This classification was performed using the quantile method, 
which has been commonly used for threshold value determination with skewed data 
(Akgun et al., 2012).

4 � Results

4.1 � Multicollinearity analysis

As discussed, the VIF method was used to identify any multicollinearity among the pro-
posed impact factors. The results indicated the lack of any multicollinearity among the 
factors, as the VIF values of all the conditioning factors were lower than 5 (Table 4), 
and therefore, all 14 factors were used in the modeling process.

4.2 � Optimization results

The optimized hyperparameters for the CNN, DNN, and SVM models are listed in 
Table  5. The CNN optimization process recommended the use of one or two hidden 
layers in most candidate models, resulting in a simpler model. Moreover, introduction 
of the dropout did not benefit the CNN model, and including a dropout rate resulted in 
fewer candidate models in each test batch.

The DNN model was not sensitive to activation functions. All three functions (Softmax, 
ReLU, and linear) were interchangeably used across layers among the candidate models. 
Optimized dropout rates rarely exceeded 10% in the candidate models, potentially because 
of the small sample size. The DNN depth was noted to be more important than the layer 
size (neuron count). Models with more layers and fewer neurons in each layer were more 
common candidates in test batches than shallow models with neuron counts higher than 50.

Table 4   Variance inflation factor 
(VIF) for landslide conditioning 
factors

Factor VIF

Elevation 1.78
Aspect 1.24
Slope 2.24
Planar curvature 1.20
Rainfall 1.45
TWI 2.07
SPI 1.31
Valley depth 1.76
Distance from roads 1.30
Distance from drainage 1.27
Distance from fault 1.40
Land use 1.30
Soil 1.15
Lithology 1.40
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Table 5   Hyperparameter optimization results

Hyperparameters CNN DNN SVM

Kernel – – RBF
Gamma – – 0.125
Regularization – – 4
Number of hidden layers 1 4 –
Number of nodes in hidden layers 32 22 – 24 – 24 – 22 –
Activation function of layers Softmax Softmax – Linear – ReLU – 

Softmax
–

Dropout rate of hidden layers 0% 16% – 4% – 2% – 6% –
Learning rate 0.0006 0.0104 –
Batch size 25 35 –
Number of convolution layers 2 – –
Filter count of convolution layers 49–37 – –
Kernel size of convolution layers 5–3 – –
Activation function of convolution layers Linear–ReLU – –
Stride of each max pooling layer 1–1 – –

Fig. 7   Expected (red lines) and predicted (blue lines) values during training (left) and testing (right)
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4.3 � Model validation

Figure 7 shows model predictions of landslide susceptibility, during both training and test-
ing, and their error values. The plots show the expected values (red lines) and calculated 
values (blue lines) of each sample in the training and testing sets. RMSE values were cal-
culated for each dataset and model. Despite more instances of predictions being closer to 
the expected values (0 and 1), the DNN and SVM models had more instances with larger 
errors than the CNN model, resulting in higher overall RMSE errors over both the training 
and testing datasets.

All models achieved satisfactory classification accuracy, RMSE, and AUC values 
(Table 6). The CNN model (88% classification accuracy during testing) was more accu-
rate than the DNN model (79% classification accuracy during testing) and SVM model 
(80% classification accuracy during testing). The SVM model was slightly more accurate 
than the DNN model, despite having a slightly higher RMSE error (approximately 0.43 
and 0.40 in testing, respectively). In terms of the AUC values, during testing, the CNN 
model (AUC = 0.88) outperformed both the DNN (AUC = 0.82) and SVM (AUC = 0.80) 
models. Moreover, the CNN model exhibited a higher robustness than the other models, 
owing to its smaller difference in the testing and training AUC values. Specifically, the 
CNN was slightly more robust than the DNN model, but considerably more robust than the 
SVM model.

4.4 � Susceptibility maps

Landslide susceptibility maps were generated with each model (Fig.  8). The maps con-
tained comparable land-area proportions of the five different susceptibility classes (Figs. 8 
and 9). The CNN predicted considerably more land area in the very low susceptibility class 
and considerably less land area in the moderate and high classes. These results could be 
explained by the fact that the CNN used the neighboring class properties in each pixel. 
Because very high and very low index values determined the error (which is the loss metric 
to be minimized in the training phase), the model tended to prioritize them over interme-
diate values. Therefore, fewer intermediate values were predicted. For example, pixels of 
high susceptibility were close to pixels of very high susceptibility and were thus classified 
as having very high susceptibility. The percentages for each susceptibility class for each 
model are shown in Fig. 9.

4.5 � Factor importance analysis

To identify the conditioning factors that most notably affected the LSM, the Relief-F 
method was used to calculate the importance factors. Figure 10 presents a comparison of 

Table 6   Model performance 
metrics

Model Accuracy RMSE AUC​

Training Testing Training Testing Training Testing

CNN 0.96 0.88 0.32564 0.37220 0.96 0.88
DNN 0.81 0.79 0.33837 0.40364 0.91 0.82
SVM 0.86 0.80 0.33466 0.42827 0.93 0.80
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Fig. 8   Landslide susceptibility maps produced by the a CNN, b DNN, and c SVM models
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the importance factors for each model. The most important conditioning factors among all 
models were the rainfall and distances from roads and drainages, followed closely by eleva-
tion, slope, TWI, valley depth, and distance from faults. The significance of the remaining 
factors was considerably lower than these factors.

5 � Discussion

5.1 � Importance of localized susceptibility assessment

Landslide susceptibility in Iran has previously been studied with various approaches, such 
as fuzzy analytic network process (Alilou et al., 2019) and ML techniques (Pourghasemi 
& Rahmati, 2018; Shirzadi et al., 2019). The existing studies were conducted in different 

Fig. 9   Percentages of each landslide susceptibility class

Fig. 10   Comparison of the importance of conditioning factors between models
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regions with different climates and geological properties. Although the models attained 
high accuracy, they yielded differing results regarding the importance of conditioning fac-
tors. In other words, although ML and DL models can be successfully applied to diverse 
regions, they must represent the regional differences associated with landslide factors and 
triggering mechanisms. For example, although Thi Ngo et al. (2021) used the CNN and 
RNN methods to perform a national-scale LSM of Iran, their results are not necessarily 
reliable or correct for every region in the country, and the use of DL methods necessitates 
more comprehensive research.

5.2 � Model performance

The ML and DL methods evaluated in this study have been separately used in existing 
landslide studies and noted to yield promising results (Dou et al., 2020a, 2020b; Thi Ngo 
et al., 2021). A direct comparison of the three methods combined with parameter optimiza-
tion suggested that the CNN model has a performance advantage over the more commonly 
used SVM and DNN models. Specifically, the CNN model exhibited higher AUC and 
accuracy values across the database and the smallest RMSE error. Moreover, the CNN’s 
AUC during testing (0.88) was comparable to the CNN performance (0.85) reported by 
Thi Ngo et al. (2021). However, the AUC was slightly lower than the values for a DNN 
(0.90–0.92) reported by Dou et  al. (2020b) and an SVM model (0.74–0.91) reported by 
Dou et al. (2020a).

5.3 � Factor importance

We observed that the rainfall, distance from roads, distance from drainage, and eleva-
tion were the most notable factors affecting LSM. Rainfall is known to be a key fac-
tor affecting landslide occurrence in the area. In particular, Kermanshah experiences 
intense rainfalls and has a high amount of annual rainfall compared to the national 
average, which promotes soil destabilization. Road construction and usage lead to fur-
ther destabilization, which renders the land ready to collapse and cause a landslide. 
Proximity to drainage network affects the land through erosion and the provision of 
unstable layers of runoffs, which can lead to mass movements. These movements and 
drainage patterns have also been known to affect the landslide probability. Finally, ele-
vation influences the landslide probability by indirectly affecting the precipitation and 
vegetation cover. Many researchers have highlighted the significance of the distances 
from roads (Dao et  al., 2020) and drainage (Dao et  al., 2020; Kalantar et  al., 2020), 
slope and elevation (Dou et al., 2020a; Liang et al., 2021; Mandal et al., 2021), rain-
fall (Mandal et al., 2021), and TWI (Liang et al., 2021; Panahi et al., 2020) in LSM. 
In contrast, other researchers have indicated that rainfall (Liang et  al., 2021), slope 
(Dao et  al., 2020), and land use (Panahi et  al., 2020) are not highly important. The 
variable importance results obtained in this study are moderately different from those 
reported by Thi Ngo et al. (2021) based on their national-scale LSM of Iran. While we 
determined the rainfall, distance from roads, distance from drainage, and elevation to 
be the most important factors, Thi Ngo et al. (2021) deemed these factors moderately 
important and mentioned slope as the most important factor. Nevertheless, there are 
several similarities between the results of the two studies, such as the aspect and ele-
vation having low and moderate importance values, respectively. These comparisons 
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emphasize that LSM should be conducted locally in countries with diverse climate and 
geological properties.

5.4 � Limitations and scope for future studies

The two main limitations of this study compared with similar previous studies are the 
smaller sample size of the landslide inventory and lower accuracy and resolution of the 
input data and certain factor maps. As such, the results of developing a single model 
and comparing its performance with that of the existing studies is not reliable. To 
address these limitations, we developed multiple models using the same limited dataset 
available and assessed their potential in modeling such data. Although all the devel-
oped models exhibited satisfactory performance, model performance can be enhanced 
by using larger and more accurate datasets.

The sample size is a key factor affecting model training. In this study, 110 landslides 
locations were combined with 110 randomly sampled non-landslide locations and split 
into 80–20% subsets for training and testing data, respectively. The resulting training 
(176) and testing (44) points represented small samples for DL algorithms. For DL 
models, such as CNNs and DNNs, large sample sizes are recommended, especially if 
the models are configured with high levels of complexity (e.g., high hidden layer or 
convolution layer count), as shown by previous similar studies, where 440 total points 
were used on average (Dao et  al., 2020; Yao et  al., 2020). A small sample size can 
limit the complexity and thus suppress the advantages of DL approaches. As a struc-
tured learning method, the SVM was less affected by sample size compared with the 
CNN and DNN and exhibited a performance comparable with that of the DNN model.

In future work, several strategies can be implemented to alleviate the effects of 
small samples sizes. Additional data on landslide locations can likely be acquired 
through other methods, such as remote sensing, thereby increasing the sample size 
(Kalantar et al., 2020; Liang et al., 2021). Moreover, semi-supervised learning can be 
introduced to add more samples to each class and update uncertain labels in training 
iterations (Yao et al., 2020). Lastly, RNNs, which use neural nodes that keep historical 
information from previous samples and steps, may be a promising model for solving 
the problem of interest, having been shown to improve the performance of models with 
small sample sizes (Xiao et al., 2018).

The accuracy of input data may also limit the accuracy of the models. In this study, 
certain conditioning factor maps had scales ranging from 1:100,000 to 1:500,000, 
smaller than those used in similar previous studies. The larger pixel size of the output 
maps led to a low spatial resolution, and potentially, a low accuracy. The data resolu-
tion can be enhanced by using more detailed mapping survey data or remote sensing 
products, which can help improve data resolution, and possibly model accuracy.

6 � Conclusions

The performances of CNN, DNN, and SVM algorithms for LSM in Kermanshah, Iran 
were evaluated and compared. The hyperparameters were optimized to ensure that the 
models achieve their peak performance values to conduct a reliable comparison. The 
results indicated that the CNN (AUC = 88%) outperformed the DNN (AUC = 82%) and 
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SVM (AUC = 80%) models for LSM. Moreover, the CNN model was more robust than 
the other models, given the smaller difference in its AUC values for the training and 
testing datasets. In addition, the CNN predicted the locations of landslide and non-land-
slide points with the lowest overall RMSE. The superiority of the CNN was attributable 
to the use of a dataset with lower spatial accuracy and limited number of sample points 
compared with those used in similar studies conducted worldwide. In other words, the 
CNN model could more effectively handle datasets with low data quality and quantity 
than the other proposed models in similar situations. Although these three data-driven 
techniques had not been directly optimized and compared for LSM prior to this study, 
their individual performances, in terms of the AUC values, were comparable to those 
reported previously. Therefore, the CNN may be a valuable tool for LSM to support 
future planning and development in other landslide-prone regions worldwide, especially 
in areas with limited data availability or quality.
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