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Abstract
Scientific information on the spatial variability of soil properties is critical for sustainable 
production and designing appropriate measures for efficient soil–crop management. The 
growing urban areas in fertile landscapes are a major concern experiencing a huge anthro-
pogenic onslaught and lack of information on spatial variability of soil properties. There-
fore, the present study was carried out to delineate the spatial distribution of some selected 
soil properties from Balh Valley and its catchment area (Suketi basin) in lower Himachal 
Himalaya, India. A total of 468 geo-referenced surface soil samples were collected and 
analyzed for soil pH, EC, OC; primary nutrients (N, P, K); secondary nutrients (Ca and 
Mg); and DTPA-extractable micronutrients (Zn, Fe, Mn and Cu)following standard proce-
dures. The results showed a significant variation in soil pH (acidic to alkaline), EC (0.08–
0.70 dS/m), OC (3–26 g/kg), major nutrients N (41.96–208.03 mg/kg), P (5.80–18.75 mg/
kg), and K (53.57–163.64 mg/kg). Among micronutrients, Zn was found below the criti-
cal limit toward the extreme fringes of the basin. The data were analyzed with descriptive 
statistics and geostatistical approach. The spatial maps were prepared with ordinary krig-
ing (OK) technique after semivariogram modeling and cross-validation approach. The five 
principal components (PCs) chosen depicted a moderate correlation between the calculated 
soil attributes. The two management zones (MZs) were derived by performing the fuzzy 
c-means clustering analysis based on fuzzy performance index (FPI) and normalized clas-
sification entropy (NCE) analysis. The spatial maps represent the distribution of soil prop-
erties in the valley and its catchment area. The information generated provides baseline 
data for site-specific fertilizer recommendations for precision agriculture and minimize 
downstream adverse environmental impact in the Himalayan ecosystem.
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1  Introduction

Food security and agriculture sustainability are fundamental to feed the population that 
continues to grow worldwide. Sustainable development goals (SDGs)-2 pointed out the 
interconnected objectives to end hunger and achieve food security with improved nutrition 
(Jonathan, 2016). Unsustainable farming practices and indiscriminate use of soil resources 
are the major factors that lead to soil compaction (Pagliai, 2004), soil erosion (Montgom-
ery, 2007), loss of soil fertility that seriously deplete the soil quality and make them more 
susceptible to degradation. In urban environment, accumulation of non-biodegradable 
waste (Alabi, 2019), excessive use of fertilizers (Gupta, 2019), and pesticides (Omran & 
Negm, 2020), increasing tourist load (Basak et  al., 2021) and water logging risk () may 
lead to multi-dimensional environmental challenges. The Indian Himalayan Region (IHR) 
is also facing such challenges in growing urban areas and intensifying the impact of cli-
mate change, creating new constraints and potentials for achieving agriculture sustainabil-
ity. The catchment area under the sub-basins of the IHR is more vulnerable that carries a 
unique sedimentary history and nutrient distribution owing to the influence of long-term 
evolutionary history and the prevailing environment (Kumar et al., 2021). The valley plains 
in basin are generally considered more productive, with a huge potential for uplifting the 
farmer’s economy, but at the same time facing multi-dimensional challenges due to shrink-
ing arable land at the cost of expanding urban areas. The decline in agroecosystem produc-
tivity poses a significant  hurdle in achieving agriculture sustainability and food security 
(Nunes et al., 2020).

A sustainable food and agriculture system requires a responsible nutrient management 
plan; however, many areas lack sufficient information on the available soil resources, par-
ticularly those covered with river basin, hills, and valleys. Furthermore, the drainage basin 
with a complex geological environment can strongly modulate the nutrient composition 
under varying bedrock geochemistry (Barre et al., 2017). Environmental variables such as 
climate, geology, topography, and anthropogenic inputs such as land use and fertilizers are 
considered to influence the site-specific nutrient requirements. A better understanding of 
soil properties is required to fill the existing knowledge gaps by delineating soil properties 
in varied landscapes and environment. The mapping of soil properties and their spatial dis-
tribution is a prerequisite for sustainable management of soil resources and precise nutrient 
management. The delineation of soil fertility and their spatial distribution is also important 
for river basins to better understand sedimentary environment.

Many researchers have widely used remote sensing and Geographic Information System 
(GIS) techniques to understand the multi‑influencing factors for sustainable agricultural 
management and development (Ramzan et al., 2017; Roy et al., 2021a, b, 2022; Vasu et al., 
2017). The geostatistical methods are extensively utilized to optimize soil sampling proce-
dures and efficiently manage soil resources (Bhunia et al., 2018; Mousavifard et al., 2013). 
Many researchers also integrated spatial modeling in a varied physiographical regime 
to understand spatial autocorrelation (Davatgar et  al., 2012; Sharma & Sood, 2020). So, 
assessing the soil nutrient status and their spatial variation seems worthwhile to understand 
the influence of intrinsic (within the soil) and extrinsic (outside soil) factors. The recent 
spatial technology allows for handling huge spatial data for effective soil resources man-
agement. Information on the spatial distribution of soil properties is essential for develop-
ing a site-specific management plan matching the location-specific requirements (Mehra & 
Singh, 2016). Many previous studies extensively developed the area having homogenous 
soil quality with management zones (MZs) for sustainable resource management (Davatgar 
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et al., 2012; Nawar et al., 2017; Ali et al., 2022; Shashikumar et al., 2022). In soil quality 
assessment, such multi-variable interaction evaluates homogeneity with MZs for maintain-
ing long-term productivity in agroecosystem.

This paper hypothesizes that spatial variability of soil properties and delineation with 
management zones are crucial for prioritizing sustainable development in river basins. 
With the above background, the soil sampling was carried out from arable land of Balh 
Valley and its catchment area named Suketi basin, lower Himachal Himalaya, India. The 
objective and significant contribution of the study were (a) to generate the soil fertility 
maps to represent status of soil properties and nutrients and (b) to optimize and prepare 
the soil MZs using fuzzy clustering and principal component analysis (PCA) for preci-
sion-based crop management intensive farming system under valley sub-regions. The study 
results are expected to contribute in site-specific nutrient management of the valley and its 
catchment area. Furthermore, the outcomes could be beneficial to protect the Himalayan 
ecosystem from long-term environmental hazards from indiscriminate use of fertilizers.

2 � Study site description

The study area is part of the Mandi district covered under a mid-hills-sub-humid zone and 
high hills temperate wet agroclimatic zone. As per Koppen’s climate classification, the 
study region comes under a humid subtropical climate (Peel et al., 2007). The maximum 
rainfall in the region occurs from June to September, with an annual average rainfall of 
1568.5 mm (DOA, 2009). The region is dominated by brown hill and sub-mountain soils, 
which are slightly acidic and have sandy loam to clay loam texture. Taxonomically, the 
valley area has Entisol and Inseptisol soil orders, while the hilly regions are occupied by 
Alfisol, Inseptisol and Mollisol soil orders (ATMA, 2005; DOA, 2009). The sampling sites 
covered the area from the Balh Valley and its catchment area (Suketi basin), situated in 
the lower Himachal Himalaya (Fig. 1). The Suketi river merges with the Beas river and 
finally becomes a part of the Indus river system. The surface elevation of the Balh Valley 
ranges from 790 to 2900 m above sea level (Pophare & Balpande, 2014) (Fig. 2a). The flat 
area of the valley region is known for growing vegetables with extensive use of chemi-
cal fertilizers and pesticides. Furthermore, the area faces soil deterioration from extensive 
agriculture, pollution from growing urbanization and increasing vehicular emissions. The 
areas under the moderate hilly terrain are utilized mainly for sustenance agriculture by the 
farmers owing to small landholdings. The farmers mainly depend on rain-fed agriculture. 
Most cultivable lands in the extreme fringes are not fully utilized due to lack of irrigation. 
In addition, the heavy rainfalls in monsoons cause erosion of the productive top soil, and 
in addition, the anthropogenic pressure due to growing urbanization also makes the area 
highly vulnerable.

2.1 � Geological setup and physiography

Geologically, the study region is part of the long-term evolutionary history of the Hima-
laya. The geodynamic and the evolution are controlled by major thrust systems, namely 
the Himalayan Frontal Thrust (HFT), the Main Boundary Thrust (MBT), the Main Central 
Thrust (MCT), and the South Tibetan Detachment System (STDS), responsible for divid-
ing the area into different tectonostratigraphic domains (Singh & Patel, 2017). Regionally, 
the major thrust bifurcates into associated thrust systems. The study area is juxtaposed 
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along with the two thrusts, namely the Main Central Thrust (MCT) and the Mandi Thrust 
(MT) (Srikantia, 1987; Vaidyanadhan & Ramakrishnan, 2008). The area under these litho-
units is characterized by geological succession from different epochs with diverse sedimen-
tary environments and soil geochemistry. The study area has Lesser Himalayan Tectogens 
characterized by the sediments from Precambrian to the Quaternary period (CGWB report; 
https://​cgwb.​gov.​in). The lithology exposed along the Suketibasin reveals that the rocks 
in the eastern parts are dominated by granite, gneisses, quartzites and phyllites, whereas, 
in the western part, the major rock types are sandstone, schists, and limestone, etc. (Pop-
hare et al., 2018). The various litho-tectonic units comprised of igneous and metamorphic 
rocks are presented in Fig. 2. The geological setup and the surrounding parent rocks are the 
major factors influencing the intrinsic soil properties from long-term sedimentation. The 
inter-montane flat area between the two major towns, Mandi toward the north and Sunder-
nagar toward the south, is popularly named Balh Valley.

This valley covers a 79  km2 area surrounded by moderate hilly terrains, covering a 
catchment area of 343  km2 and a total geographical area of 422  km2 under the Suketi 
basin (Pophare et  al., 2014). The Balh Valley is underlain by recent Quaternary sedi-
ments comprising alluvium, boulder, cobbles, pebbles, gravel, and sand, while the 
hilly terrains are underlain by phyllite, sandstone, and granites. Physiographically, the 
Suketi basin is highly dissected by the number of small rivulets (Khad), namely Chail 

Fig. 1   Location map of the study area and sampling sites (geographical coordinates; WGS 1984) with 
respect to Himachal Pradesh, India

https://cgwb.gov.in
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khad, Kansa khad, Gangli khad, Dadour khad, and Ratti khad, originated from number 
of perennial to seasonal drainages and finally merges to the Suketi river. The Suketi 
basin is characterized by five major sub-basins namely Ratti khad sub-basin (RKSB), 
Dadour khad sub-basin (DKSB), Gangli khad sub-basin (GKSB), Kansa khad sub-
basin (KKSB), and Suketi trunk stream sub-basin (STSSB) contains sediments of var-
ied thicknesses and possibly nutrients composition (Fig. 2c). The morphometric analy-
sis of the Suketi basin reveals that the drainage network constitutes a 7th order, which 
is fed by rain and snow water (Pophare et  al., 2014). The slope and the Topographic 
Roughness India (TRI) were also plotted to relate with surface flow discharge and runoff 
velocity (Fig. 2d,e). The surface runoff from small rivulets can substantially affect the 
soil nutrient dynamics in a fluvial hydro-sedimentological environment.

Fig. 2   a Digital elevation map (source: USGS) b lithological map c steam network with sub-basin bounda-
ries (modified after Pophare & Balpande, 2014) d slope and e Topographic Roughness India (TRI) Balh 
Valley and its catchment area
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3 � Materials and methods

3.1 � Soil sampling and analysis

The soil samples were collected from 468 sites from Balh Valley (nos. 207) and its catch-
ment area (nos. 261). The geographical coordinates of each site were recorded with a hand-
held global positioning system (GPS) for generating surface maps of the calculated soil 
properties. The surface (0–15 cm) soil samples were collected randomly from the agricul-
ture field with a steel augur/steel spatula in October and November months after the crop 
harvest and before the addition of subsequent fertilizer for the next crop. As mentioned 
above, the study area is characterized by various physiographical constraints such as hills 
with steep slopes, sub-basins and valley sub-regions, so grid sampling was not appropriate 
and random sampling to the approachable arable land was done. Through randomly col-
lected samples finally, a composite sample was prepared from each site by mixing soil from 
five locations, one from the center and four from 3–4 m away from the center in four cardi-
nal directions (Barre et al., 2017). The soil samples collected from different locations were 
put into the clean plastic tray, and all visible living organisms and pebbles were removed 
before being put in a plastic bag for further storage. After returning to the laboratory, the 
collected soil samples were preprocessed. The soil moisture was exhausted by air drying, 
and larger aggregates were broken with a wooden pestle and passed through a 0.2 cm sieve 
to separate the coarse fractions. The processed soil samples were stored in plastic bottles 
and labeled for further analysis. The analysis was done by following the standard methods 
used in soil analysis; name of the soil, physio-chemical properties, methods and instru-
ments used are given in Table 1.

3.2 � Conventional statistics and geostatistical analysis

The data generated through the chemical analysis of the soil samples were statistically 
analyzed for descriptive statistics, namely minimum (Min), maximum (Max), mean, coef-
ficient of variation (CV), skewness, and kurtosis using Statistical Package for the Social 
Sciences (SPSS) software. Descriptive statistics is conventionally used to identify the vari-
ation and highlight the relationship between soil variables. The correlation matrix was cal-
culated to understand the association of soil variables. The Kolmogorov–Smirnov (K-S) 
test and the quantile-quantile (Q-Q) plots were used to check the normality in the data-
set. The normalization of the skewed data is recommended to get reliable results in spa-
tial analysis (Armstrong, 1998; Varouchakis, 2021). The data were considered normal at 
K–S test with P > 0.05. The log-transformation and the Box-Cox transformation are the 
two methods extensively used by researchers for achieving normality in the dataset (Box & 
Cox, 1964; Gallardo & Parama, 2007). Though all the datasets could not achieve normal-
ity, log-transformation was applied before passing through the geostatistical analysis.

The geostatistical methods are extensively used for the analysis, processing, and 
representation of spatial data that provide the ability to distinguish stable (conserva-
tive, such as morphological, physical, and mineralogical soil feature) and dynamic (soil 
regimes, such as soil water, temperature, and gas) soil variables for sustainable decision 
making (Goovaerts, 1999; Meshalkina et al., 2007; Mulla, 2012). The uncertainties in 
the interpolation procedures were used to find the value of unsampled locations, which 
further depend upon the site conditions, model, and the parameters used in the analysis 
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(Fatemeh & Gregoire, 2021). The empirical variogram estimator was applied to the 
spatial data after scrutinizing parameters that violate the assumptions of geostatistics 
(Goovaerts, 1997; Webster & Oliver, 2014). The major steps for the data preparation 
are trend analysis, error detection due to outliers, removal of non-stationary spatial data 
with the moving window statistics, and interactive analysis (Tesfahunegn et al., 2011). 
This interactive analysis of semivariogram clouds in geostatistical procedures allows the 
detection of anisotropies and spatial dependency of calculated soil variables. The differ-
ent theoretical models were tested to find the model that fits best with the experimental 
model. The models were tested in semivariogram modeling and kriging interpolation 
technique (Webster & Oliver, 2001) (Eq. 11).

The ordinary kriging interpolation method was found appropriate for unbiased pre-
dicting the value of the unsampled locations by decreasing the variance error (Lin 
& Chang, 2000; Tesfahunegn et  al., 2011; Tamburi et  al., 2020). In the experimental 
variogram of the kriging procedure, h is the separation distance referred to as the lag, 
which is half the average squared difference between the value at z(xi + h) and the z(xi) 
(Lark, 2000; Robinson & Metternicht, 2006), while γ(h) represent the magnitude of lag 
distance between two sample locations. The nugget (C0), partial sill (C), sill (C0 + C), 
range (m), and nugget/sill ratio derived from semivariogram analysis help to check the 
spatial dependency to describe the spatial correlation (Cambardella et  al., 1994; Vasu 
et al., 2017). The performance and the accuracy of the spatial interpolation were tested 
using the cross-validation approach (Robinson & Metternicht, 2006; Schepers et  al., 
2004) with the mean error (ME) (Eq. 2) and root mean square error (RMSE) (Eq. 3).

The following semivariogram models, namely Gaussian, exponential, linear and 
spherical (Eqs. 4–7) (Asghari et al., 2017), were tested with the experimental results.

Gaussian model:

Exponential model:

Linear model:

(1)�(h) =
1

2m(h)

m(h)
∑

i=1

[

Z
(

Xi + h
)

− Z
(

Xi

)]2

(2)ME =
1
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N
∑

i=N

{
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(
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)

− ẑ
(
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)}

(3)RMSE =

√

√
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√
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N
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∑
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{
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(
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)

− ẑ
(
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)}2

(4)Y(h) = C0 + C

[
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(

−h2

A2
0

)]

(5)Y(h) = C0 + C

[

1 − exp

(

−h

A0

)]
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Spherical model:

The best fitted semivariogram model was selected with a cross-validation approach 
and applied for interpolating the spatial data using geostatistical analysis tool. Finally, 
the map projection of Universal Transverse Mercator (UTM) and datum of the world 
geodetic system (WGS) 1984 was used to generate spatial maps in GIS platform.

3.3 � Principal component analysis and fuzzy c‑means clustering algorithm

Principal component analysis (PCA) is widely used as dimensional reduction for deriv-
ing smaller groups from multivariate data (Ivosev et  al., 2008; Bro, 2014). The PCA 
analysis was used to generate a small cluster from the sampling point called principal 
components (PCs). However, the principal components (PCs) having value ≥ 1·0 are 
considered to explain the variance in the dataset. So, these dominant PCs were used in 
fuzzy c-means clustering to generate the management zones (MZs). The analysis was 
carried out in FuzME software by selecting Euclidean metric distance and correspond-
ing values for different parameters such as fuzzy exponent 1.30, maximum iteration of 
300 and stopping time 0.0001. To derive the best cluster number, the cluster validity 
functions such as fuzzy performance index (FPI) and normalized classification entropy 
(NCE) were used that explain the degree of fuzziness and amount of disorganization, 
respectively (Boydell & Bratney, 1999; Metwally et al., 2019), as given below (Eqs. 8, 
9)

where c is the number of clusters, n is the number of observations, μik is the fuzzy mem-
bership, m is the weighting exponent, and log is the natural logarithm. The optimum num-
ber of clusters selected in the MZs class was identified with a minimum value of the MPE 
and FPI. Furthermore, the one-way ANOVA test was performed to determine heterogenic 
variations (p ≤ 0.05) to identify which group means are significantly different from each 
other.
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4 � Results and discussion

4.1 � Descriptive statistics and correlation among soil properties

The results of the descriptive statistics of the soil properties, namely pH, electrical conduc-
tivity (EC), organic carbon (OC), nitrogen (N), phosphorus (P), potassium (K), calcium 
(Ca) and magnesium (Mg) and DTPA-extractable zinc (Zn), iron (Fe), manganese (Mn) 
and copper (Cu) derived from the analysis for the catchment area, are presented in Table 2. 
The results showed that the range of pH varied from acidic to alkaline. The mean value 
of the EC and OC was 0.29 dS/m and 12.02 g/kg, respectively. The EC is an important 
parameter of the soil properties utilized in many geophysical soil prospecting surveys, 
such as electrical resistivity imaging surveys to delineate the source of the pollutants, 
and in soil fertility, the variation is correlated with the availability of other nutrients in 
the soil (Sulaiman & Ahmed, 2001). In agriculture, the optimal requirement of EC is also 
crop-specific, and the range between 0.08 and 0.70 dS/m was found within the safe limit 
(< 0.80 dS/m) for the supply of nutrient solution in the root zone of the crop. The lower 
EC may cause serve health issues to plant growth and yield (Ding et al., 2018). The range 
toward the higher side can be correlated to the nearby source of soil pollution, leachate 
etc., and in the study area, the extreme value toward the higher side in some of the loca-
tions can be correlated with the influence of the point sources along the national highways 
(NH)-21and growing impacts of urbanization. Overall, in the study area, the available P 
and K were found in the medium range while considering their values between 4.9–11 
and 52–125 mg/kg, respectively. All the soil properties are normally distributed and show 
non-significant skewness except Mn, which is positively skewed with a value of 1.44. The 
coefficient of variation calculated for the soil properties ranged between 7.61–55.23%. A 
low coefficient of variation (CV) for the pH was noticed due to the use of logarithmic con-
centration of photons to represent pH value in the soil is also discussed by many research-
ers (Kumar et al., 2021; Mousavifard et al., 2013). The CV was classified using criteria set 

Table 2   Descriptive statistics of soil parameters along Balh Valley and its catchment area (Suketi basin) 
Himachal Himalaya, India

EC electrical conductivity, OC organic carbon, N nitrogen, P phosphorus, K potassium, Ca calcium, Mg 
magnesium, Zn zinc, Fe iron, Mn manganese, Cu copper, ME mean error, RMSE root mean square error

Soil properties Minimum Maximum Mean Standard deviation CV (%) Skewness Kurtosis

pH 5.60 8.20 6.70 0.51 7.61 0.17 − 0.08
EC (dS/m) 0.08 0.70 0.29 0.11 37.86 0.72 0.34
OC (g/kg) 3.00 26.00 12.02 4.18 34.78 0.40 − 0.28
N (mg/kg) 41.96 208.03 105.54 29.19 27.66 0.78 0.64
P (mg/kg) 5.80 18.75 12.26 2.88 23.50 − 0.75 0.69
K (mg/kg) 53.57 163.64 112.57 21.40 19.01 − 0.38 0.22
Ca (mg/kg) 264 627.44 432.90 94.58 21.85 0.81 1.22
Mg (mg/kg) 109.8 555.4 287.43 108.72 37.83 0.61 − 0.51
Zn (mg/kg) 0.48 3.75 1.67 0.45 26.73 0.56 1.72
Fe (mg/kg) 5.80 47.68 21.63 11.95 55.23 0.54 − 0.50
Mn (mg/kg) 2.56 34.92 11.07 5.68 51.31 1.44 2.30
Cu (mg/kg) 0.38 2.15 1.24 0.38 30.73 − 0.04 − 1.10
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by Wilding and Dress (1983) for the coefficient of variation (CV) as low (CV < 15–35%), 
medium (CV = 15–35%) and high (CV =  > 35%), respectively. In major nutrients, namely 
N, P, and K, the N was found in a medium range with higher variation of the CV than the 
other major nutrients indicating the varied nitrogenous fertilizers input in the study area. 
The Ca and Mg ranged from 264 to 627.4 and 109.8–555.4  mg/kg, respectively, while 
among the DTPA-extractable micronutrients, Fe, Mn, and Cu represented the higher vari-
ation pertaining to the inherent soil properties and soil management practices. The value 
of skewness and kurtosis deviated considerably from their standard value of 0 and 3.The 
geological modulation, land use pattern, slope, and anthropogenic development in the val-
ley sub-regions strongly influence the soil properties. The variation in the soil chemical 
properties was attributed to the management practices, parent material of the surrounding 
catchment, and the irrigation water quality (Khan et al., 2021).

The Pearson’s correlation coefficient was calculated and a significantly positive correla-
tion was found between OC and N (r = 0.57, p < 0.05), pH and EC (r = 0.41, p < 0.05), and 
Ca and Mg (r = 0.23, p < 0.05) (Table 3). Stronger and significant correlation was observed 
in the case of OC and N as compared to other soil properties. Bhunia et al. (2018) also 
reported that the natural circulation of organic matter and the activity of soil microorgan-
isms determine the nitrogen concentration in soil. The analysis depicts the average concen-
tration of DTPA-extractable micronutrients such as Zn, Fe, Mn and Cu was found in the 
sufficient range considering the critical limit of 0.6, 4.5, 1 and 0.2 mg/kg, respectively. The 
micronutrients were found sufficient, except Zn, which represents a lower value in the area 
toward the northern fringes of the catchment area. Many researchers also pointed out that 
the organic matter build-up influences the micronutrients dynamics and distribution in the 
soil (Dhaliwal et al., 2019; Ojha et al., 2018). Moreover, the intrinsic factors mainly oper-
ate within the homogeneous landscape, and the extrinsic factors cover the influence of the 
anthropogenic inputs relatively influences the soil characteristics.

4.2 � Geostatistical analysis

The spatial correlation was identified with geostatistical analysis that involves calculating 
semivariogram and their respective best fitted model. The soil properties which skewed 
from the normal distribution were log-transformed prior to geostatistical analysis. The 
results of the geostatistical analysis are presented in Table 4 and Figs. 3 and 4. The model 
that fits best with the soil property was applied to each parameter, and the accuracy was 
estimated through various error estimates by interpolating the value at unsampled loca-
tions. The soil pH, EC, P, K, Ca, Mg, Zn, Fe, and Mn were modeled with the Gaussian 
model, soil OC and available N with the exponential model, while Zn and Cu with spheri-
cal model. The best-fit semivariogram models are shown in Fig.  4. The quantile–quan-
tile (Q-Q) plot exhibits the distribution of the actual and predicted values. The Gaussian, 
spherical, and exponential models were also identified as best-fit-model for delineating the 
spatial structure and autocorrelation of soil properties in similar physiographical regimes 
(Shashikumar et al., 2022). The fitting of the model depends upon many factors, such as 
the local site conditions and the anthropogenic interventions. The nugget value represents 
micro-variability and measurement of variance due to errors, and in the present study, it 
varied from 0.01 to 9216.1 for EC and Mg, respectively. These values are approximately 
similar or even lower (Behera et al., 2016) to the range observed in the Indian soils. The 
guidelines suggested by Cambardella et al. (1994) were used to check the spatial depend-
ency and classify the nugget/sill ratio C0/(C0 + C), of soil attributes into three classes 
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such as weak (> 75%), moderate (25–75%)and strong (< 25%). The present area defines 
the calculated soil variables into weak to moderate soil classes. Many researchers also 
pointed out the inherited limitations in the criteria as the range effect needed to be consid-
ered in the analysis (Davatgar et al., 2012; Weindorf & Zhu, 2010). The higher nugget to 
sill ratio represents the effect of stochastic factors, such as fertilization, cropping system 
and human intervention, while the lower spatial dependence suggests the structural fac-
tors, such as climate, the influence of the parent rock, topography, vegetation association 
as well as anthropogenic activities (Bhunia et al., 2018; Verma et al., 2021). The results 

Fig. 3   Quantile-quantile (Q-Q) plot for the calculated soil properties of the study area
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imply spatial dependencies come under weak to moderate classes might be contributed by 
the extrinsic factors covering human-induced activities. The semivariogram parameters 
and their spatial autocorrelation are presented in Table 4. The range also covers the influ-
ence of landscape and distance of the calculated soil variables, and for the present study 
range varied from 191 to 9504 m. A large range in the semivariogram analysis indicates 
the sample locations are spatially autocorrelated over a large distance compared to the soil 
variables, which have a smaller range. The lower range values of the OC (347 m), P, K, 
Ca, Zn and Cu suggest that the attributes are more closely related than the higher range 
value in the modeling. The higher range was noticed with Mg (8.9 km), pH (9.50 km), 
Mn (8.699 km) and N (5.30 km) representing the wider spatial influence of rainfall and 
anthropogenic onslaught on soil resources. The spatial modeling further reveals that the 
sampling distance more than the range will influence the spatial correlation; that was also 
pointed out by Kerry and Oliver (2004) that the sampling distance should be half of the 
semivariogram range. The contribution of the physiographic variation for the moderate 
and weak spatial dependency has also been noticed by many researchers (Davatgar et al., 
2012; Laekemariam et  al., 2018).This also seems true for the study area that occupies 
varied agricultural practices, fertilizer input, and urban pressure contributing to the var-
ied spatial distribution of the soil properties. This spatial information can be utilized for 
modifying the future sampling procedure by the farmers, policy makers and other stake-
holders to frame an appropriate decision support system for sustainable intensification of 
agriculture in growing urban centers.

Fig. 4   Best fitted semivariogram model for the calculated soil properties of the study area
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4.3 � Spatial distribution of soil properties

The cross-validation approach was used to select the parameters for the ordinary kriging 
interpolation to generate the surface maps. Figures  5 and 6 represents the spatial distri-
bution of the calculated soil properties, such as soil pH, EC, OC, and major nutrients, 
namely available N, P, K and DTPA-extractable micronutrients such as Zn, Fe, Mn and 
Cu. The surface maps for the soil pH show that the extensive area lies in the neutral range 
(6.51–7.0) and higher toward the area under GKSB (Fig. 2b and 5). This variation in soil 
pH might be due to the irrigation water quality and current agriculture practices. The pH in 
the acidic range was also noticed in many parts of the Himachal Himalaya, India (Kumar 
et al., 2021). The spatial distribution map of soil EC represents the concentration was high 
toward the southern part of the Balh Valley. A few isolated locations represent the OC, and 
available N was found in the low range considering the critical limit of OC < 5 g/kg and 
N = 50–100 mg/kg. The OC, N and K distribution was found higher toward the northern 
extreme of the catchment area. The soil OC and N show a similar trend, indicating the use 
organic matter/FYM that contributes to dynamic balance of soil organic carbon and nitro-
gen in the study area. Furthermore, the spatial distribution map of the soil N and K also 
showed a similar trend covering the locations bordering the Balh Valley. The concentration 

Fig. 5   Spatial distribution maps for the soil properties namely soil pH; EC: electrical conductivity; OC: 
organic carbon; N: nitrogen; P: phosphorus and K: potassium Balh Valley and its catchment area
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of the available P is sufficient in the center of the catchment, while the availability of K is 
low, indicating heavy use without subsequent addition and current needs for efficient K 
management. The soil pH, EC, and OC were found to be highest toward the southern part 
of the study area. In major nutrients, the concentration of available N was recorded highest 
toward the southern part, while the available P represents a high concentration in the valley 
sub-regions with few exceptions in the central part. Some of the sites located in the north 
and central part of the GKSB catchment area represent the higher concentration of soil 
OC and available N, indicating their frequent addition and its availability from the fluvial 
environment from the surrounding area. The concentration of the available K was generally 
low in the central part of the Balh Valley, representing high utilization of available K by 
the vegetable crops without sufficient addition that certainly require efficient management 
from various stakeholders. The kriging interpolation maps of many soil variables showed 
a patchy distribution in the study area that may be attributed to the variation of landscape, 
topography, hydrology and geochemistry of the parent rock (Kubler et al., 2021).The soil 
classes in the red color represent some deficient areas for Ca and Mg, considering the criti-
cal limit of 300  mg/kg and 180  mg/kg, respectively. The Ca represents the lowest con-
centration toward the central part of the Balh Valley, while Mg shows its dominance in 

Fig. 6   Spatial distribution maps for the soil properties namely secondary (Ca: calcium; Mg: magnesium) 
and micronutrients (Zn: zinc; Fe: iron; Mn: manganese; Cu: copper) for the Balh Valley and its catchment 
area
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isolated locations. Furthermore, the DTPA-extractable Zn, Mn, and Cu also represent a 
higher concentration in some of the sites, such as the area underlying with Shali Forma-
tion covering the GKSB (Figs. 2b and 6). The Zn shows a high concentration toward the 
southern parts, while the other micronutrients show variation in isolated locations with few 
exceptions toward the extreme fringes.

4.4 � Principal component analysis and soil fertility management zones

The PCA analysis was performed to group the variables with similar traits. There are 
many principal components (PCs) formed; however, the PCs with an eigenvalue > 1 
were retained for final analysis that represents the cumulative loading of 55.77% 
(Table  5). The PCs with eigenvalues > 1 explain more variance than the other varia-
bles. These criteria allow selection of five PCs accounting for maximum contribution 
to quality improvement as per the action plan of the study region. The PC1 contributed 
15.91%, dominated by N, OC, Mg and Fe and the PC2 contributed 12.37% cumulative 
variability dominated by EC and pH. The five PCs were also reported in PCA analysis 
to determine the relative magnitude of anthropogenic and natural sources for the water-
shed area in northeast Iran (Khaledian et al., 2016). The PCA analysis shows that the 
available N, OC, Mg and Fe are the deciding factors that need prioritization for effective 

Table 5   Principal component analysis of the soil variables in the study area

PC loadings for each variable

Principal component Eigenvalues % of Variance Cumulative 
loading %

PC1 1.91 15.91 15.91
PC2 1.48 12.37 28.28
PC3 1.17 9.74 38.02
PC4 1.11 9.22 47.24
PC5 1.02 8.53 55.77
PC6 0.97 8.12 63.88
PC7 0.94 7.80 71.68
PC8 0.91 7.60 79.28
PC9 0.82 6.82 86.10
PC10 0.69 5.79 91.89
PC11 0.58 4.81 96.70
PC12 0.40 3.30 100.00

pH EC OC N P K Ca Mg Zn Fe Mn Cu

PC-
1

0.385 0.297 0.757 0.763 0.276 0.338 0.327 0.43 0.079  − 0.134 0.081 0.064

PC-
2

 − 0.63  − 0.706 0.272 0.067  − 0.095 0.166 0.372 0.259  − 0.26 0.434 0.098 0.044

PC-
3

0.238 0.242  − 0.204  − 0.261 0.207  − 0.462 0.517 0.334  − 0.404 0.179 0.17 0.291

PC-
4

 − 0.056  − 0.096  − 0.038 0.051  − 0.331  − 0.073  − 0.162 0.145 0.322  − 0.227 0.643 0.6

PC-
5

0.288 0.22  − 0.096  − 0.056  − 0.632 0.294 0.259  − 0.024 0.211 0.525  − 0.017  − 0.074
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nutrient management and sustainable development in the Balh Valley and its catchment 
area. In biplot, the analysis represents OC and N as positively correlated with the alti-
tude (Fig. 7). In biplot chart, the soil properties which act similarly can be grouped to 
support prioritization and decision making for precise nutrient management to achieve 
the long-term agricultural sustainability.

As discussed earlier, the use of fuzzy performance index, such as FPI and MPE, aid 
in optimizing the MZs. A similar concept was utilized to obtain the optimum number of 
MZs by plotting NCE and FPI with the number of zones (Fig. 8). The corresponding mini-
mal value of the NCE and FPI in the figure was used to plot management zones/classes. 
Looking into these specifications, two management zones were selected, and the resultant 

Fig. 7   Principal component analysis (PCA) biplot (PC1 and PC2) between altitude and the soil properties

Fig. 8   Optimum number of management zone with respect to minimal Fuzzy performance index (FPI) and 
normalized classification entropy (NCE)
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surface map is given as Fig. 9. The demarcation of management zone in the catchment 
scale reflects lower number of homogenous zones. Two MZs were also noticed by many 
researchers in the delineation of soil properties and yield zone (Damian et al., 2017; Taga-
rakis et al., 2013). The two MZs zone indicates less heterogeneity in the catchment scale 
attributed to similar conditions in the fluvial environment. The MZs are beneficial to pro-
vide site-specific inputs for precision agriculture. The comparisons of mean values are 
given in Table 6. The absence of a statistical difference in the mean value could be linked 
to the low variation of calculated soil properties in the study area. However, the nutrients 
having concentration lower than the limiting value as per specific crop requirement need 
to be considered that can influence long-term sustained agriculture productivity.

5 � Conclusions

The anthropogenic and geological modulation of the soil properties is always a sub-
ject of interest for productive areas under valley sub-regions. Information on the spa-
tial variability of soil properties is essential for conserving soil resources and reducing 

Fig. 9   Management zone map for the Balh Valley and its catchment area, Himachal Himalaya, India



14133Spatial variability of soil properties and delineation of…

1 3

Ta
bl

e 
6  

C
om

pa
ris

on
 o

f m
ea

n 
va

lu
es

 in
 th

e 
tw

o 
m

an
ag

em
en

t z
on

es
 th

e 
fu

zz
y 

c-
m

ea
ns

 a
lg

or
ith

m
 fo

r t
he

 st
ud

y 
ar

ea

Zo
ne

pH
EC

 (d
S/

m
)

O
C

 (g
/k

g)
N

 (m
g/

kg
)

P 
(m

g/
kg

)
K

 (m
g/

kg
)

C
a 

(m
g/

kg
)

M
g 

(m
g/

kg
)

Zn
 (m

g/
kg

)
Fe

 (m
g/

kg
)

M
n 

(m
g/

kg
)

C
u 

(m
g/

kg
)

Zo
ne

 1
6.

93
0.

32
12

.2
6

10
4.

46
12

.8
8

11
5.

87
43

9.
95

38
6.

95
1.

67
23

.2
2

10
.0

2
1.

32
Zo

ne
 2

6.
90

0.
31

11
.2

2
10

0.
92

12
.7

3
11

2.
34

41
3.

33
20

3.
69

1.
76

24
.0

5
9.

57
1.

26



14134	 P. Kumar et al.

1 3

excessive use of fertilizers to eliminate the adverse effect on environment. Geostatistical 
modeling was used for semivariogram analysis and to generate spatial variability maps, 
whereas the dimensionality was reduced with PCA analysis, and finally, the MZs map 
was prepared using fuzzy c-mean clustering. The low concentration of the major nutri-
ents, namely N, P, K, and DTPA-extractable Zn, was the major constraining factor for 
crop growth and production. The OC content and primary nutrients N and P except K 
are higher in the piedmont alluvial plains compared to its catchment area. While some 
of the micronutrients showing area-specific dominance as per the underlying geology, 
drainage pattern and anthropogenic intervention. The spatial correlation of the analyzed 
data shows its variation from weak to moderate, which indicates the influence of intrin-
sic (e.g., soil parent material and texture) and extrinsic factors (e.g., soil management 
and anthropogenic inputs). The variation of the fertility parameters at the catchment 
scale indicates the requirement for location-specific management of soil resources. This 
study delineates two homogenous areas as management zones for adopting site-specific 
fertilizer recommendations. The study further suggests more planned sampling under 
different land uses for capturing the influence of parent rock and soil management. The 
outcomes from the study can be used as an introductory guide for various stakeholders 
contributing to environmentally-sound management of soil resources.
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