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Abstract
Reducing carbon emissions has become an urgent task in China. As the category with the 
largest economic and emissions contribution to the industry, the carbon emissions research 
of the manufacturing industry is particularly important. This paper uses the LMDI method 
to decompose manufacturing carbon emissions into seven influencing factors (i.e., popu-
lation, urbanization, economic development, investment share, energy intensity, energy 
structure and emission intensity), in order to explore the factors driving manufacturing 
carbon emissions during 2003–2018. Then, the paper analyzes the decoupling relationship 
between manufacturing investment and carbon emissions in 30 provinces. Finally, three 
scenarios are developed to project future manufacturing emissions at the provincial level 
up to 2035, and whether manufacturing emissions in 30 provinces can realize peak is dis-
cussed. The paper results in three main findings. First, we find that energy intensity played 
the most important role in decreasing the manufacturing emissions during the whole study 
period, while the economic development and investment share were the main effect pro-
moting manufacturing carbon emissions. Second, China experienced a process from weak 
decoupling to strong decoupling between manufacturing invest and emissions. Third, Chi-
na’s manufacturing carbon emissions can only achieve the carbon peaking target in 2030 
under the High scenario, and 7 provinces cannot reach the peak before 2035 under the 
three scenarios.
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1  Introduction

Due to the rapid economic development, China’s carbon emissions grew six times faster 
than the rest of the world over the past 20 years, and China accounted for nearly two-thirds 
of the global increase in CO2 emissions. By the time of COVID-19 epidemic, China’s 
per capita CO2 emissions were higher than European Union’s (IEA, 2020). In this con-
text, China proposed to realize carbon peak by 2030 and carbon neutrality by 2060 in the 
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14th Five-Year Plan. However, the total consumption of fossil energy sources in China 
still maintains a steady and rapid growth; the carbon emissions reduction still faces huge 
challenges.

As a pillar industry of China’s economy, industrial industry consumed 70% of domestic 
energy and contributed more than 50% of domestic carbon emissions (Fu et al., 2021), and 
manufacturing had the greatest economic contribution to industry (NBSC, 2003–2018). 
Moreover, most of the manufacturing sectors in China produce excessive emissions which 
accounted for 42–44% of the country’s total carbon emissions every year from 1992 to 
2012 (Yang et al., 2020a), and there is an energy rebound effect in manufacturing industry, 
which confirms that China’s manufacturing industry has considerable space for emission 
reduction (Ma et  al., 2019a). Policies such as promoting industrial structure can greatly 
improve the energy efficiency to further reduce the emissions (Liu, 2022), while Chinese 
government is strengthening its manufacturing industry based on sustainable environmen-
tal policies, reforming laws, and regulations governing the manufacturing industry (Beraud 
et al., 2022). As a result, the manufacturing carbon emissions in China started to decline 
now (CEADs), so manufacturing carbon emissions reduction is essential for effective envi-
ronmental policies.

However, with the steady growth of China’s manufacturing investment, various indus-
tries are still expanding the scale of production, which makes emissions reduction more 
arduous. Although previous research has covered many economic factors in China, such as 
added value and economic structure, few studies have systematically studied the investment 
effect. Large investments were the second most important factor in the increase in CO2 
emissions from Chinese manufacturing companies, with even a greater impact on compa-
nies in some cases (Beraud et al., 2022). The increase in manufacturing carbon emissions 
led by manufacturing investment intensity accounted for one-fifth of the total added value 
during the Tenth Five-Year Plan (Liu et al., 2019). It is also found that China’s domestic 
investment-driven carbon emissions were equal to about one-third of the total annual car-
bon emissions in 2007, while the manufacturing sector possessed the second highest share 
of investment-driven energy consumption and carbon emissions (Fu et al., 2014). On the 
one hand, investment will promote the industrial development and economic growth of the 
manufacturing industry, driving the increase in carbon emissions. On the other hand, if 
the investment is concentrated in low-carbon transformation, it will help reduce the carbon 
emissions of the manufacturing industry. The investment space for green transformation 
of manufacturing industry is huge. Under the goal of carbon peak, manufacturing needs 
investment to develop low-carbon transformation such as energy-saving equipment, clean 
production technology and resource recycling project. Compared with other unilateral fac-
tors such as digitalization and mechanisms such as production and transportation, invest-
ment is the key to carbon peaks. Given this, it is necessary to clarify the factors that affect 
the carbon emissions of China’s manufacturing industry and make a comprehensive analy-
sis of the driving factors of the carbon emissions of China’s manufacturing industry.

Here, we contribute to previous literature based on the following aspects: firstly, pre-
vious studies had unilateral research on the drivers of manufacturing carbon emissions, 
mainly focusing on economic factor and energy intensity factor; we use the LMDI method 
to analyze the influential factors of manufacturing sector in China and its 30 provinces in 
four time periods during 2003–2018 and focus on the investment factor effect. We compare 
the contribution rates of different factors in different time periods, so that policymakers 
can better understand the role of these factors to control carbon emissions in a directional 
way. Moreover, previous literature highlighted the decoupling relationship between econ-
omy and carbon emissions, few paid attentions to the investment. Our study is one of the 
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first to analyze the decoupling index and status between investment scale and manufactur-
ing emissions at the national and provincial levels. Finally, we explore the national and 30 
provinces’ manufacturing carbon emissions reduction potential by 2035 and identify the 
peak time through scenario analysis. This is one of the few studies that analyzes the future 
trajectory of manufacturing carbon emissions by taking provincial differences into account, 
which can provide useful insights for policymakers to further reduce manufacturing carbon 
emissions by province.

The rest of the paper is organized as follows: First, we review related previous litera-
tures in Sect. 2. Then, we introduce the methods in Sect. 3. In Sect. 4, we show the results. 
Finally, conclusions and discussions are presented in Sect. 5.

2 � Literature review

Because China is now the world’s largest carbon emitter and has set a carbon peak target 
in 2030, there are numerous studies on the influential factors of carbon emissions in China 
(see Table S1). The two widely used methods are the LMDI method and the decoupling 
method. The LMDI model can decompose carbon emissions into multiple distinct effects 
with no unexplained residuals. It has a wider range of applications and is more adaptable 
to time-series analysis. Ma et al. (2019b) and Yang et al. (2020b) concluded that per capita 
GDP and energy efficiency were the main influencing factors that promoted China’s car-
bon emissions by Kaya identity and LMDI method. There are also many studies on carbon 
emissions conducted by regions or provinces (Zheng et al., 2019; Li et al., 2020; Zhang 
et al., 2021; Huang & Liang, 2021; Song et al., 2022; Pan et al., 2022; Liu et al., 2021). 
Dong et al. (2018) and Yang et al. (2020c) found that the energy-intensive industrial struc-
ture was one of the main reasons for the change of China’s carbon emissions. Thus, many 
scholars (Fatima et al., 2019; Wen & Li, 2020; Quan et al., 2020; Huang & Matsumoto, 
2021) analyzed the drivers of industrial CO2 emissions in China. The manufacturing indus-
try also became a representative of the industry for carbon emissions research (Liu et al., 
2019). Shi et al. (2019) and Fu et al. (2021) explored carbon emissions in China’s manufac-
turing industry and concluded that the industrial activity effect and energy intensity effect 
were main influencing factors. In general, these existing studies mainly focus on the impact 
of economic and energy factors; however, few explored from the perspective of investment.

Moreover, there are also many existing studies about decoupling analysis on China’s 
carbon emissions (see Table S2). A few studies focused on decoupling relationship between 
carbon emissions and economic growth in China (Jiang et al., 2018; Xu et al., 2021; Wu 
et al., 2019; Liang et al., 2019b; Wu et al., 2018; Pan et al., 2019). Because some schol-
ars (Xu et al., 2017; Liang et al., 2019a; Jia et al., 2021; Chen et al., 2022) found that the 
impact of industry on the decoupling status of economic growth and carbon emissions was 
a decisive factor and Wang et  al. (2019) concluded only manufacturing sector presented 
the same trend with the entire industrial sector, manufacturing became the representative 
of the industrial study. Hang et al. (2019) and Huang et al. (2021) explored the decoupling 
status of China’s manufacturing industry’s economic development and carbon emissions. 
However, most studies ignored the decoupling relationship between investment and carbon 
emissions although China’s investment in manufacturing industry increased fast and was 
the driving force of carbon emissions (Jin & Han, 2021).

Scenario analysis can be used to predict the future possible development trend of 
the variables and evaluate policies (see Table S3). Several publications have explored 
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the future carbon emissions of China’s industrial sub-sectors (Lin & Long, 2014; Wen 
& Li., 2014; Xie et al., 2016; Li et al., 2018; Eheliyagoda et al., 2022; Li et al., 2022). 
Lin and Tan (2017), Li et  al. (2017) and Zhou et  al. (2022), respectively, set up dif-
ferent scenarios to analyze the effects and calculate the carbon emissions of China’s 
energy intensive industries. Regarding the research on the carbon peak time, Wang et al. 
(2019) conducted scenario analysis of carbon emissions in China’s industrial sector and 
concluded that the peak time of each industrial sub-sector is different, while Cui et al. 
(2021) explored whether ten coastal provinces can meet their carbon emission peak 
targets by 2050. These studies about scenarios analysis mainly focus on different sub-
sectors in China and few was for the manufacturing industry. In addition, there are also 
great differences in carbon peaking policies in different regions, so it is necessary to 
study by regions.

3 � Methods

3.1 � Kaya identity and LMDI

The LMDI decomposition analysis can estimate the impact of each candidate fac-
tor on carbon emissions (Ang & Goh, 2019; Ang & Zhang, 2000; Xu & Ang, 2013). 
This method has the advantage of residual-free and aggregation-accurate (Ang, 2004). 
According to Kaya identity, we first decomposed carbon emissions into eight influenc-
ing factors. The specific model is as follows:

where C is carbon emissions; Pr is total population by the rth province; PUr is urban popu-
lation by the rth province; GDPr is total GDP by the rth province; IVr is manufacturing 
fixed asset investment scale by the rth province; Er is fossil energy consumption by the rth 
province; Ejr is the energy consumption of the jth fossil energy source (coal, oil, natural 
gas) by the rth province; Cjr is carbon emissions from jth fossil energy source by the rth 
province; U =

PU
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Because some previous studies have confirmed that investment has a driving effect 
on energy consumption and the manufacturing economy (Fu et al., 2014), but few stud-
ies focused on the impact of investment effects on carbon emissions, we introduce V and 
R here to study the role of investment in manufacturing carbon emissions.

The additive decomposition method proposed by Ang et al. (2015) for energy con-
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ΔC is the total change of carbon emissions and the right-hand side of the equation gives 
the effects associated with the eight factors between the years t and 0. The general formulas 
of LMDI for the effect of each factor can be defined as:

where i represent eight influencing factor variables.
According to the studies in Table S1, the population effect, urbanization effect, and eco-

nomic development effect usually play a role in promoting carbon emissions as the growth 
of these variables requires energy consumption and causes emissions, while the energy 
structure plays a weak inhibitory role as the increased proportion of clean energy can 
relieve carbon emissions. The impact of investment on carbon emissions may be achieved 
by promoting economic development and energy consumption, which is needed to be con-
firmed by analyzing the effects of V and R.

3.2 � Decoupling index

The decoupling index (DI) is used to illustrate the environmental burden of investment 
growth. Based on the elastic coefficient method, Tapio (2005) define the decoupling state 
with the range of elastic value. It is also widely used in the field of economic growth, 
resources, and environment. It can be presented as:

 where %∆C indicates the growth rate of carbon emissions per capita and %∆V is the 
growth rate of fixed asset investment in manufacturing. It can be calculated year on year or 
as an average annual growth rate in a given period. The eight different decoupling state is 
listed in Table 1.

Decoupling state generally means the situation when the growth of carbon emissions is 
lower than the investment. It indicates that the dependence of investment growth on carbon 
emissions is weakening. However, it doesn’t mean the manufacturing industry has achieved 

(2)
ΔC = Ct − C0

= ΔCP + ΔCU + ΔCM + ΔCV + ΔCR + ΔCS

(3)ΔCi =
∑ Ct − C0

ln(Ct − C0)
× ln

(

it

i0

)

(4)D =
%ΔC

%ΔV

Table 1   Criteria for the classification of decoupling indicator

The value of D The value of GDP and C Decoupling state

D < 0 %ΔV  > 0, %ΔC < 0 Strong decoupling
%ΔV  < 0, %ΔC > 0 Strong negative decoupling

0 < D< 0.8 %ΔV  > 0, %ΔC > 0 Weak decoupling
%ΔV  < 0, %ΔC < 0 Weak negative decoupling

0.8 < D < 1.2 %ΔV  > 0, %ΔC > 0 Expansive coupling
%ΔV  < 0, %ΔC < 0 Recessive coupling

D > 1.2 %ΔV  > 0, %ΔC > 0 Expansive negative decoupling
%ΔV  < 0, %ΔC < 0 Recessive decoupling
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low carbon, and it just represents that the correlation between carbon emissions and invest-
ment has been cut off, which is one of the steps to achieve low-carbon development.

3.3 � Scenario design

Based on the LMDI decomposition analysis, the emissions in manufacturing sectors in the 
year t can be estimated by the changes of population (P), urbanization rate (U), economic 
development (M), investment share (V), energy intensity (R), the proportion of energy con-
sumption (S), carbon emission factors (F) to the base year. Thus, based on Eq.  (1), we 
develop three scenarios, including baseline scenario (BS), low scenario (LS), and high 
scenario (HS), to project the provincial emissions in manufacturing sectors in China up 
to 2035. Since China’s Five-Year Plan (FYP) implements development targets and policy 
strategies to guide the direction of economic and social development, the projected periods 
are divided into three time periods, including 2019–2025, 2026–2030, 2031–2035. In the 
Baseline scenario, the annual average growth rates (AAGRs) of population (P), urbani-
zation rate (U), economic development (M) and energy intensity (R) and the proportion 
of energy consumption (S) are estimated in accordance with the FYPs of each province 
and related historical trend. (The details of references can be seen in Table S1.) During 
2026–2030 and 2031–2035 without FYPs, we estimate AAGRs with their development 
trends and government policies. For example, we assume that S3 will keep the same speed 
with a 4% AAGR during 2019–2025 in Beijing. From 2025, the proportion of energy con-
sumption of natural gas will continue to grow. Thus, the AAGR for S3 during 2026–2030 
and 2031–2035 will be 1.0 and 2.0 percent higher than that during 2018–2025, respectively. 
Each variable prediction method of each province is similar to this, and the growth values 
are adjusted according to different AAGRs in 2019–2025. In the high and low scenarios, 
referring to Song et al. (2022), we adjust the AAGRs from the baseline scenario for a com-
parison analysis. The HS refers to the largely adopted mitigation measures (e.g., reduce 
energy intensity and adjust energy structure) when economic and social development was 
exponential. Conversely, the LS only achieves a slow development of economic and social 
development with relatively loose environmental regulation. The detailed assumptions 
of the AAGRs of population (P), urbanization rate (U), economic development (M) and 
energy intensity (R) and the proportion of energy consumption (S) over 2021–2035 in three 
scenarios are given in Tables S2, S3, S4, S5 and S6.

Since China’s FYP did not provide the target of investment share during 2021–2035, we 
estimate the AAGRs of investment share (V) based on the AAGRs of investment and GDP 
scale. Since the investment scale of manufacturing sectors for 30 provinces for the period 
of 2021–2035 could not be directly obtained based on the China’s FYPs, future provincial 
total fixed asset investment is available from the FYPs. We assumed that a 1% increase of 
total fixed asset investment would lead to a specific percentage increase of the investment 
in manufacturing industry and estimate the elasticities of investment scale based on the 
function of total fixed asset investment in 30 provinces.

Since the scenario analysis is a static projection which ignores the possible uncertainties 
in the future, based on the above scenarios, we employ the Monte Carlo simulation method 
to project China’s overall and provincial manufacturing carbon emissions, such that the 
possible ranges of future emissions can be obtained by considering the uncertainties of 
driving factors. We first define prior probabilities for future change rates of factors as the 
triangular distribution, as the most expected value and the range for each factor can be pre-
estimated by the above scenario design. Then, we conduct 10,000 Monte Carlo simulations 
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such that accurate results can be obtained. Finally, we take the results of the maximum 
value, minimum value and the middle value under the 5% confidence interval to obtain the 
forecast curves of China’s manufacturing carbon emissions from 2019 to 2035 under the 
three scenarios, and the proportion of manufacturing carbon emissions in every five years 
is obtained according to the total carbon emissions data of China predicted by IEA.

3.4 � Data source

In our paper, the provincial total population, urban population and GDP data are extracted 
from each provincial statistical yearbook (2003–2018). We collect provincial fixed asset 
investment data from Statistical Yearbook of the Chinese Investment in Fixed Assets 
(2003–2018). The energy consumption of the three types of fossil fuels in the manufactur-
ing industry from 2003 to 2018 is obtained from CEADs; then, we use carbon emission 
factors of different energy sources in Guidelines for Compiling Provincial Greenhouse Gas 
Inventories to calculate the corresponding carbon emissions. Thirty provinces are included, 
expect for Tibet, Taiwan, Hong Kong, and Macao because of the lack of data.

4 � Results

4.1 � Drivers of manufacturing emissions

The carbon emissions in China during the 2003–2018 period can be divided into four 
stages, with 2007, 2013, and 2016 as the nodes according to the turning point of the chang-
ing curve of China’s carbon emissions (see Fig S1). Figure 1 reflects the decomposition of 
manufacturing carbon emissions of these four stages in China. Based on LMDI method, the 

Fig. 1   Drivers of manufacturing emissions in China during 2003–2018. Note: as the number of years is not 
the same in both periods, we display compound annual growth or reduction. The compound annual rate of 
total emissions (r) is related to the total rate (R) across n years as r = n

√

(1 + R)-1, and compound annual 
contribution of a given factor (k) is r × S

k
 where S

k
 is the share of the contribution of the factor during the 

whole period
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contribution of nine drivers to China’s manufacturing carbon emissions is analyzed. The 
factors include population, urbanization, economic development, investment share, energy 
intensity and the proportion of energy consumption in three types of fossil energy source 
(coal, oil, and natural gas). In general, China’s manufacturing carbon emissions increased 
from 2003 to 2013 and decreased 2013 to 2018, with the annual growth rate of 13.28% 
year−1in 2003–2007, compared with − 3.61% year−1 in 2016–2018. Figure 1 shows invest-
ment share and economic development were the main drivers of carbon emission growth, 
while energy intensity played an important role in carbon reduction. The population factor, 
urbanization factor and economic development factor played a positive role from 2003 to 
2018, and among them economic development factor dominated, stemming from China’s 
fast-growing GDP, although its proportion decreased gradually. The proportion of popu-
lation factor fluctuated around 0.6%, while the urbanization factor decreased from 3.59 
to 1.93% year−1. Due to national economic policy that focus on investment ten years ago 
and its slowing growth in recent years, investment share accounted for 13.55% year−1 in 
2003–2007, falling to 10.62% year−1 in 2007–2013 and 0.63% year−1 in 2013–2016, and 
then even dropped to − 3.15% year−1 in 2016–2018, which played a role in reducing car-
bon emissions. Energy intensity had a reducing effect on carbon emissions, from − 18.49% 
year−1 in 2003–2007 to − 19.07% year−1 in 2007–2013, − 8.43% year−1 in 2013–2016 
and − 8.63% year−1 in 2016–2018. It has the largest share of all factors due to the govern-
ment’s emphasis on reducing energy intensity. The effect of Sj (the energy consumption 
proportion of three fossil energy sources) was negligible, no more than 1% year−1 in all 
four stages. Because the country pay attention to the development of clean energy these 
years, energy consumption of natural gas continued to grow positively while coal and oil 
grow negatively.

Then, the drivers for each province are also analyzed. Figure 2 shows that investment, 
economic development and energy intensity were the main influencing factors, which 
was similar to the national level. Population played a positive role in manufacturing car-
bon emissions in each province, but the contribution rate was small, which was no more 

Fig. 2   Drivers of manufacturing emissions in 30 provinces during 2003–2018
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than 0.1 in almost all provinces. Urbanization led to an increase in manufacturing car-
bon emissions in all provinces except Zhejiang, Guangdong, in 2003–2007 and Hunan in 
2013–2016. Corresponding to Fig. 1, economic development played a significant role in 
promoting emissions in all provinces before 2013, accounting for about 0.2–0.4  year−1, 
after 2013, it dropped to less than 0.2  year−1 and even became negative in some prov-
inces. With the proportion close to economic development, the investment share was the 
main driver in promoting emissions in all provinces except Beijing and Shanghai before 
2013, while after 2013, consistent with the national level, it played a role in reducing emis-
sions in most provinces with the value of contribution rate was around − 0.3 to − 0.1 year−1. 
The main force in reducing carbon emissions in provinces was energy intensity, while its 
contribution rate in most provinces was around − 0.2 to − 0.4 year−1. After 2013, as prov-
inces promoted clean energy in recent years to reduce carbon emissions, the proportion of 
natural gas energy consumption in three fossil energy sources became the main driving 
force with the value increasing to 0.2 and 0.5 year−1, compared with its weak effect before 
2013 with no more than 0.01 year−1. Coal and oil had a positive impact in most provinces, 
except Beijing’s share of coal always had an impact on reducing emissions, but these two 
factors’ impacts had gradually become insignificant.

4.2 � Decoupling of manufacturing emissions from investment growth

Based on Eq. (4), the DI of China’s manufacturing carbon emissions from investment scale 
during the time 2004–2018 was calculated and the decoupling status for each year was 
defined. As shown in Fig.  3, the status before 2013 and in 2014 was weak decoupling. 
In the status of weak decoupling, China’s manufacturing carbon emissions and invest-
ment were both increasing, but investment grew faster than carbon emissions. DI fluctu-
ated around 0.2 from 2007 to 2012 and became negative for the first time in 2013 due 
to a reduction in manufacturing carbon emissions. In 2015, the status turned to weak 

Fig. 3   Decoupling of manufacturing emissions from investment scale in China during 2003–2018
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decoupling again, but then, the DI remained negative for the next four years, that is, strong 
decoupling. Overall, before 2013 and after 2014, the decoupling state remained stable, 
which is inseparable from the energy saving and emission reduction policy started during 
the 11th FYP period. The change of DI from weak decoupling to strong decoupling shows 
that China’s manufacturing industry has achieved remarkable results in reducing carbon 
emissions and sustainable development.

According to Eq.  (4) and the categories given in Table 1, the decoupling status of 30 
provinces from 2004 to 2018 was classified as shown in Fig. 4. The table in Fig. 4 shows 
the variation of the eight categories over the analyzed period in 30 provinces in China, 
where each of the eight decoupling categories is represented by a unique color. According 
to Li (2020), divide six regions of China (see Table 2) to analyze this table. In 2004–2014, 
the decoupling status of North China and Northeast China was dominated by WD and SD; 
then, the main status of North China was SD and WND in 2015–2018, while Northeast 

Province 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Beijing SD SND WND SD RC RD SD WD WND SD WND WD SD SND WND
Tianjin WD WD WD WD WD WD WD WD SND WD WD SD RC WND WND
Hebei WD EC WD WD WD WD END WD SD WD SD SD WD SD END
Shanxi SD SD WD WD SD SD WD WD WD WD WD RC WD WND WD

InnerMongolia WD WD WD WD EC WD SD WD SD END SD SND SND WND END
Liaoning WD WD WD WD WD WD EC WD WD SD WD SND WND SND SD
Jilin SD WD WD WD SD WD WD SND SD SD WD SD SD SND RD

Heilongjiang WD WD EC WD SD WD SD WD WD SD WND SD WD SD SD
Shanghai WD SND END WD WND SND WD SD RD SND WND WND SD SD SD
Jiangsu END WD WD WD WD WD WD WD WD WD WD WD SD SD SD
Zhejiang END WD WD WD WD SD END WD WD SD WD WD SD SD SD
Anhui SD WD WD WD WD SD SD SD WD EC WD WD SD SD SD
Fujian WD END WD WD WD EC WD SD WD SD END SD SD SD SD
Jiangxi WD WD WD WD WD WD WD WD WD WD WD WD SD WD SD

Shandong WD WD WD EC WD WD WD WD WD WD WD SD SD RD SND
Henan WD WD WD WD WD WD EC SD SD WD EC SD SD SD SD
Hubei WD EC WD WD WD WD WD WD WD SD WD SD SD SD SD
Hunan WD END WD WD WD SD SD SD WD SD WD WD END END SD

Guangdong SD WD END SND EC SND WD SD SD SD WD WD SD SD SND
Guangxi WD WD WD WD WD WD WD WD WD WD WD SD SND WD SD
Hainan WD SD SND SND SD WND SD WD SD WD SND WND SND SD SND

Chongqing SD END SD SD END WD END SD SD SD END SD SD WD EC
Sichuan WD SD WD WD WD WD EC SD END WD END SD SD SD SD
Guizhou END END END SD SD WD WD WD WD SD SD RD SD RD SD
Yunnan SD END SD SD WD WD WD SD WD SD SD RD END WD WD
Shaanxi EC EC SD WD WD WD WD END SD SD WD SD SD SD WD
Gansu END END WD SD WD WD WD SD WD WD WD WND SD WND WND

Qinghai EC WD END WD END SD SD WD END WD EC SND SND SD SD
Ningxia WD SD END WD WD END WD WD WD WD SND END SD SND END
Xinjiang SD END WD SD WD END SD WD WD END WD RD SND SND RC

Weak Decoupling Strong Negative Decoupling Expansive Negative Decoupling Recessive Coupling
Strong Decoupling Weak Negative Decoupling Expansive Coupling Recessive Decoupling

Fig. 4   Decoupling of manufacturing emissions from investment scale in 30 provinces during 2003–2019

Table 2   Regional classification

Regional division Provinces

North China Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia
Northeast China Liaoning, Jilin, Heilongjiang
East China Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong
Central South China Henan, Hubei, Hunan, Guangdong, Guangxi, Hainan
Southwest China Chongqing, Sichuan, Guizhou, Yunnan
Northwest China Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang
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China was SD and SND at the same time. The unstable changes in the state represent that 
these two regions have not yet reached a complete decoupling state, maybe because these 
two regions are still the industry structure led by heavy industries. The decoupling sta-
tus of East China and Central South China in 2004–2015 was dominated by WD, and in 
2016–2018 SD became the main status in these two regions. The decoupling state is basi-
cally stable, which has a lot to do with the continuous implementation of the low carbon 
economic policy and the industrial structure dominated by the service industry and light 
industry in these two regions. Before 2015, both Northwest China and Southwest China 
had WD as the main status, followed by SD and END, then after 2015, the decoupling sta-
tus was rich in various types, with SD as the main status, and RD, WND, WND and other 
types appeared. These variable states are attributed to the Western Development strategy in 
these provinces. It is worth mentioning that when other provinces changed between three 
or four types, Beijing, and Shanghai, as the two core economic provinces, had six types 
of decoupling status from 2004 to 2018, and the status is constantly changing, which is 
related to the changing economic and low carbon policies of the two major cities. Moreo-
ver, after 2015, the main decoupling status in economically developed areas (e.g., Zhe-
jiang, Shanghai, and Guangdong) was SD, while in economically underdeveloped areas 
(e.g., Hainan and Gansu) the status of SND, WND, RC, and RD had appeared in recent 
years. This means that the proportion of industrial output in the economically underdevel-
oped province is still growing rapidly, so it is difficult to reduce carbon emissions.

4.3 � Projections of manufacturing emissions

Figure  5 shows the projected changes in China’s manufacturing carbon emissions from 
2019 to 2035 under three scenarios and the projected proportion of manufacturing carbon 
emissions in the country’s carbon emissions. Figure  5 shows that in the High scenario, 
China’s manufacturing carbon peak will be reached with 2403 Mt CO2 in 2030, which is 
the target year. Then in 2030–2035, manufacturing carbon emissions will be reduced to 
2393 Mt CO2. But in the other two scenarios, the projected carbon emissions will continue 
to grow until 2035, peaking at 3489 Mt CO2 in the Baseline scenario and 4648 Mt CO2 in 
the Low scenario. In all three scenarios, the proportion of manufacturing carbon emissions 
to national carbon emissions (data from IEA forecasts) will peak in 2030 at 24.45, 31.61 
and 38.78% in the High, Baseline and Low scenarios, respectively.

Figure 6 shows the possible change of provincial manufacturing carbon emissions up to 
2035 in all three scenarios. It can be seen that all provinces have the highest carbon emis-
sions in the Low scenario and the lowest carbon emissions in the High scenario. Therefore, 
we can know that the increase in the population, urbanization rate, economic development, 
and the proportion of energy consumption of natural gas does not promote carbon emis-
sions enough to compensate for the inhibition of carbon emissions caused by the decrease 
in investment share, energy intensity and the proportion of coal and oil.

The change trends of the projections of manufacturing carbon emissions vary in dif-
ferent provinces. It’s on a downward trend in the Northeast China and Northwest China 
like Liaoning, Qinghai, Ningxia and Xinjiang, and an upward trend in the East China and 
Southwest China like Jiangsu, Zhejiang, Fujian, Chongqing and Yunnan. Manufacturing 
carbon emissions in major energy provinces such as Shandong still shows a strong upward 
trend. There were also two different trends in the Low scenario and High scenario in some 
provinces like Tianjin, Hebei, Henan, Sichuan, Shaanxi and Gansu, which explains the dif-
ference in the curve trends of these two levels across the country. Most of the southern 
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Fig. 6   Projections of manufacturing emissions in 30 provinces during 2020–2035

Fig. 5   Projections of manufacturing emissions in 30 China during 2020–2035
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regions have a high level of economic development and less pollution, so it is predicted 
that the trend of manufacturing carbon emissions will continue to rise in the future, while 
the northern region is the opposite, so it will show a downward trend. It is worth mention-
ing that some developed provinces, such as Jiangsu, Zhejiang, Guangdong, are difficult 
to achieve the target of peaking emissions by 2030. From the perspective of driven fac-
tors, these provinces have developed economy and high economic development goals, so 
the urbanization rate and economic development effect are very strong. From the perspec-
tive of economic structure, the manufacturing industry of these provinces is dominated by 
light industry, while China mainly focuses on heavy industry emissions reduction, which 
may ignore the emission reduction of these provinces’ industry. From a policy perspective, 
these provinces are close to or contain super-first-tier cities, so there are cases of factory 
relocation.

Therefore, from the analysis of Fig. 6, we can divide the 30 provinces into three catego-
ries (see Table 3):

(1)	 Provinces which can meet the peak emissions target in 2030. Beijing, Liaoning, Shang-
hai, Guizhou, Qinghai, Ningxia, and Xinjiang are fall into this category, accounting for 
23.33% of 30 provinces, because these 7 provinces can reach their MCE peaks before 
2030 in all three scenarios. If these provinces can stick to their current emission reduc-
tion policies and rein in MCE growth, the 2030 target will be easily achieved.

(2)	 Provinces which are likely to peak in emissions before 2030. For such provinces, 
peaking before 2030 can only be achieved only in one or two scenarios. 15 provinces 
including Tianjin, Hebei, Shanxi, Inner Mongolia, Jilin, Heilongjiang, Anhui, Jiangxi, 
Shandong, Henan, Hubei, Hainan, Sichuan, Shaanxi, and Gansu belong to this cat-
egory. The change trends in these provinces differ widely across three scenarios. For 
example, Hebei can only meet its 2030 emission target in the High scenario. In the 
Low scenario, it shows an increasing trend. This means that current emissions control 
measures are insufficient to support these provinces in reaching their targets. The gov-
ernment has stepped up efforts to effectively balance manufacturing consumption and 
energy consumption, which is very helpful to achieve the emission reduction target of 
manufacturing.

(3)	 Provinces which are difficult to achieve the target of peaking emissions by 2030. Eight 
provinces including Jiangsu, Zhejiang, Fujian, Hunan, Guangdong, Guangxi, Chong-
qing, and Yunnan belong to this category. These provinces are unable to peak emissions 
before 2030, and in all three scenarios, emissions continue to increase through 2035. 

Table 3   Provinces classification according to the possibility to meet 2030 carbon peak

The possibility to meet 2030 
carbon peak

Provinces

Can Beijing, Liaoning, Shanghai, Guizhou, Qinghai, Ningxia, and Xinjiang
Likely Tianjin, Hebei, Shanxi, Inner Mongolia, Jilin, Heilongjiang, Anhui, 

Jiangxi, Shandong, Henan, Hubei, Hainan, Sichuan, Shaanxi, and 
Gansu

Difficult Jiangsu, Zhejiang, Fujian, Hunan, Guangdong, Guangxi,
Chongqing and Yunnan
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Therefore, there is a need for further push by provincial governments to control the 
growth of MCE, such as reducing the energy intensity of manufacturing and the use 
of fossil fuels.

5 � Conclusions and policy implications

5.1 � Conclusions

In this paper, we first investigated the drivers of China’s manufacturing emissions using 
the LMDI model. Then, we analyzed the decoupling relationship between manufacturing 
investment and carbon emissions at the national and provincial levels. Finally, we employ 
the scenario analysis to project the future change of manufacturing carbon emissions across 
the country and each province in different scenarios to observe the possible peak time. The 
main conclusions are as follows:

(1)	 At the national level, the annual growth rate of manufacturing carbon emissions grad-
ually decreased, from 13.28% in 2003–2007 to − 3.61% in 2016–2018. The energy 
intensity effect contributed the most in reducing the manufacturing carbon emissions 
during the whole study period. The economic development was the most powerful 
effect promoting manufacturing carbon emissions in 2003–2007 and 2007–2013, then 
followed by investment share in 2013–2016 and 2016–2018. This is caused by China’s 
rapidly growing GDP and the government’s emphasis on reducing energy intensity.

(2)	 At the provincial level, the economic development and investment share played the 
most powerful role in increasing manufacturing carbon emissions in most provinces in 
the two time periods of 2003–2007 and 2007–2013, while the energy intensity was the 
major factor of reducing emissions. Then in 2013–2016 and 2016–2018, the investment 
share played a role in reducing emissions with the − 0.3 to − 0.1 year−1 contribution 
rate. The main promotion effect in the last two time periods was the proportion of 
natural gas energy consumption in three fossil energy sources as most provinces have 
vigorously developed clean energy in recent years, which was the biggest difference 
compared with the national level.

(3)	 During the study period, the decoupling status of manufacturing carbon emissions 
and investment scale at the national level gradually changed from weak decoupling in 
2004–2014 to strong decoupling in 2015–2018, which is due to the national emission 
reduction policy. At the provincial level, the decoupling status of almost all prov-
inces before 2015 was dominated by WD. After 2015, the decoupling status varies by 
regions, while the main decoupling status in economically developed areas was SD 
and in economically underdeveloped areas the status of SND, WND, RC and RD had 
appeared due to the development policies and industrial structures of different regions.

(4)	 In the scenario analysis, at the national level, the manufacturing carbon emissions can 
reach the peak emissions before 2030 with 2403 Mt CO2 in the High scenario while 
in Baseline and Low scenarios the projected emissions keep grow until 2035. At the 
provincial level, based on the peak time of manufacturing carbon emissions in each 
province, 30 provinces are divided into three categories. In all three scenarios, 7 prov-
inces can reach their emissions peak before 2030, fifteen provinces need more help to 
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meet their 2030 emissions targets for the manufacturing and there are still 8 provinces 
that will not reach peak manufacturing carbon emissions by 2030. This is related to the 
economic development, industrial structure, and policies of different provinces, so the 
focus of the policies to reduce the manufacturing carbon emissions should be adjusted 
according to different provinces.

5.2 � Policy implications

Based on the results, we suggest that the government can take some policies for manu-
facturing to achieve the goal of carbon peak. The specific policies are as follows:

(1)	 Encourage the transformation of manufacturing to improve the efficiency of energy 
utilization.

	   Through LMDI decomposition analysis, the investment share and the energy inten-
sity were the most important factors in the carbon emissions increase and reduction, 
respectively. Therefore, the government should introduce relevant policies should be 
introduced to encourage the low carbon transformation of the manufacturing indus-
try to guide enterprises to increase investment in technological transformation. Fur-
ther, energy conservation and new energy technology can be vigorously developed to 
improve the utilization efficiency of energy. It’s also necessary to reduce the role of 
economic development reasonably and appropriately in promoting carbon emissions, 
such as curbing the blind development of industries with low levels, high energy con-
sumption and high emissions.

(2)	 Optimize investment structure according to regions’ decoupling situation.
	   After 2015, the economically developed regions have achieved strong decoupling 

between the investment and carbon emissions, while the decoupling status of economi-
cally underdeveloped regions was diversified. Thus, those underdeveloped regions are 
required to further increase investment distribution in future policy formulation, and 
make efforts to optimize the investment structure, such as increasing investment in new 
energy technologies and reducing unnecessary use of energy-intensive industrial sites.

(3)	 Adjust the current emission reduction policies in the light of the provincial conditions.
	   According to results of scenario analysis, the emissions peak of seven provinces can 

be reached before 2030, thus, they should continue to maintain the provincial planning 
of the current policy. For eight provinces those cannot reach the peak before 2030, they 
need the government to further provide emission reduction power according to their 
own the geographical environment, resources, and other characteristics, for instance, 
Hunan can make more use of water resources and further increase the proportion of 
clean energy based on the abundance of local water resources. For the remaining prov-
inces which are likely to reach 2030 carbon peaks, they should strictly reduce energy 
intensity and adjust energy structure according to the government setting goals.
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