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Abstract
Rather than relying on traditional factors, low-carbon transportation should be developed 
by paying more attention to innovation. By constructing an extended stochastic frontier 
production function, this study explores the threshold effect of technological progress bias 
on  CO2 emission in the transportation sector in eight different regions of China. It is found 
as the technological progress bias crosses the threshold, the impact of technological pro-
gress bias on transportation  CO2 emission changes from positive to negative in Northeast 
China, the midstream of the Yellow River, East China, the Southeast Coast, the midstream 
of the Yangtze River and the Northwest region. In Northeast China, the coefficient changes 
from 0.121 to −0.168. In the middle reaches of the Yellow River, the coefficient changes 
from 0.528 to −0.0468. In East China, the coefficient changes from 0.495 to −0.325. In the 
Southeast Coast, the coefficient changes from 0.112 to −0.757. In the middle reaches of the 
Yangtze River, the coefficient changes from 0.518 to −0.177. In Southwest China, the coef-
ficient changes from 0.293 to −0.014. In Northwest China, the coefficient changes from 
1.021 to −1.436. In North China, when the technological progress bias exceeds the thresh-
old, the biased technological progress still promotes  CO2 emission. The coefficient changes 
from 0.157 to 0.406. The governments should continue to encourage the transformation of 
energy technologies from non-renewable energy to renewable energy through differentiated 
policies.
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1 Introduction

The “2020 Government Work Report” considers “two new and one focus” as the key task this 
year. The latest and conventional infrastructures should be integrated and developed in the 
transportation field. This can enable to realizing an economical, efficient, green and intensive 
transportation development mode. However, the transportation sector is considered to be the 
most difficult sector for the reduction of  CO2 emission, because its energy use and  CO2 emis-
sions are growing the swiftest (Pietzcker, 2014). According to IEA in 2020, the  CO2 emissions 
of China’s transportation industry have further increased to 84.35 billion tons, after the USA 
(IEA, 2020). With the sustained logistics development and the increasing number of cars,  CO2 
in China’s transportation sector will increase further. “The Outline of Building a Powerful 
Transportation Country” emphasizes that the low-carbon transportation development should 
transition from relying on conventional elements to paying more attention to innovation.

To achieve a significant reduction in  CO2 emission from the transport sector by 2030, we 
encounter significant pressure from energy reform and technological change. Therefore, to 
achieve the emission reduction target of transportation, comprehensively understanding the 
mechanism of the energy-saving preference of technological progress on carbon emission 
reduction is necessary. This is not only conducive to the steady growth of the transportation 
sector, but also to the promotion of scientific emission reduction in the transportation sector. 
The contribution of different biased technologies to  CO2 reduction poses a difference. Capital- 
or labor-biased technological progress may lead to higher energy consumption and  CO2 emis-
sion, while energy-biased technological progress may increase or decrease carbon emissions. 
For example, Jing (2019) found that each unit of labor-or capital-biased technological pro-
gress leads to approximately 1% increase in carbon emissions, and each unit of energy-biased 
technological progress leads to approximately 2% reduction in carbon emissions. Liao (2020) 
found that technological progress with an energy-saving bias is both likely to increase and 
reduce carbon emissions. There is a strong nonlinear relation between technological progress 
bias and carbon emission. Exploring whether there is a threshold effect between technological 
progress bias and transport carbon emissions is of immense significance, in order to under-
stand the internal mechanism of transport carbon emission reduction and formulate scientific 
and technological policies.

The main contributions of this study include the following: (1) Based on the biased tech-
nology theory and the extended stochastic frontier model, we explore the heterogeneity of 
the biased technology progress in different regions. (2) By constructing a nonlinear threshold 
model, this study explores the dynamic threshold effect of biased technological progress on 
transportation carbon emissions in eight major regions of China. (3) Transportation carbon 
emission reduction technology policies for nonlinear impact characteristics are proposed.

The remaining paper is structured as follows. Section  2 presents the literature review, 
whereas Sect. 3 presents the methodology. The results of threshold regression and the discus-
sion are presented in Sects. 4 and 5, respectively. The conclusion and policy suggestions are 
presented in Sect. 6.

2  Literature review

Technology progress is vital for realizing transportation carbon emission reduction (Cui, 
2015). Neutral technological progress or biased technological progress is of immense 
significance for understanding transportation carbon emission reduction. Neutral 
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technological progress will change the marginal output of energy and other production 
factors in the same proportion, while biased technological progress will change the rela-
tive usage between energy and other factors in different proportions (Aghion, 2016; Chen, 
2014). In other words, it will save more energy than the other factors for the same trans-
portation output, influencing traffic  CO2 emissions. With Acemoglu’s discussion on biased 
technological progress in the environmental field (Acemoglu, 2002, 2009), the impact of 
the nature of technological progress on the environment has gradually shifted from focus-
ing on neutral technological progress to biased technological progress (Dong, 2019; Zha, 
2017). However, there is negligible research and analysis on the influence of biased tech-
nology on transportation  CO2 emission. Existing literature focuses on the impact of neutral 
technological progress on transportation  CO2 emission, almost ignoring the effect of biased 
technological progress (Bai, 2019; Cui, 2015). Furthermore, the role of technological pro-
gress in traffic  CO2 emission cannot be comprehensively identified. Based on the technol-
ogy consistency theory (Antonelli, 2016), the degree of consistency between technology 
progress bias and local energy factors may have an important impact on carbon emission 
reduction.

Certain studies explored the relationship between biased technological progress and car-
bon emissions from a regional perspective. Zhang (2017) found that the degree of techno-
logical progress bias and regional energy-saving effect are affected by the regional capital. 
The greater the degree of capital bias in a region, the slighter the technological energy-sav-
ing effect is in the region. Kang (2018) found that the impact of technological progress bias 
on carbon emissions in different regions is influenced by the local economic level. Fur-
thermore, Jing (2019) found that the impact of energy and low-carbon biased technologies 
on  CO2 is affected by temporal and spatial differences. Zhou (2020) found that industrial 
structural change exhibits regional heterogeneity: in eastern China, industrial structural 
rationalization promotes all types of technological progress; in central China and western 
China, industrial structural upgrading can accelerate energy-saving and pollution abate-
ment technological progress. Tan (2022) found that the resident consumption improvement 
and technological progress play the main transmission role through the empirical study 
of the entire sample and heterogeneous urban samples. There are considerable differences 
in technology bias in different regions of China. Identifying which factors may affect the 
relationship between technology bias and traffic  CO2 emission in different regions is sig-
nificant for realizing technology-driven green transportation in different regions. Based on 
this, this study further verifies whether it has a threshold effect and has crossed the thresh-
old based on the threshold model in different regions.

Certain researchers investigate the impact of technological bias on energy or  CO2 
emission from an industry perspective. Welsch (2005) found that the technology pro-
gress with energy bias in the German production sector enables the reduction of carbon 
emission. Employing the multi-sector equilibrium model, Okushima (2009) found that 
Japan’s technological progress is considerably different across different industries, and 
its impact on  CO2 emission is also significantly different. Acemoglu (2012) found that, 
in a two-sector model, the increase of resource price is conducive to the transforma-
tion to clean technology and environmental improvement. Employing the three-factor 
constant elasticity of substitution (CES) model, Zha (2017) found that the efficiency 
of energy-biased technology progress in the industrial sector decreased annually, 
and the carbon emission also decreased. There are also extensive studies reported 
in China, such as Wang’s application of data envelopment method. They found that 
energy-biased technological progress contributes to the improvement of the indus-
trial total factor productivity and energy efficiency (Chen, 2014). Certain studies used 
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transcendental logarithmic cost function analysis to investigate the differences in  CO2 
emission across different industries (Binswanger, 1974). Li (2015) found that biased 
technology progress of different source exhibits different impacts on the energy inten-
sity and  CO2 emission of the industrial sector. Zhang (2017) found that energy-biased 
technological progress has continuously promoted  CO2 emissions with the decrease in 
industrial energy efficiency. Chen (2021) found that the impact of technological pro-
gress on the energy intensity of the manufacturing industry is different, among which 
the effect of biased technological progress is more significant based on factor substitu-
tion. Liao (2018) developed a two-level CES function based on the perspective of the 
bias of technical progress. In order to estimate the elasticity of substitution between 
energy and non-energy factors from 27 sub-divided manufacturing industries based on 
panel data, Zheng (2022) found that with the development of technology, the indus-
trial structure upgrading under resource dependence could cause an increase in carbon 
emissions at the beginning, but the increase would be weakened subsequently.

Certain studies focus on analyzing the nonlinear relationship between biased tech-
nological progress and energy or  CO2 emissions. Peng (2019) found that energy-biased 
industrial investment exhibits different threshold effects for different threshold vari-
ables. Dong (2019) used the double-layer CES function, and found that the technology 
spillovers of energy-saving bias caused by foreign direct investment (FDI) will have 
a threshold effect on  CO2. Wu (2018) used the three-factor transcendental logarith-
mic production function and found that the biased technology caused the total fac-
tor energy efficiency to gradually decrease in the upper, middle and lower mainstream 
of the Yangtze River. Lin (2014) found that energy-biased technology exhibited an 
inverted U-shaped impact on the industrial energy consumption and  CO2 emission. 
Qian (2020) argued that if the energy-biased technology was located on the left side 
of the inverted U-shaped curve, the investment in energy technology could be accel-
erated. Kivyiro (2014) found that the bias of energy production technology is more 
apparent than that of energy utilization technology, causing the  CO2 rebound non-
linear effect. Liao (2020) reported the existence of a threshold value of progress in 
energy-biased technology. Progress in energy-biased technology has a positive effect 
on energy efficiency below the threshold, and the effect is negative above the thresh-
old. Yang and Liu (2022), Yang and Hao (2022) reported that the GVC embedding 
position and the energy-biased technology progress show an inverted U-shaped curve 
relationship. Kha (2020) found that relatively lower endowments with technological 
knowledge are a barrier to diffusion for new technologies. The study also shows how 
the evolution of relative stocks of technological knowledge explains different shapes 
of diffusion curves. Li (2021) found that carbon emission trading schemes (ETSs) can 
direct innovation activities toward low-carbon technologies. Lyu (2022) found that 
capital-saving technical change exhibits a negative double-threshold characteristic on 
urban carbon footprint in China.

Most of the existing studies of the industry or manufacturing pertain to carbon 
emissions, researching on input factors for analyzing transportation development. 
There is still no relevant literature that has studied the relationship among technologi-
cal progress bias, factor substitution and carbon emission in transportation. This study 
intends to bridge this in the literature. To solve the existing problems, this study has 
used the stochastic frontier production function model to calculate the transportation 
technology progress bias. A dynamic threshold model was developed to explore the 
threshold effect of technology progress bias on transportation  CO2 emission.
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3  Research methodology and data sources

From the perspective of methodology, this research is mainly divided into three research 
steps. Firstly, the stochastic frontier model is constructed, and the elasticity of factor output 
and the bias of technological progress are calculated. Secondly, the influence mechanism of 
different types of transportation technology progress bias on carbon emission is analyzed. 
Finally, the threshold model is constructed based on the above analysis, and the threshold 
model is tested and regressed (See Fig. 1).

3.1  Measurement method of factor bias

The existing research mainly sets the production function in three forms: C-D production 
function, CES production function and stochastic frontier production. The C-D produc-
tion function assumes that labor output elasticity and capital output elasticity are fixed, 
implying that technological progress is neutral and neglects the skewness of technological 
progress. Therefore, CES production function is widely used in measuring technological 
progress deviation (Arrow et  al., 1961; Hou, 2021). However, compared with CES pro-
duction function, stochastic frontier production not only relaxes the strict assumption of 
neutral technological progress, but also its variable factor output elasticity reflects the sub-
stitution effect and interaction between input factors that is more realistic. Simultaneously, 
stochastic frontier production can also add the time factor to reflect the difference in the 
technological progress of different investment factors; therefore, it can reveal more internal 
characteristics of economic system, and its form is flexible, that can effectively avoid the 

Measure method of 
technology progress bias

Stochastic frontier 
production function 

model

Output elasticity of input 
factors

Capital VS Labor
Capital VS Energy
Labor VS Energy 

Technology progress bias
Capital VS Labor

Capital VS Energy
Labor VS Energy 

Analysis of carbon 
reduction mechanism

Technology progress bias

Transportation emission 
reduction technologies

Energy production
 Energy utilization

End disposal 

Carbon emission

Threshold model

Threshold effect test

Determine threshold 
variables, independent 
variables and control 

variables

Threshold regression

Fig. 1  Flowchart of methodology
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deviation caused by the missetting of production function (Yang and Liu, 2022; Yang and 
Hao, 2022).

Stochastic frontier production function model can be used to study the relationship 
between the input factors of macroeconomic systems such as country (Lin & Fei, 2015), 
region (Bristow, 2013) and industry (Smyth, 2011). The stochastic frontier produc-
tion function model can also be used for the prediction of economic growth and car-
bon emissions reduction (Yang et al., 2017). This study attempts to apply the model to 
the input–output analysis of transportation industry. The model setting is expressed as 
follows:

Y represents the passenger turnover and cargo turnover, and the added value of passenger 
and freight volume is used as the proxy variable. Xi and Xj represent input factors i and j, 
and βi and βij represent regression coefficients of Eq. (1). The final model can be expressed 
as Eq. (2):

where Yt is the passenger and cargo turnover in year t, while Kt, Lt and Et are the transpor-
tation capital stock, number of transportation employees and transportation energy con-
sumption. βi and βij represent regression coefficients, and ε represents the constant terms.

Therefore, the output elasticity of capital, labor and energy can be expressed as 
Eqs. (3), (4) and (5) respectively:

Substitution elasticity among capital, labor and energy is as follows:

This study considers the measurement of technological progress bias. Bias-ij rep-
resents the technological progress difference between factor i and j, βit represents the 
coefficients, and σi represents the output elasticity, When Bias-ij is positive, the tech-
nological progress effect of factor i is more than that of j; when Bias-ij is negative, 
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the technological progress effect of factor i is less than that of j; when Bias-ij is 0, this 
means that the technological progress effect of factor i is equal to that of j.

According to Eqs. (3–8), the following hypotheses can be developed: energy consump-
tion, carbon emissions and technological progress bias are all nonlinear. Suppose δi is the 
elasticity of capital or labor output, and δj is the elasticity of energy output. When δi < δj, 
that is, when the elasticity of energy output is significantly higher than that of the capital 
and labor output, the greater the elasticity of substitution, the greater the transportation 
output per unit energy input, the higher is the preference given to energy consumption, 
and the energy-saving biased technological progress increases energy consumption and 
carbon emissions. When δi > δj, that is, when the elasticity of energy output is significantly 
lower than that of the capital and labor output, the greater the elasticity of substitution, the 
greater the transportation output per unit labor or capital input, and the higher is the prefer-
ence given to labor or capital input, promoting the energy-saving biased technological pro-
gress to reduce energy consumption and carbon emissions. Therefore, it features nonlinear 
characteristics, and Bias-ij changes with the change of the relationship between δi and δj. 
The nonlinear relationship between energy consumption, carbon emissions and δi and δj 
finally manifest as the nonlinear relationship between energy consumption,  CO2 emissions 
and technological progress bias (Bias-ij).

3.2  Carbon reduction mechanisms for biased technologies

According to the different types of technologies, transportation emission reduction tech-
nologies can be divided into: emission reduction technologies at the production end, emis-
sion reduction technologies at the conversion end and emission reduction technologies at 
the disposal end (Kang, 2018; Lin & Ahmad, 2015).

The production end is fossil energy production and electrification of vehicles. The com-
prehensive application of management technology and production technology and the 
other means of promoting clean energy, such as achieving low carbonization of raw materi-
als through grade upgrading of gasoline, and reducing the use of fossil energy through new 
energy vehicles. The conversion end technology that reduces the scale of energy use indi-
rectly by means of optimizing resource allocation and improving energy efficiency includes 
improving engine performance, combustion heat release level and waste heat utilization. 
Disposal end technology absorbs  CO2 through treatment and utilization, such as forest car-
bon sink,  CO2 capture, storage and resource utilization (Ouyang, 2018; Sun, 2016).

From the perspective of technological progress goals, the three technologies are com-
plementary to each other, minimizing  CO2 emissions regardless of budget constraints. The 
price effect determines the bias between complementary technologies. Technological pro-
gress favors scarce factors. As complementary technologies of energy production, energy 
utilization and end disposal, the emission reduction process is ultimately biased toward 
scarce technologies (such as carbon capture and utilization or production of fossil technol-
ogy) under the influence of the price effect (Lin, 2020; Wang, 2017). The impact mecha-
nism is shown in Fig. 2.

(8)Biasijt =
�i

�it
−

�j

�jt
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3.3  Threshold regression model

Based on the analysis of the influencing mechanism, the technological progress bias fea-
tures a nonlinear effect on  CO2. Due to the rebound effect, the impact of technological 
progress on energy is generally underestimated. In this part, the dynamic threshold model 
is used to estimate the nonlinear impact of biased technological progress on traffic  CO2 
emissions. The single-threshold model is expressed as follows (Hansen, 1999).

where Cit is the interpreted variable, transportation  CO2 emission; Cit-1represents a lag 
period of carbon emissions, indicating the dynamics and continuity of transport carbon 
emissions. X1it is a control variable and is not affected by threshold variables; X2it is an 
explanatory variable influenced by threshold variables; qit is a threshold variable; γ is a 
threshold value (there may be multiple thresholds); I(∙) is an index function, which is 1 
when the bracket condition is met and 0 when it is not met. According to Hansen, three 
steps can be considered for estimation. The first step is to use q to regress point by point. 
The second step is to verify the existence of thresholds. The last step is to use the maxi-
mum likelihood function to determine the fiducial interval of the threshold.

The aim of this study is to prove the existence of threshold effect in transportation 
industry and the heterogeneity of threshold effect among different regions based on the 
discussion of the nonlinear impact of technological progress bias on  CO2. With Basit repre-
senting the progress of energy-biased technology, the panel regression model is as follows:

3.4  Description of data sources and variables

According to the existing literature (Andress, 2012; Bristow, 2013), the impact factors 
can be drawn from three aspects: transportation structure, energy structure and technical 
factors.

①Transport structure: The modes of transportation include road, rail, air and water. 
Road and air passenger freight dominate transport infrastructure in most countries (Gib-
bons et  al., 2019). The ratio of passenger turnover in air transport and road transport 
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Fig. 2  Influence mechanism of technological progress bias on carbon emission reduction
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is selected as the measurement indicators of transport structure. The data of these two 
indicators are sourced from the China Traffic Statistics Yearbook and processed directly.
② Energy structure: The main transportation fuels are electricity, gasoline, kerosene and 
diesel oil. The carbon emission coefficient of petroleum is higher than that of the other 
energy sources. Generally, the higher the proportion of a country’s oil in the total trans-
portation energy consumption, the lower the rationality of its energy structure. There-
fore, the ratio of oil to total transportation energy consumption is selected for measuring 
the energy structure. The data are sourced from the China Energy Statistics Yearbook 
and are processed directly.
③ Technical improvement: The main measurement indicator is the bias of technical pro-
gress that aims to reflect the current direction of technical improvement; it reflects the 
direction of China’s efforts in improving transportation technology and the investment 
in energy conservation and emission reduction. Detailed description of each variable 
and the data sources are shown in Table 1.

4  Empirical results and analysis

In order to analyze the regional differences in the impact of technological progress bias 
on transport carbon emissions, the research objects are divided into eight regions. Specifi-
cally, it includes eight regions: Northeast China, North China, Middle Yellow River, East 
China, Southeast Coast, Middle Yangtze River, Southwest China and Northwest China (see 
Table 2 and Fig. 3).

4.1  Regional energy‑biased technological progress

According to the index of energy-biased technological progress in Fig. 4a–h, the following 
conclusions can be drawn. The degree of energy bias of technological change varies from 
region to region. This study uses DEAP software to calculate the technical progress bias.

First, 12 regions with large energy consumption in the technological change include 
Beijing, Hebei, Henan, Jiangsu, Zhejiang and Sichuan (see Fig.  4b, c, d and g). The 17 
regions with energy-saving or capital-biased technologies include Tianjin, Shanghai and 
Guangdong (see Fig. 4b, d and e). We can find that the level of energy bias is not con-
sistent with the economic development level of a region, implying that not all technologi-
cal changes in economically developed Yangtze River Delta, Pearl River Delta and Bei-
jing–Tianjin–Hebei regions are directed toward energy conservation, and the technological 
changes in the economically underdeveloped Northeast, Northwest, Southwest and middle 
mainstream of the Yellow River also exhibit energy conservation bias (see Fig. 4c–e).

Second, during the same period, the direction of technological change was inconsistent, 
and the development trend was also inconsistent. On the one hand, in areas where technol-
ogy transformation is more focused on energy, the bias level is almost higher than zero, but 
there are different trends. One shows a steady trend, and the energy consumption increases 
gradually (see Fig. 4b and d). The other is a J-shaped curve, and the energy consumption 
shows a rapid upward trend. On the other hand, for regions where the technology adjust-
ment is essentially energy saving, there are also two trends in energy bias level: steady 



4278 X. Yang et al.

1 3

Ta
bl

e 
1 

 D
es

cr
ip

tio
n 

an
d 

da
ta

 so
ur

ce
 o

f s
el

ec
te

d 
va

ria
bl

es

Va
ria

bl
e

D
es

cr
ip

tio
n

So
ur

ce

O
ut

pu
t (

Y i
t)

Pa
ss

en
ge

r t
ur

no
ve

r/f
re

ig
ht

 tu
rn

ov
er

C
hi

na
 T

ra
ffi

c 
St

at
ist

ic
s Y

ea
rb

oo
k

En
er

gy
 in

pu
t (

E i
t)

En
er

gy
 c

on
su

m
pt

io
n

C
hi

na
 T

ra
ffi

c 
St

at
ist

ic
s Y

ea
rb

oo
k

C
ap

ita
l i

np
ut

(K
it)

Pe
rp

et
ua

l i
nv

en
to

ry
 m

et
ho

d:
 K

it 
=

 Ii
t +

 (1
-δ

i) 
K

it-
1

C
hi

na
 T

ra
ffi

c 
St

at
ist

ic
s Y

ea
rb

oo
k

La
bo

r i
np

ut
 (L

it)
N

um
be

r o
f e

m
pl

oy
ee

s a
t t

he
 e

nd
 o

f t
he

 y
ea

r
C

hi
na

 T
ra

ffi
c 

St
at

ist
ic

s Y
ea

rb
oo

k
CO

2 e
m

is
si

on
s (

C
it)

Tr
an

sp
or

ta
tio

n 
ca

rb
on

 e
m

is
si

on
,  C

O
2 =

 ∑
N

C
V

i ×
 C

EF
i ×

 C
O

Fi
 ×

 44
/1

2
C

hi
na

 E
ne

rg
y 

St
at

ist
ic

al
 Y

ea
rb

oo
k

G
D

P 
pe

r c
ap

ita
  (G

D
P i

t)
Ec

on
om

ic
 d

ev
el

op
m

en
t l

ev
el

C
hi

na
 S

ta
tis

tic
al

 Y
ea

rb
oo

k
En

er
gy

 st
ru

ct
ur

e 
 (E

S i
t)

Pr
op

or
tio

n 
of

 o
il 

in
 th

e 
to

ta
l e

ne
rg

y 
co

ns
um

pt
io

n 
of

 tr
an

sp
or

ta
tio

n
C

hi
na

 T
ra

ffi
c 

St
at

ist
ic

s Y
ea

rb
oo

k
Tr

an
sp

or
t s

tru
ct

ur
e 

 (T
S i

t)
Pe

rc
en

ta
ge

 o
f r

ai
lw

ay
 tr

an
sp

or
ta

tio
n

C
hi

na
 T

ra
ffi

c 
St

at
ist

ic
s Y

ea
rb

oo
k

Te
ch

no
lo

gi
ca

l p
ro

gr
es

s b
ia

s (
B

ia
s-

it)
D

eg
re

e 
of

 te
ch

no
lo

gi
ca

l p
ro

gr
es

s b
ia

s i
n 

tra
ns

po
rta

tio
n 

fie
ld

Fo
rm

ul
a 

(6
)



4279Does biased technological progress facilitate the reduction…

1 3

decline and continuous rise. In certain specific areas (such as Shanghai), the technological 
bias is less than zero at the initial stage. However, since 2010, the bias index has become 
positive, implying the transformation of technological change to energy consumption (See 
Fig. 4d).

Third, it should be emphasized that Beijing, Jiangsu, Zhejiang and other economi-
cally developed and high-income provinces have not comprehensively demonstrated 
the energy-saving characteristics of technological change (see Fig. 4b and d). However, 
there are some underdeveloped low-income provinces such as Jiangxi, Guangxi, Yunnan 

Table 2  Sample division of eight 
study areas

Study area The provinces included in the region

Northeast China Heilongjiang, Liaoning, Jilin
North China Beijing, Hebei, Tianjin, Shandong
Middle Yellow River Neimenggu, Shanxi, Shananxi, Henan
East China Jiangsu, Shanghai, Zhejiang
Southeast Coast Fujian, Guangdong, Hainan
Middle Yangtze River Hubei, Hunan, Jiangxi, Anhui
Southwest Guizhou, Yunnan, Guangxi, Sichuan
Northwest Gansu, Qinghai, Ningxia, Xinjiang

Fig. 3  Provinces encompassed in the different regions of China
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Fig. 4  Technical progress bias of each region
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and Qinghai, whose technological changes exhibit energy-saving characteristics (see 
Fig. 4f–h).

Therefore, our results show that there is a significant influence of inequality in the 
economic development level on the regional energy preference.

4.2  Dynamic threshold estimation

Most studies on carbon emissions are based on the provincial level or generally divide 
China into three regions: East, Central and West. However, the research report of the 
National Development and Reform Commission indicated that roughly dividing China into 
East, West and East is no longer consistent with the current situation of China’s regional 
transportation development. Based on the development status of China’s metropolitan area, 
this study divides China into eight regions with strong traffic links and spatial dependence 
on economic development: Northeast China, North China, East Coast, Southeast Coast, 
Middle Yellow River, Middle Yangtze River, Southwest China and Northwest China.

The newly developed dynamic threshold panel model was adopted in this study. The 
model combines the characteristics of Gaussian mixture model (GMM) method and the 
existing time series technology on threshold model, and it can effectively solve the poten-
tial endogenous problem (Ouyang, 2018). Tool variable estimator, particularly the GMM 
method,-can appropriately solve any internal variability problem (Wang, 2018).

Firstly, threshold test is conducted to test the threshold value and the number of thresh-
old values of technology bias and traffic carbon emissions in different regions, and sub-
sequently, the specific expression form of the model is determined. Considering technol-
ogy bias as the threshold variable, model (11) is tested under single threshold and double 
threshold. Figures  5, 6, 7, 8, 9, 10, 11, 12 suggest that the technology bias in different 
regions exhibits different threshold effects on traffic  CO2 emission. Although the results 
of the threshold test appear to be complex, LR tests can lead to only one or two thresh-
old variables. Figures  5, 6, 7, 8, 9, 10, 11, 12 show the threshold values of the North-
east, East Coast, Southeast Coast, middle mainstream of Yellow River, middle mainstream 

Fig. 5  Threshold effect of Northeast China
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of Yangtze River, Northwest and Southwest regions, among which the eastern coastal 
region presents a double-threshold effect, while the other regions exhibit single-threshold 
effect. To summarize, the influence of technology bias and carbon emissions in different 
regions presents complex nonlinear threshold effects other than simple linear characteris-
tics. Therefore, this study conducts an empirical analysis of the single or double-threshold 
effect. Thereafter, the threshold value of technology bias in different regions is estimated 
and tested (Table 2).

Fig. 6  Threshold effect of North China

Fig. 7  Threshold effect of East Coast
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4.3  Threshold effect of technological progress bias on traffic  CO2 emission

This study mainly investigates the impact of technological progress bias on carbon emis-
sions in eight regions of China. The regression results are shown in Table  3, and the 
research conclusions are as follows:

There is a single threshold between energy-saving technological progress and car-
bon emission in Northeast China and the middle mainstream of the Yellow River. Over-
all, the technological progress is biased toward labor saving, and the use of energy or 

Fig. 8  Threshold effect of Southeast Coast

Fig. 9  Threshold effect of Middle Yellow River
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capital coexists. When the technological progress bias is lower than the threshold values 
of −0.009 and −0.0155, the continuous energy-enhanced technological progress leads 
to the continuous increase in  CO2 emissions in the transportation industry. When the 
technological progress crosses the threshold, the energy-saving biased technological 
progress causes a reduction in  CO2 emission in the transportation industry; however, it 
is not statistically significant because only a small number of regions cross the thresh-
old. Therefore, the overall impact is not significant.

There is also a single threshold between energy-saving biased technological progress 
and carbon emissions in North China. Overall, technological progress is biased toward 
energy enhancement in its entirety. Tianjin shows capital bias, but this characteristic 

Fig. 10  Threshold effect of Middle Yangtze River

Fig. 11  Threshold effect of Southwest China
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is weakening. When technological progress bias crosses the threshold value of 0.0195, 
the influence of energy-enhanced technological progress on  CO2 emission is further 
enhanced. This indicates that technological progress in North China does not render the 
transportation industry more energy saving, but promotes the continuous expansion of 
transportation industry, resulting in more traffic  CO2 emission.

There is a double-threshold effect between energy-saving biased technological progress 
and carbon emissions in the eastern coastal areas, and the threshold values of technologi-
cal progress bias in the eastern coastal areas are 0.004 and 0.141. When the technological 
progress bias is lower than the first threshold value, the influence of technological pro-
gress bias on traffic  CO2 emission in eastern coastal areas is positive, and it passes the 
significance test at 1%. When the technological progress bias in the eastern coastal areas is 
between 0.004 and 0.141, the influence coefficient of technological progress bias on  CO2 
emission in the eastern coastal areas decreases significantly (0.046), that indicates that the 
energy-saving effect of technological progress begins to appear only when the technologi-
cal progress bias exceeds 0.141. The technological progress bias has a negative impact on 
 CO2 emission in the eastern coastal areas. The eastern region transformed and upgraded 
the industry earlier and applied many technologies to the transportation field, and the 
energy-saving effect of technological progress in the transportation field was highly sig-
nificant. It showed an inverted U-shaped curve, that is, with the continuous enhancement 
of the technological progress bias in the eastern region, the energy rebound effect appeared 
initially, and the energy-saving and emission reduction effect appeared subsequently.

There is a single-threshold effect between energy-saving biased technological progress 
and traffic carbon emissions in the Southeast coastal area and the middle mainstream of 
the Yangtze River. The threshold values of technological progress bias in the two areas are 
−0.0005 and −0.015, respectively. When the technological bias is lower than the thresh-
old value, the technological progress bias exhibits a positive impact on  CO2 emissions in 
the Southeast coastal area and the middle mainstream of the Yangtze River, and promotes 
 CO2 emissions significantly at 5 and 1% respectively. When the technological progress 
bias crosses the threshold value, the influence coefficient of technological progress bias 
on  CO2 emission is negative. However, the elasticity in the Southeast Coast increases and 
the middle mainstream of the Yangtze River decreases, indicating that the energy-saving 

Fig. 12  Threshold effect of Northwest China
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technological progress has a more significant effect on energy conservation and emission 
reduction in the Southeast Coast than in the middle reaches of the Yangtze River.

There is a single-threshold effect between energy-saving biased technological progress 
and traffic carbon emissions in Southwest China. The threshold value of technological pro-
gress bias in Southwest China is −0.043, and biased technological progress always features 
a negative impact on traffic  CO2 emissions in Southwest China. When the technological 
bias crosses the threshold, the elasticity of the influence of technological progress bias 
on  CO2 emission in Southwest China increases significantly, from 0.014 to 0.35, and the 
significance level also increases significantly. It shows that the energy-saving technology 
progress has always played a role in saving energy and reducing emissions in Southwest 
China. With the high-quality development in Southwest China, clean technology further 
promotes the healthy development of transportation in Southwest China.

There is a single-threshold effect between energy-saving biased technological progress 
and traffic carbon emissions in Northwest China. The threshold value of technological pro-
gress bias in Northwest China is -0.027. When the technological bias crosses the threshold 
value, the influence of biased technological progress on traffic  CO2 emissions in North-
west China changes from positive to negative, and the significance level also changes from 
insignificant to significant. It shows that when the threshold value is not crossed, the level 
of energy-saving technology progress bias is low in Northwest China, and the effect of 
energy saving and emission reduction is not obvious. With the development of western 
China, energy-saving technologies are being accumulated and transportation becomes 
more energy-saving.

5  Discussion

Based on the threshold regression model, this study analyzes the regional differences in 
the threshold impact of technological progress bias on traffic  CO2 emission. This study has 
found that the impact of technological progress bias on traffic  CO2 is affected by the degree 
of technological progress bias, and there is a large regional difference, that is in line with 
the research conclusions of Zhang (2017), Kang (2018) and Jing (2019). However, differ-
ent from the aforementioned studies, this study focuses on transportation sector  CO2 emis-
sion and the double-threshold effect in different regions.

The complex relationship between the energy bias of technology and transport carbon 
emissions is highly correlated with the proportion of investment in renewable and non-
renewable energy technologies (Walheer, 2018). In Northeast China, the middle main-
stream of the Yellow River, the East Coast, the Southeast Coast, the middle mainstream 
of the Yangtze River and the Northwest region, the impact of technological progress bias 
on transportation  CO2 emission changes from positive to negative as the technological 
progress bias exceeds the threshold. This has been supported by Dong (2019) and Zha 
(2017), who believe that technology spillovers of energy-saving bias have a threshold effect 
on carbon emission. When the technology bias is inclined to cross the threshold value, 
the transportation technological progress is more energy saving, thus reducing the trans-
portation carbon emission. The energy technology bias across the threshold implies that 
renewable energy technologies exceed non-renewable energy technologies in transporta-
tion. Acemoglu (2003) divides biased technological progress into two categories. One is 
the factor-enhanced technological progress that refers to the marginal productivity of a 
factor that technological progress can change. The other is the factor-biased technological 
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progress that implies that it has an impact on the marginal substitution rate between fac-
tors. Wang (2017) and Lin (2020) considered that there are two effects such as price effect 
and market size effect that affect the technical change represented by the factors. The price 
effect directly stimulates innovation of scarce elements (such as renewable energy tech-
nology), while the market size effect stimulates innovation of abundant elements (such as 
non-renewable energy technology). The increase of output elasticity of renewable energy 
technologies is higher than the proportion of non-renewable energy technologies during the 
study period (Ouyang, 2018). Indeed, the development of energy-saving technology and 
advanced equipment also promote an increase in the output elasticity of renewable energy 
technologies (Lin, 2020; Smyth, 2011). Compared with non-renewable energy technolo-
gies, renewable energy technologies feature significant emission reduction effects, while 
non-renewable energy technologies do not reduce emissions or even increase carbon emis-
sions. The technologies in the South are more likely to be bioenergy conversion and carbon 
capture. Therefore, the effect of emission reduction is from positive to negative.

In North China, when the technology bias crosses the threshold value, transportation 
carbon emissions increase, contrary to the expected reduction. This indicates that the trans-
portation technology in the Beijing–Tianjin–Hebei region failed to develop toward the 
direction of energy conservation or renewable energy, and the transportation technology 
rendered the energy consumption more substantial. Technological progress in this area is 
more in favor of labor, capital or energy, resulting in unreasonable technological structure 
in the field of transportation (Zhang, 2017). On the one hand, the difference of techni-
cal structure in the region influences the change of energy structure in the region, it leads 
to more demand for transportation terminal products. On the other hand, changes in the 
energy structure such as crude oil and electricity generate higher transportation carbon 
emissions. The upgrading of vehicles on the demand side not only changes the energy 
demand, but also causes energy rebound effect of the transportation sector. In fact, pro-
gress in energy-biased technologies may have a “double-edged effect” on energy efficiency. 
Specifically, energy-biased technological progress may reduce the energy consumption per 
unit of output by increasing the production efficiency, but it may also increase energy con-
sumption per unit because it is energy biased (Liao, 2020). With the “double-edged effect,” 
when energy-biased technological progress reaches a level higher than the threshold, a 
negative impact on energy efficiency is experienced, mainly owing to the high energy con-
sumption caused by the technological progress itself, while the rebound effect is due to the 
increase in the energy consumption caused by the application of technologies (Lin, 2019; 
Yan, 2019). Overall, carbon emission reduction effect in the transportation sector is closely 
related to the characteristics of local technology bias. The technology in the north is biased 
toward fossil energy production and electric vehicle manufacturing; therefore, the carbon 
emissions are higher.

6  Conclusion and policy suggestions

6.1  Conclusion

In this paper, based on the panel data, considering technology bias as the threshold vari-
able, a nonlinear dynamic threshold effect model of the influence of biased technology 
on traffic  CO2 emissions in different regions is constructed via the GMM method. The 
research conclusion shows that the threshold value of technological bias is different in 
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eight different regions, and with the change in the threshold value, the influence of tech-
nological progress bias on traffic carbon emissions exhibits considerable spatial differen-
tiation. The conclusions are as follows: In Northeast China, the middle mainstream of the 
Yellow River, the eastern coast, the Southeast Coast, the middle mainstream of the Yangtze 
River and the Northwest region, as the technological progress bias crosses the threshold 
value, the influence of technological progress bias on traffic  CO2 emission changes from 
positive to negative. These areas show the characteristics of inverted U emission, that is, 
due to industrial upgrading or environmental regulation constraints in these areas, the 
energy-enhanced technological progress is gradually replaced by energy-saving technolo-
gies, and the transportation industry shows the energy rebound effect initially, followed 
by the energy-saving and emission reduction effect subsequently. In North China, with the 
enhancement of energy-biased technological progress and the further expansion of trans-
portation energy demand, it is in the left part of inverted U curve, and the  CO2 emission 
level increases further. In Northwest China, due to the lag of industrial development, the 
transportation energy consumption is relatively constant, and the energy rebound effect is 
not significant. However, when the energy-saving technology advances to a certain level, it 
can reduce the traffic  CO2 emission. The carbon emission reduction caused by technologi-
cal progress bias is closely related to the technology structure, industrial development and 
energy demand in different regions. These findings have a strong reference value for the 
technological path of low-carbon transportation in the other developing countries.

6.2  Policy suggestions

Based on the above research conclusions, the following are the policy suggestions:
First, regional traffic emission reduction measures should anchor the biased characteris-

tics of regional technological progress. At present, the energy-saving biased technological 
progress of transportation industry in Northeast China, the middle mainstream of the Yel-
low River, the Southeast Coast, the middle mainstream of the Yangtze River and North-
west China is on the left side of the inverted U-shaped curve, and the energy consumption 
and carbon emissions increase further. Therefore, it is necessary to broaden the acquisition 
renewable technology, and provide cross-regional technology spillover platform construc-
tion, speedily accumulate renewable technologies and cross the threshold as soon as pos-
sible. For example, the “Measures for the Implementation of the Law of China on Energy 
Conservation for Highway and Waterway Transportation” published the technical catalog 
of energy-saving products for operating vehicles and vessels to guide the use of advanced 
energy-saving products and technologies in order to promote the innovation of energy-sav-
ing technologies and the transformation of achievements. The eastern coastal areas and 
Southwest areas have crossed the threshold value, and their main task is to focus on build-
ing a perfect transfer and transformation mechanism of green technology. The white paper 
“China’s Policies and Actions to Address Climate Change” proposes the support of the 
transfer and transformation of green technology achievements and establishment of a com-
prehensive national green technology trading market. Compared with technology accumu-
lation, Beijing–Tianjin–Hebei region should pay more attention to the improvement of its 
energy structure and transportation structure. For example, the “Beijing–Tianjin–Hebei 
transportation structure adjustment demonstration area construction plan (2018–2020)” 
organized the implementation of special railway construction, port bulk cargo freight ser-
vices improvement, the development of hot metal container multimodal transport and mul-
timodal transport information connectivity project.
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Second, the formulation of relevant incentive policies for transportation energy substitu-
tion factors needs to be accelerated. The substitution of renewable energy for non-renew-
able energy has a significant impact on the energy-biased technology. Therefore, carbon 
neutrality in transportation can be improved by developing new energy fuels and equip-
ment, expanding business scale and increasing capital through mergers and acquisitions. 
For example, the “14th Five-Year Plan for Renewable Energy Development” proposes to 
promote the replacement of green hydrogen in key areas such as transportation. We intend 
to promote the demonstration application of fuel cells in port areas, ships, and key indus-
trial parks, coordinate the development of green hydrogen terminal supply facilities and 
capacity, and increase the proportion of green hydrogen used in transportation. In terms of 
capital-biased technology, energy efficiency can offset within the service life of low-energy 
equipment.

Despite this, the study features a few limitations. The analysis is nonlinear for eight 
regions in China. However, for the individual subsectors of road, rail, and aviation, no fur-
ther investigation has been undertaken. Analysis of individual transport sectors can reveal 
more details, such as firm-level determinants of the direction of technological change, the 
distribution of certain parameters or their evolution over time.
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