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Abstract
Water resources are the source of life for people to survive, especially in agriculture. Water 
resources provide necessary support for agricultural economic development and irrigation 
management. Using the panel data from 2013 to 2019, this paper uses the coupled 
coordination model to explore the degree of synergy between agricultural water resources 
efficiency (AWRE) and agricultural economic development level (AEDL), and analyzes 
the spatial correlation of coupling coordination degree (CCD) between the AWRE and 
AEDL, and further predicts the relationship between the two. The results are as follows: (1) 
There are superb variations in the CCD among provinces, and the diploma of coordination 
is greater in the south than in the north; (2) In the spatial correlation pattern, high–high 
agglomeration areas exhibit an growing trend, and the variety of low–low agglomeration 
areas is small; and (3) Through the prediction, it is found that in the further, the CCD will 
show a trend of slow increase in future. For purpose of the coordinated perfection of the 
two systems, we need to completely discover the connotation of coordinated improvement 
and promote regional cooperation.

Keywords Agricultural water resources efficiency (AWRE) · Agricultural economic 
development level (AEDL) · Coupled coordination · Spatial autocorrelation

1 Introduction

The ecological environment is very important. Protecting green waters and mountains 
and making people feel at ease have become the objective requirements of implementing 
the people-centered development concept. The vast countryside has become the main 
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battlefield of green development. The goal of agricultural development has changed 
from increasing production and income to stabilizing production, increasing income 
and sustainable. Despite the remarkable achievements of modern agriculture, the water 
pollution caused by high-yield varieties and the large application of related chemical 
fertilizers and pesticides has attracted some criticism. Agricultural drainage have become 
an important source of pollution in China. China is the biggest a creating country in the 
world, which makes the international community place more expectations on China’s 
contribution to pursuing the global sustainable development Goals. Therefore, China 
desires to enhance water use effectivity in accordance to its very own improvement state 
of affairs to meet worldwide expectations. Only by way of focusing on environmental 
safety while creating the financial system can China reap inexperienced and sustainable 
development.

Agriculture cannot develop without water support, but agricultural activities can cause 
pollution to the environment (Ismael et al., 2018). The irrational invest of land and water, 
the go beyond the limit invest of fertilizers, the invest of energy and many other aspects 
may cause the degradation of land quality and water pollution. Over-exploitation of arable 
land and increased resource constraints may affect agricultural development (Yao et  al., 
2021). In water-scarce areas, overuse of water for agriculture can damage ecological water 
resources and affect the function of the ecological sector (Zhang et al., 2016). The damaged 
ecology will readjust the water allocation. This may lead to water shortages for agriculture 
(Youzhi et  al., 2021). The continued consumption of water for agricultural economic 
development leads to a reduction in water stocks, which in turn will further constrain the 
agricultural economy (Wu et al., 2022). Improving agricultural water efficiency is therefore 
essential for agricultural economic development.

This study, which aims to measure the coupled coordination of AWRE and the AEDL. 
We identify the areas with low coupling coordination and provide suggestions to improve 
the current situation. For this purpose, the SBM-DEA model and the combination of 
entropy method are employed for the purpose of calculating the AWRE and the AEDL.

As a result of to the special nation of herbal water assets in specific regions, the water 
consumption of every area is additionally different. Some scholars have used integrated 
analysis methods to analyze water resources efficiency (Guan et  al., 2019; Sun et  al., 
2020). Compared with the comprehensive evaluation and analysis method, the efficiency 
measurement methods (SFA, DEA, SBM, etc.) based on the goal planning model have the 
advantages of not being affected by the input–output volume, so they have become the 
mainstream evaluation approach of AWRE (Deng et al., 2016; Geng et al., 2019; Laureti 
et  al., 2021; Pan et  al., 2020). With the deepening of research, scholars gradually pay 
attention to the unexpected output and consider the AWRE (Liu & Yuan, 2022; Song et al., 
2022). In short, the learn about on water assets effectivity measures has been pretty mature. 
In this context, this research focuses the relationship between AWRE and AEDL the usage 
of the applicable strategies from preceding studies.

Cui et  al. (2019) and Li & Li (2021) concluded that water quality is the key to 
agricultural economy and that a good water environment is what promotes economic 
progress. Hao et  al. (2019) found that water resources and economic development are 
mutually influential. Wang et  al. (2018) also argued that rapid growth of economy 
cannot be achieved without the use of water resources. Zhang et  al. (2021) and Ngoran 
et  al. (2016) studied the affect of water on the saving in arid regions of China and sub-
Saharan African countries, respectively. They agree that water resources are important 
for economic growth, especially in countries with severe water shortages like those in 
Africa. Doungmanee (2016) found that water shortages run the risk of causing economic 
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stagnation. Xing et al. (2020) regulated a study on the coupled correlation between AWRE 
and AEDL, and concluded that the essential deputy hindering the pullulate of a coupled 
degree of coordination between the two is regional differences.

From the related studies, most scholars have studied mainly the correlation between 
AWRE and AEDL. Most of the investigation outcomes are that the use of water resources 
takes an essential part in economic growth. They think that the agricultural sector is the 
sector that uses more water, and that water shortages and inadequate water use can lead to 
economic stagnation. In the studies of agricultural water use on the economy, it is mostly 
the overall economy, not the agricultural economy associated with agricultural water 
use. For countries where agriculture is crucial to economic development, it is important 
to increase agricultural productivity and use water resources efficiently. Therefore, based 
totally on preceding researches, this paper concentrate on the connection between AWRE 
and AEDL.

On the ground of the current lookup literature, through coupling the AEDL with the 
AWRE, we discover the diploma of coupling and coordinated improvement of 31 provinces 
in China, behavior aggregation evaluation and future prediction on the CCD, and similarly 
find out the troubles and future improvement route between the AWRE and the AEDL.

2  Data sources and methods

2.1  Index selection and data source

Referring to concerned papers (Cui et al., 2019; Xu et al., 2020; Yang et al., 2019), we, 
respectively, select the indicators that can largely reflect China AWRE and AEDL (Yang 
et  al., 2022a). In the index system, the AWRE system includes two rule layers: AWRE 
input and output (Liu et al., 2020; Lu et al., 2021; Wang et al., 2019; Zhang et al., 2022). 
The AEDL system includes three rule layers: agricultural development foundation, 
agricultural development benefit, and residents’ living standard (Abreu et al., 2019; Chen 
et al., 2022; Ma et al., 2019). The details are shown in Table 1. The data are mainly from 
official channels such as the National Statistical Yearbook and the Statistical Bulletin of 
National Economic and Social Development from 2013 to 2019.

2.2  GWF calculation

Agricultural grey water footprint  (GWFagr) includes planting grey water footprint  (GWFpla) 
and aquaculture grey water footprint  (GWFbre). When calculating the GWF, the GWF 
generated by the same type of pollutants are aggregated, and the grey water footprints 
generated by different types of pollutants are taken as the maximum. The formula is as 
follows (Fu et al., 2022; Zhang et al., 2019, 2022):

(1)GWFagr = max
[
GWFbre(COD),

(
GWFpla(TN) + GWFbre(TN)

)]

(2)GWFpla =
�NAppl

CTN,max − CTN,nat
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Among, Lbre(i) =
∑4

h=1
NhDh

�
fhphf �hf + uhphu�hu

�
In the formula, α is the leaching rate of nitrogen fertilizer; NAppl is the total amount of 

nitrogen fertilizer applied; CTN,max , CTN,nat is the water capability standard convergence of 
total nitrogen and the natural local convergence of total nitrogen; GWFbre(i) , Lbre(i) is the 
GWF of the aquaculture industry of category I pollutants; i is total nitrogen or chemical 
oxygen demand; h means cattle, sheep, pigs and poultry; and Nh , Dh , fh , uh , Phf  , �hf  , and 
�hu are the quantity of h feeding cycle, daily fecal output, daily urine output, contaminant 
directory in unit urine, pollutant content in unit feces, pollution logistics loss rate in unit 
feces, and pollution logistics loss rate in unit urine, respectively.

(3)GWFbre = max
(
GWFbre(COD),GWFbre(TN)

)

(4)GWFbre(i) =
Lbre(i)

Ci,max − Ci,nat

Table 1  Index system

Target layer Rule layer Index layer

AWRE Agricultural water resources input Agricultural water consumption
Actual cultivated land area at the end of the 

year
Agricultural labor population
Agriculture, forestry and water expenditure

Expected output of agricultural water 
resources

Gross Agricultural Product

Unexpected output of agricultural water 
resources

Grey water footprint

AEDL Development basis Rural power consumption
Total power of agricultural machinery
Agricultural total factor productivity
Fertilizer application amount
Pesticide consumption
Total investment in rural fixed assets

Development benefits Total output value of agriculture, forestry, 
animal husbandry and fishery

Total meat output Grain output
Residents’ living standards Engel coefficient of rural households

Per capita disposable income of rural residents
Health care consumption expenditure
Retail sales of social consumer goods
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2.3  SBM‑DEA model

TONE (2004) proposed a SBM model based mainly on slack variable to solve the 
input–output leisure issue (Yang et  al., 2022b). The formula is as follows (Chen et  al., 
2021; Chu et al., 2016; Pishgar-Komleh et al., 2021; Ren et al., 2019):

In the formula, x =
(
x1, x2,… xm

)T is the input factor, y =
(
y
g

1
, y

g

2
,… y

g
s

)T and 
yb =

(
yb
1
, yb

2
,… yb

s

)T represent the expected and undesired outputs, respectively. � represents 
the calculated efficiency;� represents the weight coefficient of input and output; sg, sb , 
respectively, represent the expected and non-expected output of the relaxation variable.

2.4  Model for measuring the AEDL

The entropy weight method is used to calculate the weight (Cui et  al., 2019; Liu et  al., 
2021; Ma et al., 2022). Therefore, this paper first standardized each indicator. The details 
are as follows:

Equation (7) is positive index standardization treatment, and Eq. (8) is negative index 
standardization treatment. Xij is the primitive value, �ij is the jth index of the ith subsystem. 
The calculation steps are outlined below.

Index information entropy calculation:

In the formula, fij =
�
1 + μij

�
∕
∑m

i=1

�
1 + μij

�
    0 ≤ ej ≤ 1

Redundancy calculation: �j = 1 − ej
Index weight calculation:

(5)� = min
1 −

1

m

∑m

i=1

s−
i

xio

1 +
1

s1+s2

�∑s1
r=1

s
g
r

y
g
ro

+
∑s2

r=1

sb
r

yb
ro

�

(6)s.t.

⎧
⎪⎪⎨⎪⎪⎩

∑n

j=1
�jxij + s−

i
= txio, i = 1, 2,… ,m∑n

j=1
�jy

g

rj
− sg = ty

g
ro, r = 1, 2,… , s∑n

j=1
�jy

b
rj
− sb = tyb

ro
, r = 1, 2,… , s

t +
1

s1+s2

�∑s1
r=1

s
g
r

y
g
ro

+
∑s2

r=1

sb
r

yb
ro

�
= 1

(7)�ij =
Xij − minX.j

maxX.j − minX.j

(8)�ij =
maxX.j − Xij

maxX.j − minX.j

(9)ej =
1

lnm

(∑m

i=1
fij × lnfij

)

(10)wj =
�j∑n

j=1
�j
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System comprehensive score calculation:

2.5  CCD model

The coupled coordination model is a good way to measure the development status between 
AWRE and AEDL. The model is built as follows (Cui et al., 2019; Liu et al., 2021; Yang 
et al., 2019):

In formula (12), �1 and �2 are the entirety evaluation indexes of AEDL and AWRE, 
respectively. The value of D ∈ [0, 1], when D = 1, it represents that the two systems are 
in the best coordination state. When D = 0, represents that the two systems are unrelated. 
In this paper, both are considered equally important, so � = � =0.5. The coupling 
coordination levels are shown in Table 2 (Xu et al., 2020).

2.6  Spatial autocorrelation analysis

Spatial autocorrelation analysis can explore the spatial correlation degree of data and 
reflect its spatial clustering characteristics (Cen et  al., 2020). Global Moran’s I(MI) can 
reflect the spatial agglomeration state of data (Ma et al., 2021). The unique components of 
the global MI is as follows (Yang et al., 2021):

In the above equation, I is MI, n is the quantity of provinces, xiandxj are the CCD of 
the location of the province and city, respectively, and x is the average of the CCD. Wij 

(11)�j =

n∑
j=1

wj ×
(
1 + �ij

)
(i = 1, 2,… ,m)

(12)C = 2

[
�1 × �2(
�1 + �2

)2
] 1

2

(13)T = ��1 + ��2

(14)D =
√
C × T

(15)I =
n ×

∑n

i=1

∑n

j≠1
Wij(xi − x)(xj − x)

(
∑n

i=1

∑n

j=1
Wij) ×

∑n

i=1
(xi − x)

2

Table 2  The level of coupling 
coordination

Coupling coordination degree (CCD) Level

0–0.20 Low coordination
0.20–0.40 Basic coordination
0.40–0.50 Moderate coordination
0.50–0.80 High coordination
0.80–1.00 Quality coordination
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Indicates the neighbor relationship between provinces. Wij= 1 when i and j are adjacent, 
otherwise 0.

In order to replicate the unique spatial place of data, local MI is additionally used to 
discover the imbalance of CCD in neighborhood space (Sarrión-Gavilán et al., 2015). The 
formula is described as follows:

In the above formula, xi is the value of CCD of provinces; x is the average value of CCD 
of provinces (Anselin, 1995).

2.7  GM (1,1) grey prediction model

Grey system theory can carry out specific description, prediction, decision-making 
and control for this system with incomplete information (Zeng et  al., 2022). The model 
established by the grey system theory and method is called the grey model, which is a 
differential equation of n order and h variables. The model is constructed as follows (Song 
and Mei, 2021; Yao et al., 2020):

1. The original system sequence is X0 =
{
X0(i)

}
(i = 1, 2,… , n) . Through the formula 

X1(k) =
∑k

i=1
x0(i) , the original system sequence is accumulated to generate the sequence 

X1 =
{
X1(i)

}
(i = 1, 2,… , n).

2. To improve the accuracy of model generation, the generated  X1 is averaged to generate 
Z1 =

{
z1(1), z1(2),… , z1(n)

}
 , where z1(1) = x1(1), z1(k) =

(
x1(k) + x1(k − 1)

)
∕2.

3. Construction dx1(k)
dk

ax1(k) = u , where k = 1, 2,… , n − 1 , a and u are parameters to be esti-

mated. It is rewritten as a matrix form Y = BV  , where Y =

⎡⎢⎢⎢⎣

x0(2)

x0(3)

⋮

x0(n)

⎤⎥⎥⎥⎦
,B = 

⎡⎢⎢⎢⎣

−z1(1)

−z1(2)

⋮

−z1(n)

1

1

⋮

1

⎤⎥⎥⎥⎦
 , 

V =
(

â

û

)
.

4. The approximately value obtained by the least square method is V =
(

â

û

)
= (BTB)

−1
BTY . 

The GM (1,1) algorithm equation can be obtained by incorporating the approximately 
value â and û into the equation:x̂1(k + 1) =

(
x0(1) −

û

â

)
e−âk +

û

â
.

3  Result analysis

3.1  Analysis of AWRE

This research calculate the AWRE in China by the SBM-DEA model. The starting and end-
ing years and selected four time nodes during the learning circle as delegates to evaluate 
the AWRE outcome, as shown in Table 3. We found that from 2013 to 2019, the AWRE in 
coastal provinces is generally higher, as well as higher than that in inland provinces. Cities 
with high efficiency, such as Jiangsu and Zhejiang, can be maintained at 1 all year round, 
but cities with low efficiency, such as Inner Mongolia and Qinghai, can be maintained 

(16)Ii =
(xi − x)

m0

∑
j

Wij(xj − x)
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below 0.2 all year round. In 2013, there were 15 provinces with efficiency of 0.5 or above; 
in 2015, there were 16 provinces with efficiency of 0.5 or above; in 2017, there were only 
14 provinces with efficiency of 0.5 or above; and in 2019, there were 15 provinces with 
efficiency of 0.5 or above. According to the statistics, 14 provinces in 2017 had AWRE 
of 0.5 or above from 2013 to 2019. In a word, due to variations in financial improvement 
level, insurance policies and regional geographic location, water sources use effectivity in 

Table 3  Values of AWRE and AEDL level

Since it is difficult to obtain data from Hong Kong, Macao, and Taiwan, 31 provinces in Mainland China 
are taken as the research scope

Province Year

AWRE AEDL

2013 2015 2017 2019 2013 2015 2017 2019

Beijing 0.451 0.384 0.402 0.221 0.450 0.472 0.612 0.516
Tianjin 0.361 0.356 0.291 0.243 0.446 0.477 0.588 0.506
Hebei 1.000 0.544 0.482 0.433 0.610 0.617 0.687 0.653
Shanxi 0.472 0.388 0.306 0.309 0.506 0.469 0.611 0.602
Inner Mongolia 0.197 0.170 0.174 0.197 0.547 0.483 0.652 0.567
Liaoning 0.388 0.418 0.357 0.448 0.546 0.499 0.623 0.554
Jilin 0.246 0.233 0.149 0.202 0.540 0.538 0.643 0.582
Heilongjiang 1.000 0.386 0.485 0.421 0.599 0.549 0.655 0.603
Shanghai 1.000 1.000 0.353 0.232 0.312 0.353 0.452 0.424
Jiangsu 1.000 1.000 1.000 1.000 0.448 0.388 0.592 0.518
Zhejiang 1.000 1.000 1.000 1.000 0.502 0.450 0.607 0.567
Anhui 0.429 0.397 0.401 0.373 0.515 0.563 0.679 0.642
Fujian 1.000 1.000 1.000 0.547 0.450 0.432 0.605 0.584
Jiangxi 0.296 0.345 0.393 0.481 0.520 0.525 0.658 0.607
Shandong 1.000 1.000 1.000 1.000 0.740 0.688 0.824 0.820
Henan 1.000 1.000 1.000 1.000 0.716 0.650 0.785 0.787
Hubei 0.573 0.500 0.557 0.733 0.570 0.525 0.697 0.647
Hunan 1.000 1.000 1.000 0.791 0.555 0.530 0.670 0.634
Guangdong 1.000 1.000 1.000 1.000 0.440 0.427 0.549 0.515
Guangxi 0.421 0.444 0.537 1.000 0.497 0.506 0.633 0.593
Hainan 0.584 1.000 1.000 1.000 0.384 0.428 0.532 0.479
Chongqing 1.000 1.000 1.000 1.000 0.463 0.449 0.578 0.561
Sichuan 1.000 1.000 1.000 1.000 0.653 0.581 0.730 0.734
Guizhou 0.405 1.000 1.000 1.000 0.509 0.524 0.670 0.601
Yunnan 0.449 0.553 0.459 0.699 0.516 0.547 0.670 0.648
Tibet 0.084 0.171 0.102 0.116 0.428 0.394 0.552 0.576
Shaanxi 1.000 1.000 1.000 1.000 0.500 0.466 0.593 0.559
Gansu 0.299 0.325 0.258 0.297 0.412 0.462 0.553 0.518
Qinghai 0.163 0.154 0.184 0.151 0.427 0.440 0.554 0.494
Ningxia 0.127 0.128 0.136 0.134 0.453 0.441 0.601 0.492
Xinjiang 0.282 0.265 0.377 0.296 0.514 0.492 0.632 0.593
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distinct areas of China is extensively specific. High efficiency and low efficiency provinces 
can each be regarded as accounting for around half.

3.2  Analysis of AEDL

By dividing the research period into four equal parts and taking them as representative 
years and then processing and analyzing the research data by using the stiffness free 
quantification method, the AEDL of each province in China is obtained, as shown in 
Table  3. The estimated indicators of the AEDL of each province are not very different. 
We found that the AEDL of most provinces remains between 0.4 and 0.7, with a relatively 
small difference. On the whole, Shanghai and Hainan have the lowest AEDL while 
Shandong and Henan have the highest level.

3.3  Average level of CCD

Table  4 shows the outcome of the coupling coordination model. From the results, there 
are differences between the provinces, but most of the provinces in a high level of 
coordination. There are 19 high-level provinces, with the highest number of provinces 
in all levels. Quality level provinces are few, only 4. High-level provinces are potential 
stocks to grow into high-quality provinces, there is a greater room for progress. The four 
provinces of Shanghai, Qinghai, Tibet and Ningxia are at the basic level. On the whole, 
the CCD in all provinces in China is at a lower stage. There are not only no provinces with 
low coordination but also a few provinces with basic coordination and a few provinces with 
quality coordination.

A visual analysis of the coupling coordination levels is shown in Fig. 1. The CCD in 
China has shown descensive tendency as a whole. The CCD has varied from quality coor-
dination to low coordination, which indicates that the relationship between AWRE and 
AEDL is deteriorating. Moreover, on the whole, the CCD in southeast provinces is always 
better than that in northwest provinces, and the gap between north and south is obvious.

In 2013, the CCD is basic in Tibet, Ningxia and Shanghai, moderate in Qinghai and 
Gansu, high in some provinces, and quality in others, and there is no low-level coordination 
nationwide. In 2015, Inner Mongolia decreased from a high CCD to a basic one, Gansu 
increased from a moderate to a high CCD, and the number of provinces with quality 
coordination decreased. In 2017, Gansu, Jilin, Beijing, and Tianjin decreased from high 
coordination to medium coordination, Inner Mongolia increased from basic to medium 
coordination, Shanghai increased from basic to low coordination, and Hunan decreased 
from quality coordination to high coordination, Guangxi increased from high coordination 
to quality coordination, and there was no significant change in the coordination level of 
other provinces. In 2019, Beijing and Tianjin increased to high coordination, Shanghai 
decreased to basic coordination, Qinghai increased to medium coordination, and the 
number of quality coordination provinces increased. On the whole, there are many 
provinces with high coordination, and most of them are in the southeast. There are few 
provinces with quality coordination, and the range of change is large.

According to the general principles of geographical division, China’s provinces are 
divided into seven administrative geographical divisions. On this basis, the above coor-
dination levels are analyzed by sub-region. It is seen from Fig. 1a that there are certain 
differences in the CCD of different divisions. There are also some differences in the CCD 
between different provinces in each division. As observed in Fig.  1a, a large gap exists 
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in the CCD between provinces in East China, Southwest China, and Northwest China. In 
some regions, the CCD is below 0.3, and in some regions, the CCD is above 0.7 and 0.8. 
This shows that the CCD between different provinces can be divided into strong and weak. 
Compared with East China, Southwest China, and Northwest China, the CCD of provinces 
in the other four regions is closer, and the CCD in Central China is around 0.8, with a 
strong coupling degree.

Figure 1b shows the changes in CCD in seven regions from 2013 to 2019. We found that 
Central China has the best CCD, which is above 0.8, belonging to the quality coordination 
level. The CCD of Northwest China is the weakest, ranking the last among the seven 
regions. However, after 2016, its coupling coordination shows a slow growth trend. The 
CCD of East China and Southwest China is similar. The development of the CCD in East 
China is relatively gentle, showing a gentle U-shape. The development of the CCD in 

Fig. 1  Spatial distribution of CCD
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Southwest China fluctuates, both rising and falling. The CCD in North China is slightly 
better than that in Northwest China, fluctuating at around 0.55. The CCD in South China 
is unstable and fluctuates greatly. The CCD in Northeast China shows a downward trend 
before 2016 and partially recovers after 2016.

Figure 2c, d reflects the presentation of the CCD between provinces in various regions. 
In the same region, the coordinated progress of provinces is different. In the southwest 
region, the CCD of Tibet is far lower than that of other area in the southwest region. The 
development of the CCD of the three provinces in South China is similar, and only Hainan 
has a low CCD. In Northeast China, Heilongjiang has a large CCD range. The CCD in 
Northwest China is gradually decreasing in a ladder shape. The CCD of Shaanxi is the best 
in Northwest China and the worst in Ningxia. In East China, Shanghai has the worst CCD. 
Shandong has the best CCD, which has been stable at around 0.9 for seven years. The 
development of coupling and coordination in other provinces in East China is similar. The 
development of the CCD in Central China is in a ladder shape, whereas the CCD in Henan 
is high and aggregated.

Figure  2d reflects the development of the mean value of the seven-year CCD in all 
provinces and regions. The overall CCD of provinces in Central China is high, and the 
distinction between provinces is small. In Northwest China, the CCD of other provinces is 
low except Shaanxi. Tibet coordinated degree in Southwest China is the lowest, and there 

Fig. 2  Zoning map of CCD
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is an obvious distinction with other provinces. In East China, Shanghai has a low CCD and 
Shandong has a high CCD. There is a small gap in the CCD between provinces in other 
regions.

To sum up, the CCD in Central China is high, and the gap between provinces is small. 
The CCD between Shanghai and Tibet is poor, and they are at the bottom of all regions. 
Shandong, Henan and Sichuan have a high CCD and are in the forefront among all 
provinces. There is a large gap in the CCD between provinces in other regions. In each 
region, there is a certain gap in the CCD between provinces.

3.4  Analysis of spatial correlation pattern of CCD

The spatial characteristics of the 31 provinces were studied using the MI index correlation 
tool and visualized using GeoDa software. As shown in Table 5, the global MI indices were 
all positive greater than 0, and all passed the 10% significance test. On top of, the change 
of MI index shows an overturned "U" shape, reflecting that the spatial agglomeration effect 
first strengthens and then weakens. There is a phase characteristic of spatial differences. 
From 2013 to 2017, the global MI index increases from 0.1466 to 0.2427, which is in a 
continuous increasing phase. 2017 to 2019, the global MI index decreases from 0.2427 to 
0.1992, which is in the decreasing stage.

Through local spatial autocorrelation, the spatial agglomeration degree of the CCD at 
the four time nodes in 2013, 2015, 2017, and 2019 is analyzed. The agglomeration results 
are spatially processed with the help of ArcGIS software to obtain a LISA clustering map 
of the CCD to show the spatial heterogeneity of CCD more intuitively.

As shown in Fig. 3, within the four nodes, the H–H agglomeration provinces are gradu-
ally increasing. In 2013 and 2015, there was only one province in Hubei. Yunnan joined 
the high-concentration cluster in 2017, and Anhui joined the high-concentration cluster in 
2019. This shows that the CCD between provinces in Hubei agglomeration area and the 
surrounding adjacent areas is high, and the spatial internal differences are small. There is 
an increase in the number of provinces in H–H areas increases, indicating that the radiation 
driving effect of H–H agglomeration areas is strengthening. L–L areas have been reduced 
from two provinces in Xinjiang and Tibet in 2013 to one province in Xinjiang. This shows 
that the CCD of provinces of this type is lower than that of their surrounding areas, which 
is a deficiency that hinders the coordinated development of the region. Areas with low and 
high convergence are gradually decreasing. In 2013, Shanxi and Anhui were in low- and 
high-concentration areas. In 2015, only Shanxi was in low- and high-concentration areas. 
In 2017, there were no low- and high-concentration provinces. Conversely, Anhui joined 
the H–H agglomeration area in 2019, which indicates that Hubei has a certain radiating 
effect on Anhui and affects the agglomeration status of Anhui.

Table 5  Global MI index of 
CCD

Year Moran’s I E(I) Z score P value

2013 0.1466  − 0.0333 1.3681 0.0870
2015 0.2015 – 0.0333 1.7990 0.0450
2017 0.2427 – 0.0333 1.9897 0.0280
2019 0.1992 – 0.0333 1.7847 0.0450
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In general, the number of provinces with H–L agglomeration is adding, and the number 
of provinces with L–L agglomeration is diminishing. This shows that although the cou-
pling state between AEDL and AWRE is gradually improving, on the whole, the CCD of 
the two is not concentrated, and there are many insignificant provinces. We should attach 
importance to strengthening the internal connection entre AEDL and AWRE in various 
provinces and improve the coupling coordination between the two. Areas with low and 
high concentration are easily affected by the radiation of surrounding provinces and have 
great development potential. We should focus on low-level agglomeration areas as the pri-
mary development object to improve the combination.

Fig. 3  LISA concentration diagram
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3.5  Prediction and analysis of CCD

To better understand the future development trend of CCD, the average of CCD in all 
provinces from 2013 to 2019 was selected as the original data. And the GM (1,1) grey 
prediction model is used to simulate and anticipate the standard of combination in the next 
six years. The results are shown in Table 6. According to the model error test results, the 
average simulation relative error is 0.035114, which is less than 0.1, indicating that the 
model meets high requirements.

The prediction results are shown in Fig. 4. The average of the CCD in all provinces will 
still show a slow rising tendency. The CCD is 0.632 in 2020, 0.634 in 2021, and 0.636 
in 2022. This suggests that the average value of the CCD will rise slowly in future, and 
although the coupling level will gradually move closer to the highly coordinated stage, the 
range of change is small. After 2022, the CCD slows down, and the growth impact is not 
obvious.

According to the prediction results, the CCD will be stage by stage advanced in future. 
However, the level of CCD has not achieved a phased breakthrough, making the two 

Table 6  Error test based on GM (1,1) grey prediction model

Particular year Original value Estimate value Residual Relative error (%)

2014 0.601 0.625  − 0.024 3.914
2015 0.632 0.626 0.006 0.99
2016 0.576 0.628  − 0.051 8.935
2017 0.626 0.629  − 0.003 0.519
2018 0.636 0.631 0.005 0.858
2019 0.657 0.633 0.025 3.776

Fig. 4  Prediction trend diagram of CCD
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systems of AWRE and AEDL promote each other and develop together. In future, with 
the progress of science and technology and the deepening of reform, the AWRE will 
encounter new chances and dare. To improve the innovation ability of agricultural water 
resources, we should continue to strengthen independent innovation, increase investment 
in innovation elements, and effectively improve the comprehensive innovation ability of 
agricultural green water resources. Furthermore, accelerate the green production capacity, 
green economy, and other fields; and improve the level of coordination between the two 
systems of AWRE and AEDL.

4  Discussion

The above study discusses the level of CCD, as well as the state of agglomeration. First, 
the SBM-DEA model and the combined use of entropy value method were employed to, 
respectively, calculate the AWRE and the AEDL in 31 provinces on the mainland. The 
study shows that there is a gigantic distinction in AWRE between diverse provinces. 
Among the 31 provinces, Jiangsu, Zhejiang, Shandong and other 8 provinces have high 
AWRE in agriculture, which is maintained as 1  year-round. Four provinces, including 
Tibet and Qinghai, have a low level of AWRE, remaining below 0.2  year-round. This 
has a relationship with the geographical location of the provinces. Provinces with high 
AWRE are mostly located in eastern and southern China, which are under the influence 
of monsoon, have abundant precipitation, and have many rivers and lakes, and have more 
water resources per capita, which exert a greater infection on the AWRE. Tibet, Qinghai 
and other provinces in the northwest inland areas, dry climate, low precipitation, shortage 
of water resources, per capita possession of water resources is low, AWRE is low. This is 
alike to the consequences of Ma’s et al. (2019) study.

In contrast, the results of the AEDL are less variable, mainly around 0.4–0.7. AEDL 
is influenced by various factors of production, geographic climate, economic conditions, 
agricultural science and technology, and government actions (Cetin, 2019). Henan 
and Shandong are the largest agricultural provinces in China, with the total arable land 
area accounting for nearly 50% of the total land area. The two places are influenced by 
monsoon climate and have abundant precipitation, which can fulfills the needs of irrigation 
for agricultural production perfectly (Cui et al., 2022). Together with the good economic 
development, the economic benefits obtained from agricultural cultivation are high. 
Therefore, the AEDL of the two places is around 0.7. Although Shanghai is a modern 
city with good economic development, the arable land is limited and fragmented, and the 
conflict between human and land is prominent, so the level of agricultural development is 
weaker, at around 0.4.

Secondly, the coupled synergy model is used to measure the synergy relationship 
between AWRE and AEDL. Overall, there are no cities with low levels of coordination 
among the 31 provinces. Several cities are at a high level of coordination. Only four 
provinces, Hunan, Shandong, Henan and Sichuan, are at the high-quality coordination 
level. In terms of regional distribution, Central China has the highest level, with East China 
and Southwest China second only to Central China. Northwest China has the lowest CCD, 
while North China, South China, and Northeast China are better than Northwest China. 
One is because the economic development of the interior of the Northwest lags behind 
other regions. Economic development is the foundation. Economically developed regions 
have more financial investment in agricultural technology research and development, 
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quality crop breeding, and expansion of agricultural production. Financial support can 
promote the better development of agricultural cultivation, high-quality crops can obtain 
economic income, and then act on agricultural cultivation, forming a cycle of development. 
Second, the geographical location. The Northwest is located inland, far from the sea, arid 
climate, arable land area is small and poor quality, and the lack of water, is not conducive 
to agricultural development. Third, the deterioration of the ecological environment has led 
to serious soil erosion and a decline in the quality of arable land (Dutta, 2017).

Finally, according to the spatial agglomeration effect of the CCD was evaluated by using 
the MI index related tools. It was found that although the H–H agglomeration areas showed 
a slow increasing trend, the overall coupling coordination was not strong agglomeration. 
This indicates that the country’s coordinated development is unbalanced and inadequate. 
There are gaps in the development of the agricultural industry, which has failed to form a 
clustering effect. The study found that the coupling coordination will be further developed 
in the next six years, but at a slow pace. This indicates that the link between AWRE and the 
ADEL is not yet strong enough, and the dependence between the two is weak.

The article makes the following guidelines to similarly enhance the stage of 
coordination. First, the problem of difficult crop cultivation in the northwest should be 
solved. In the northwest, where the land is barren and the climate is arid, drought-resistant 
crops should be cultivated, and the planting area should be decided according to the 
degree of drought tolerance of the crops (Sevik et al., 2020). Crop planting should match 
the local water resources distribution pattern, reduce the waste of water caused by small-
scale scattered operations, and form a scale effect to pull agricultural output. Strengthen 
the promotion of water-saving irrigation machines, for instance channel impermeability 
technology, drip irrigation technology under the membrane and other water-saving 
technologies, improve the renewal of old dams, ditches and other water conservancy 
facilities, and improve the AWRE (Li et al., 2019).

Secondly, the problem of poor coupling between the AWRE and the AEDL should 
be solved. AWRE and AEDL are not an opposite development process. The Northwest 
is the least coupled of all regions and should strengthen its agro-industrial development 
even more. The first is to focus on farmers’ issues. We are inclined to the farmers’ group 
from multiple perspectives, such as basic medical care and pension, to guide more working 
people to continue to take part in agricultural progress and to guarantee the fundamental 
agricultural development inheritance problem. Secondly, we should further promote the 
progress of technology agriculture. We should work on planting techniques, planting 
methods and good seed breeding to improve crop yields and effectively promote the 
agricultural economic development from a technical perspective. Thirdly, agricultural 
resources should be integrated. With the acceleration of urbanization, land resources in 
rural areas are deserted and wasted. Agricultural resources should be integrated from 
the perspective of development. For example, land utilization can be improved by means 
of land transfer. Fourth to strengthen the training of agricultural personnel. We should 
precisely train agricultural talents, from the basic perspective of breeding and planting, 
to cultivate high-quality professional agricultural talents and enhance the adaptability of 
talents to agricultural development. To introduce new composite talents for agricultural 
development, strengthen the introduction of technology through the introduction of talents, 
and promote the transformation of ideas through the introduction of technology, so as to 
accelerate the standard of agricultural development (Ma et al., 2019).
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5  Conclusions

By exploring the CCD between AWRE and AEDL in 31 provinces of China, we draw the 
following conclusions.

1. It is found that AWRE in agriculture in Eastern and Southern China provinces is 
generally higher, as well as higher than that in Northwest inland provinces. Moreover, 
a big gap exists in the AWRE. Cities with high efficiency, such as Jiangsu and Zhejiang, 
can be maintained at 1 all year round, but cities with low efficiency, such as Inner 
Mongolia and Qinghai, can be maintained below 0.2 all year round. The AEDL remained 
between 0.4 and 0.7, with a small range of change.

2. The CCD of provinces in China shows a falling tendency. In particular, Tibet, Ningxia, 
Shanghai, and Qinghai have been in basic coordination for many years, and their CCD 
is at the bottom of the country in all time nodes. In the spatial layout, the coordination 
level in southeast is high and the coordination level in northwest is low. Especially, the 
CCD of northwest inland region lags behind other regions for ages. On the ground of 
geographical location, climate deviation, local resources, and other reasons, the AEDL 
in Central China is better than that in Northwest China. From the perspective of the 
seven regions, Central China has a high CCD, and the gap between provinces in the 
region is small, realizing the overall quality development of the region. In Northwest 
China, Shaanxi has a high CCD while other areas have a low degree. There is a large 
disparity between provinces, and the overall coupling coordination level of the region 
is weak. There is a disparity in the CCD of provinces in most regions, indicating that 
the development of provinces in the same region is unbalanced and insufficient.

3.  In terms of the degree of agglomeration, H–H agglomeration areas show a slow 
increasing trend, the quantity of L–L areas is small, the low and high agglomeration 
areas show a decreasing trend, and there are no high and low agglomeration areas. 
On the whole, the CCD is not concentrated, and there are many provinces that are not 
significant. This indicates that the CCD is unbalanced and insufficient.

4. The GM (1,1) grey prediction model serve as prospect the CCD. It is found that the CCD 
will further develop in the next six years, but the development speed is slow.
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