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Abstract
Nowadays, the removal of heavy metals (HMs) as one of the major environmental pollut-
ants has become an obvious issue in preserving the environment. Among the suggested 
approaches, the use of nano-adsorbents has been immensely contributed for the treatment 
of contaminated water and wastewater by HMs because of their unique physicochemical 
characteristics. Herein, we are offering a potent view on adsorption mechanism of differ-
ent inorganic nano-adsorbent classes with special focus on the main characteristics (BET, 
SEM/FESEM, FTIR, and XRD), reviewing the effects of several operational factors (ini-
tial concentration of HMs, adsorbent dosage, contact time, and pH) on the HMs removal. 
Furthermore, the importance of isotherm-kinetic models has been discussed. Eventually, 
the negative effects of nanoparticles in environment are exclusively reviewed. This com-
prehensive review demonstrated that inorganic nano-adsorbents have a crystalline structure 
with a different diameter size range of 10–80  nm, which can be a promising candidate 
(high efficiency ˃ 90%) and large surface area for HMs decontamination. The results of the 
comparison between the isotherm-kinetic models also confirmed that the experimental data 
were fitted with Langmuir isotherm (R2 ˃  0.98) and PSO kinetics (R2 ˃  0.98), respectively.

Keywords Nano-adsorbents · Heavy metals · Carbon nanotubes · Magnetic nanoparticles · 
Isotherm and kinetics

1 Introduction

In recent decades, water pollution as a global challenge has  been gained  numerous 
attention among the  environmentalists due to its negative effects on the natural eco-
system and human health (Sharifpour et al., 2018). The increasing rate of urbanization, 
industrialization, and globalization has caused severe environmental concerns such as 
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water quality deterioration. Access to sufficient water with good quality is also recog-
nized as an important development index by all governments around the world (Emma-
nuel Alepu Odey & Harrison Ikhumhen, 2017; Kumar et al., 2017; Patil et al., 2019). 
Among the pollutants, heavy metals (HMs) such as zinc (Zn), arsenic (As), copper (Cu), 
cadmium (Cd), chromium (Cr), mercury (Hg), nickel (Ni), and lead (Pb) can inflict con-
siderable harm to animals and humans even at basic levels (Bora & Dutta, 2019; Madala 
et al., 2017; Razmgar & Mokhtari Hosseini, 2016; Shan et al., 2020; Sirviö & Visanko, 
2020). Because of their special properties such as acute toxicity, accumulation potential, 
solubility in aqueous media, and capability to bind with proteins, enzymes and nucleic 
acids, heavy metals are categorized as a class of persistent toxic substances (PTSs) 
(Akbarzadeh et al., 2020; Zhang et al., 2011). Discharge of heavy metals into waters can 
occur directly and indirectly via anthropogenic and natural sources (Youzhi Li et  al., 
2020). Therefore, it is necessary to eliminate heavy metal ions from wastewaters and 
polluted waters.

Various methods such as membrane technologies (Pietrzak, 2013), nano-filtration 
(Mikulášek & Cuhorka, 2016), ion exchange (Dong et  al., 2018), adsorption (Almasi 
et al., 2017b), electrocoagulation (Doggaz et al., 2019), chemical precipitation (Byam-
baa et al., 2018), coagulation/flocculation (CF) (Amuda et al., 2006), air floatation (Sun 
et al., 2020), phytoremediation (Jin et al., 2019), reverse osmosis (RO) (Thaçi & Gashi, 
2019), solvent extraction (Konczyk et  al., 2013), photocatalytic degradation (Dhan-
dole et al., 2020), electrochemical technologies (El-Shafai et al., 2020), electro-dialysis 
(Nemati et  al., 2017), modern radiation techniques (microwave) (Kiran et  al., 2019), 
ultrasonic (Adeel et  al., 2020), and advanced oxidation processes (AOPs) (Moersidik 
et al., 2020) have been used in the removal of heavy metals from aqueous solutions. As 
shown in Fig. 1, studies on the removal of HMs since 2010 have received considerable 
attention due to health and environmental hazards.

The results of previous research have confirmed that conventional water and waste-
water treatment methods are unable to remove heavy metals according to established 
standards (Adeleye, 2016). Therefore, environmentalists need to develop novel methods 
to overcome the shortcomings of previous methods.
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particles (NPs) from 2010 to 2020
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Among them, adsorption is an efficient and low-cost method in removing pollutants 
from water and wastewater due to the great removal efficiency, lack of sensitivity to toxic 
compounds, simple operation, high surface area, and high capacity (Almasi et al., 2017b; 
Nayeri et al., 2019; Shahbazi et al., 2020). The results of previous studies indicated that 
many factors such as surface area, functional groups of the adsorbent, physicochemical 
structure, dispersion stability, zeta potential of the adsorbent surface, pore size distribu-
tion, and polarity influence the adsorption efficiency (Chen et al., 2020; Mehdizadeh et al., 
2014). Although adsorption process has numerous advantageous, the efficiency of this 
method can be restricted by mass transport resistance (Mehdizadeh et al., 2014). Therefore, 
researchers have attempted to introduce new adsorbents, namely nano-sized adsorbents 
(Di Natale et al., 2020; Gangadhar et al., 2012), to improve the efficiency of conventional 
adsorbents and overcome their shortcomings.

This new type of adsorbent has received considerable global attention for application in 
water and wastewater treatment because of the following advantages: high surface/volume 
ratio, amendable size and shape and biocompatible nature (Chaudhary et al., 2016), selec-
tive separation (Gómez Pastora et al., 2016), catalytic potential (Ebadi et al., 2016), abil-
ity to adsorb various metals (Farghali et al., 2013), high permeability, good sustainability 
(Gangadhar et al., 2012), having functional groups, absence of secondary wastes (Dil et al., 
2019b; Farghali et al., 2013), high mechanical strength and high ordered structure (Nayeri 
& Mousavi, 2020a).

Nano-adsorbents can be classified into two main groups of inorganic and organic nano-
sized adsorbents (Homaeigohar, 2020). Over the past decade, inorganic nano-adsorbents 
such as carbon nanotubes, nanocomposites, nano-clay, magnetic nanoparticles, metals 
oxides, and zero-valent iron have been developed to remove heavy metal ions from aque-
ous solutions (Fig. 1). Many single-faceted reviews have been published on the nano-adsor-
bents, but a comprehensive review of the recent development of inorganic nano-adsorbents 
for the removal of heavy metals is still lacking. Therefore, this work focuses on the appli-
cation of inorganic nano-adsorbents for the removal of a wide range of heavy metals from 
the water systems. This paper presents general information regarding the sources and nega-
tive effects of heavy metals, the conventional methods of HMs removal, the concept and 
adsorption mechanism of HMs, and also the advantages and limitations of the different 
types of nano-adsorbent are evaluated. Other relevant realms and factors investigated in this 
paper include the following: developed inorganic-nanostructured adsorbents such as chem-
ical and physical characteristics using various methods, namely Brunauer–Emmett–Teller  
(BET), Scanning Electron Microscope (SEM), Fourier-transform infrared spectroscopy 
(FTIR), X-ray diffraction analysis (XRD), evaluating the effect of operational factors on the 
removal efficiency such as initial metal concentration, pH, contact time, and nano-adsor-
bents dosage; reviewing various isotherm models (Langmuir, Freundlich, Temkin, Sips, 
and Dubinin–Radushkevich) and kinetic models (pseudo-first-order, pseudo-second-order, 
intraparticle diffusion, and Elovich) of the adsorption process, and finally negative effects 
of nanomaterials on the human health were discussed.

2  Sources of heavy metals

The heavy metals in the aqueous solutions are originated in two main sources: the natural 
source such as the pedogenetic and weathering processes and the human source such as 
agricultural, mining, industrial, and urban activities (Nguyen et al., 2020; Youzhi Li et al., 
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2020). As, Cd, Cu, Co, Al, Cr, Ni, Mn, Hg, Pb, Sn, Zn, and Fe are some of the HMs that 
can be found in water and wastewater (Nguyen et al., 2020; Youzhi Li et al., 2020). Among 
them Cu, Pb, Zn, As, Cd, Cr, and Hg as primary control pollutants need more attention by 
environmental agencies and scientists (Pekey, 2006; Qiao et al., 2020). In brief, the sources 
of some of the more dangerous HMs, which can be founded in water and wastewater, were 
reported as follows:

Cadmium could be released in ecosystems by natural resources such as rock weather-
ing, forest fires, and volcanic eruptions (Boparai et  al., 2013). Anthropogenic activities 
such as waste incineration, metal electroplating, fertilizer production, polyvinyl chloride 
(PVC) products, cadmium alloys, and batteries are another source of cadmium component 
in water bodies (Abd El-Latif et al., 2013; Boparai et al., 2013).

Lead as an HM is generally combined with sulfur as galena (PbS), which is the main 
lead-bearing mineral (Fashola et  al., 2016). Lead is used in batteries, dyes, paper, and 
pulp industries, mining, canning, lead smelting, metallurgy, tannery, cables, pesticides, 
steels and alloys, soundproofing materials, and other industrial and agricultural activities 
(Chaudhry et al., 2016; Fashola et al., 2016; Mousavi et al., 2019).

Mercury as Hg enters into the environment from natural and anthropogenic sources. 
Among the man-made sources are activities such as mining, barometer and thermometer 
production, pharmaceutical products (Yaghmaeian et  al., 2015), electroplating, catalysts, 
thermometers, fluorescent light bulbs, barometers, batteries, electrical switches and relays, 
mercury lamps, semiconductor solar cells, and pharmaceuticals (Björkman et  al., 2007; 
Park & Zheng, 2012).

Chromium is one of the most plentiful elements in the Earth’s crust (Izbicki et al., 2008). 
This element is naturally adsorbed by grains, meats, and vegetables (Gautam et al., 2016). 
Furthermore, compounds of chromium could be found in industrial activities such as chro-
mic acid and Cr pigments manufacturing, wood preservation, leather tanning, producing 
paints and dyes, printing products, oil refining, stainless steel production, textile manufac-
turing, and pulp production (Gaffer et al., 2017; Khatoon et al., 2013; Zandipak, 2017).

Arsenic components with an average terrestrial concentration of about 5 g/ton are nat-
urally distributed in the Earth’s crust (Langsch et  al., 2012). The water systems can be 
polluted by arsenic due to gold mining, natural erosion, geochemical reactions, biological 
activity, volcanic eruption, and burning of fossil fuels (Mandal et al., 2013). This element 
is used in car batteries, paint and dyes, pesticides, textiles, medical wastes, semiconduc-
tor production, electronic industries, food additives, cement, and glass industry (Agrafioti 
et al., 2014; Pillai et al., 2020).

Nickel is a natural element in the earth’s crust (Karnib et al., 2014). This element can 
be introduced in natural ecosystems from sources such as municipal waste incineration, 
mining, fuel burning, and residual oil burning, fly ashes, boilers, cement, pesticides, elec-
troplating, porcelain enameling, and power plants (El-Sadaawy & Abdelwahab, 2014; Gau-
tam et al., 2016).

Copper as a native metal can be found in nature in a usable form and has been widely 
used in electrical wire, plumbing, electronics, white goods, and in alloys such as brass, 
bronze because of special properties such as electrical conductivity and high corrosion 
resistance (Li et al., 2014; Tiwari et al., 2017). Furthermore, this element is used in nutri-
tional supplements, electroplating, petroleum refining, mining, tannery, and many other 
products and activities (Demiral & Güngör, 2016; Elkady et al., 2015).

Cobalt has been used in pigments, rechargeable batteries, electric vehicles, high-per-
formance alloys, mining, plating, metalworking, paints, and electronics (Tizro & Baseri, 
2017).
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Zinc is the most common metal ion in aqueous media and has had widespread applica-
tion in various sectors (Ali et al., 2019). This metal is essential for the physiological func-
tion of living tissues and controls various biochemical processes (Farid et al., 2017). It can 
reach the environment and cause serious pollution through various ways such as paints, 
pigments, rubber and chemical industries, batteries, ammunition production, and electro-
plating (Jagaba et al., 2020; Omraei et al., 2011).

3  The effects of heavy metals on human health

The HMs from the aforementioned sources especially wastewaters find their way into the 
environment and contaminate receiving waters, soil, and groundwater and pose danger to 
all life forms (Abd El-Latif et al., 2013; Agrafioti et al., 2014). As they are non-biodegrad-
able and cannot be metabolized, they engender bioaccumulation and bio-magnification in 
the food chain (Madala et al., 2017; Valentín-Reyes et al., 2019). Therefore, in this section, 
the effects of HMs on the human body and environment have been briefly discussed.

Cadmium can be enriched in agro-products (e.g., vegetables, and crops, and sea prod-
ucts like shellfish (Chunhabundit, 2016). The consumption of food containing this element 
results in poisoning, and it has negative effects on the nervous system, organs such as liver, 
lungs, and kidneys, and cardiovascular system via accumulation. Such accumulation can 
cause carcinogen-teratogen, laryngitis, asthma attacks, pulmonary fibrosis, acute gastroin-
testinal pain, and finally death (Table 1) (Madala et al., 2017; Trinh et al., 2019; Valentín-
Reyes et al., 2019). The most remarkable cadmium toxification is Itai-Itai disease common 
in Japanese Jintsu River Valley, because of rice irrigation by contaminated water (Yoshida 
et  al., 1999). Food and Agriculture Organization (FAO) and World Health Organization 
(WHO) reported that the maximum daily intake of cadmium from all sources (water, soil, 
and air) is 1–1.2  μg/kg of body weight (Kakaei, 2016). The maximum concentration of 
cadmium in drinking water is 0.003 mg/L as decided by WHO (Madala et al., 2017).

Lead is not an essential element and can be accumulated in human organs after uptake 
from food, air, or water (Pourrut et al., 2011). The results of studies have indicated that Pb 
will be effect on the different aspects including decrease of the intelligence quotient (IQ) in 
children, exacerbate mental and behavioral dysfunctions, causing high blood pressure, ane-
mia, and headache, muscle aches, general fatigue and anger, compromise fertility in adults, 
trigger nervous system burnout, loss of memory, nausea, insomnia, anorexia, elevate the 
risk of developing Alzheimer’s disease, and also reduction in the production of hemoglobin 
(Brooks et  al., 2010; Manyangadze et  al., 2020; Nayeria et  al., 2019). Upon long-term 
exposure to lead, it can be replaced with calcium at the point of calcium release (bone tis-
sue) and interfere with normal bone formation process (Brooks et al., 2010; Dixit et al., 
2017; Ramesh et al., 2013). Table 1 shows the results of lead exposure in children. Due to 
these significant effects, the US Environmental Protection Agency (US. EPA) estimates the 
maximum lead concentration into the environment at 0.015 mg/L. WHO has reported the 
levels of lead in surface waters at less than 0.1 mg/L and non-polluted areas at 1 μg/L and 
below (Brooks et al., 2010; Dixit et al., 2017; Ramesh et al., 2013).

Mercury is a serious threat to human life and natural ecosystems because of its high 
toxicity (Park & Zheng, 2012). Hg can be found in the environment as mercuric  (Hg2+), 
mercurous  (Hg+), elemental  (Hgo), or alkylated form (methyl/ethyl mercury), which is the 
most toxic forms in water (Park & Zheng, 2012; Yaghmaeian et al., 2015). It can adversely 
affect tremors, insomnia, memory loss, and neurologic systems (Mahurpawar, 2015). The 
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most notable mercury occurrence is the Minamata disease, which is the result of discharg-
ing mercury sulfate from wastewater into the Minamata Bay and Shiranui Sea (Yokoyama, 
2018). The mercury sulfate is metabolized to methylmercury by bacteria in the sediment, 
and this toxic chemical is bioaccumulated and biomagnified in the shellfish and fish and 
consequently in the human body (Barkay and Wagner‐Döbler, 2005; Mahurpawar, 2015). 
Moreover, scientists reported that methylmercury triggers autism and learning disabilities 
(Leslie & Koger, 2011). Acute toxicity of mercury by exposure to mercury vapor during an 
accident at a fluorescent lamp is shown in Fig. 2 (Do et al., 2017). The U.S. EPA reported 
that the limit of the mercury discharge into wastewater is 10  μg/L and the maximum 
acceptable concentration in drinking water is 1 μg/L (Huang et al., 2016).

Chromium as chromite  (Cr+3) and chromate  (Cr+6) can be predominantly introduced 
into the environment through the aforementioned sources (Wang et al., 2020). Because of 
mutagenic characteristics,  Cr+6 is listed as an anthropogenic human carcinogen (Group I) 
by the IARC (International Agency for Research on Cancer) (Huang et al., 2017; Leonard 
& Lauwerys, 1980). This element damages organs such as kidneys, and, liver and helps 
develop lung tumors, severe diarrhea, skin allergy, mucous membranes, respiratory prob-
lems, and internal bleeding (Mahurpawar, 2015). To reduce these health effects of chro-
mium, the US. EPA has announced the allowable amount of dischargeable to surface water 
at below 0.05 mg/L (Liu et al., 2020a). In Fig. 2, an occurrence of chromium damage has 
been reported for a person who consumes polluted water (Thakare et al., 2017).

Arsenic can be associated with skin damage and hyperkeratosis at short-term exposure 
(Dastgiri et al., 2010). Long-term exposure to arsenic elevates the risk of cancer of skin, 

Fig. 2  Effects of heavy metals on human health (Do et  al., 2017; Jetty et  al., 2013; Mandal et  al., 2016; 
Sharquie et al., 2011; Thakare et al., 2017)
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lungs, liver, kidneys, and bladder, and intestinal problems, thickening of the skin, blood 
vessel diseases, high blood pressure, reproductive disorders, and other non-carcinogenic 
diseases (Hernández-Flores et al., 2018; Mandal et al., 2013). Exposure to arsenic in the 
workplace by inhalation can also cause lung cancer and non-malignant skin changes such 
as keratosis (Fig. 2) (Mandal et al., 2013). Arsenic-polluted drinking water in Bangladesh 
killed 200,000 to 270,000 because of cancer (Gardner, 2009). Based on previous studies, 
700 persons were poisoned, which is thought to lead to cancer, and 157 people died due to 
poisoning by exposing at high risk of water contaminated with arsenic (Table 1) (Gardner, 
2009; Mahmood, 2012). WHO has considered 10 ppb as a permissible limit in drinking 
water (Chaudhry et al., 2017).

Nickel compounds are easily adsorbed at high concentrations and can cause lung, bone 
and respiratory tract cancer (Fonseca-Correa et al., 2019). In addition, acute Ni (II) poison-
ing leads to chest pain, rapid breathing, dermatitis, skin allergies cyanosis, and headache 
(Fonseca-Correa et al., 2019). Furthermore, nickel according to Fig. 2 can cause allergies 
and dermatitis (Jetty et al., 2013). The tolerance limit of nickel concentration in drinking 
water and industrial wastewater is 0.01 mg/L and 0.2–2 mg/L, respectively (Venkateswarlu 
et al., 2015).

Copper is a vital micronutrient for plants and animals, but at high concentrations it is 
toxic for all organisms (Hänsch & Mendel, 2009). At high concentrations in water, this 
element can cause diarrhea, vomiting, stomach cramps, dermatitis, asthma, bronchitis, 
anemia, kidney, and liver damages (Rachmawati et  al., 2013). Therefore, the WHO rec-
ommends the maximum allowable concentration of copper in drinking water at 0.01 mg/L 
(Wehbe et al., 2020).

Cobalt in the environment can lead to many health problems such as low blood pres-
sure, vomiting, nausea, heart disease, vision problems, loss of appetite, thyroid damage, 
hair loss, bleeding, diarrhea, and bone defects, and may also cause mutation (Tizro & 
Baseri, 2017).

Zinc has important roles in living organisms, including proper functioning of more than 
200 enzymes, DNA stability, gene expression, and signal transduction across the nervous 
system (Larakeb et al., 2017; Manal & Leila, 2016). However, its high concentration causes 
negative effects such as gastroenteritis, peritonitis (peritoneal inflammation), growth retar-
dation, stomach cramps, skin sensitivity, diarrhea, vomiting, anemia, shock, and ultimately 
death (Larakeb et al., 2017; Manal & Leila, 2016). WHO has been determined 3 ppm Zn as 
the maximum acceptable level in wastewater and drinking water (Ali et al., 2019).

Thallium as a toxic heavy metal can produce effects like mutagenicity, carcinogenicity, 
and teratogenicity especially that many of its compounds are soluble in water (Asadpour 
et al., 2016). Besides, exposure to thallium in the short term can cause hair loss and scalp 
alopecia (Fig. 2), skin lesions, and damage to the nervous system (Sharquie et al., 2011). 
The clinical features of short-term thalamic poisoning include nausea, vomiting, diarrhea, 
dysfunction in dental organs, and hyperkeratosis with hair loss in the sub-stage (Sharquie 
et al., 2011).

4  The removal of heavy metals

Heavy metals can be eliminated from aqueous solutions using physical and chemical meth-
ods. Earlier research has addressed the physical methods such as mechanical screening, 
magnetic separation, and electrostatic separation (Gunatilake, 2015). Chemical processes 
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such as ion exchange (Dong et al., 2018), precipitation (Gangadhar et al., 2012), flotation 
(Sun et  al., 2020), adsorption (Almasi et  al., 2017a), coagulation/flocculation (Amuda 
et al., 2006) are widely used in the removal of heavy metals. The advantages and disadvan-
tages of different methods are summarized in Table 2.

The advantages of membrane filtration such as stability, low energy requirement, and 
high removal efficiency make it suitable for the removal of metals, but this process has 
limited applicability because of high maintenance costs, production difficulties, disposal 
of residual materials, and high pressure requirement (Tiwari et al., 2017; Xia et al., 2017). 
On the other hand, the ion exchange method has several advantages like metal recovery and 
selectivity (Zewail & Yousef, 2015), but is limited due to high costs, lack of recyclability, 
the requirement of pretreatment and saltwater production (Gangadhar et al., 2012; Imchuen 
et al., 2016). In chemical precipitation, metals can be removed by the addition of organic 
polymers, alum, lime, and iron salts, but the main limitations of this method are the pro-
duction of a large amount of sludge, high-cost requires operation and maintenance, and 
high power requirement (Gangadhar et al., 2012; Team, 2010). Another method that is used 
for the removal of heavy metals is air floatation. In this method, the bubbles stick to heavy 
metals and move them to the surface; due to high processing capacity and fast operation, 
it can be conveniently used for heavy metals removal. Nevertheless, this method has some 
drawbacks such as difficulty in scum control and the production of excess salt in the efflu-
ent of air floatation (Sun et al., 2020). Moreover, this technology requires high initial capi-
tal cost for operation and maintenance (Rubio et al., 2002). A coagulation and flocculation 
process due to the rapid and efficient method, low energy consumption, relatively simple 
design, non-toxic method, and low cost is helpful in water and wastewater treatment for the 
removal of heavy metal (Nayeri & Mousavi, 2020b; Ozairi et al., 2020; Sun et al., 2020). 
However, previous studies verified that using coagulant especially alum can cause neuro-
pathological diseases such as Alzheimer (Nayeri & Mousavi, 2020a). Moreover, adsorp-
tion results in the production of high-quality effluents in many cases, and many adsorption 
processes are reversible (Mahmoud et  al., 2015). The adsorption process is widely used 
due to its flexibility, design simplicity, ease of operation, non-susceptibility to toxic con-
taminants, avoidance of toxic substances, recovery of adsorbents, and more efficient opera-
tion (Akpomie & Dawodu, 2015; Mousavi et al., 2020). However, many adsorbents are not 
effective because of release or high inactive surface, or issues such as economic unjustifia-
bility and production of secondary waste. Furthermore, it is difficult to separate adsorbents 
from the treated water after the completion of the adsorption process (Khazaei et al., 2016; 
Pirbazari et al., 2014). Nowadays, nanoparticles have been widely studied for the removal 
of various pollutants specially the HMs in water and wastewater because of their outstand-
ing properties such as high surface to volume ratio compared to conventional adsorbents, 
larger pore size, higher adsorption capacity, faster removal dynamics, and greater removal 
efficiency (Adeli et al., 2017).

5  Nano‑adsorbent

In general, the sorption of water-soluble materials within a solid phase is called the adsorp-
tion process (Ali, 2012). Adsorption is a separation process in which some components 
of the fluid phase are transferred to the surface of a solid adsorbent. The adsorption of the 
transfer function from the liquid phase to the solid phase is widely used in the treatment 
of water and wastewater (Dowlatshahi et  al., 2014). The adsorption of pollutants on the 
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adsorbent surface requires several stages: (1) the transfer of the metal ion from solution to 
the adsorbent outer surface; (2) the transfer of contaminated mass to internal and porous 
adsorbent through diffusion; and (3) adsorption of adsorbate material on the adsorbent 
active sites (El-Kafrawy et al., 2017).

Nowadays nanoparticles have attracted much attention due to their distinctive physico-
chemical properties (Aldwayyan et al., 2013) as they are used in fields such as chemistry, 
physics, electricity, environmental engineering, medicine and biology (Gangadhar et  al., 
2012; Mohammed, 2015). The word "Nano" comes from the Greek word "Nanos" meaning 
"dwarfs" and refers to an entity of a magnitude of  10–9. Nanoscience focuses on the study 
of atoms, molecules, and objects that have particle size of a nanoscale (Gangadhar et al., 
2012). Particle size is a relatively important feature of particles in the adsorption of pol-
lutants. Therefore, smaller particle size can further improve the efficiency of the process 
because of wider specific surface area (Dargahi et al., 2015). Nanoparticles are considered 
suitable for water purification applications due to properties such as surface magnitude, 
catalytic potential, high reactivity, and self-assembly potential (Amadi et al., 2021; Ebadi 
et al., 2016). Furthermore, nano-adsorbents are extremely efficient in water-soluble appli-
cations due to lack of internal diffusion resistance for fast adsorption of organic molecules 
and heavy metal ions (Ebadi et  al., 2016). There are a number of criteria for the use of 
nanoparticles as adsorbents for the effective removal of heavy metal ions from wastewater: 
(1) non-toxicity; (2) relatively high and selective adsorption capacity for low concentra-
tions of pollutants; (3) easy removal of the adsorbed materials onto the adsorbent surface; 
and (4) recoverability of adsorbents (Wang et al., 2012). In recent decades, many studies 
have been carried out on the nano-adsorbents from a variety of aspects. Various inorganic 
nanoparticles such as metal oxides, nanocomposites, carbon nanotubes, magnetic nanopar-
ticles, nano-zero-valent iron, and nanoparticles of clay have been employed for the treat-
ment of water solutions, and researchers have reported several advantages during the last 
two decades (Table 3).

6  Inorganic nano‑adsorbents

6.1  Nano‑metal oxide (NMOs)

6.1.1  Physicochemical characteristics

This type of nano-adsorbent is produced in various sizes and shapes (small particles and 
granules) which have high adsorption efficiency (Mahmoud et  al., 2015; Ociński et  al., 
2016). Among the metal oxide nanoparticles, iron oxide (Wang et  al., 2010), titanium 
oxide (Poursani et  al., 2016), zinc oxide (Venkatesham et  al., 2013), magnesium oxide 
(Dargahi et al., 2015), nickel oxide (Mahmoud et al., 2015), manganese oxide (Ghaniem 
et al., 2016), copper oxide (Farghali et al., 2013) and zirconium oxide have been studied 
(Chaudhry et  al., 2017). Physical structure and chemical characterization of metal oxide 
nanoparticles have been analyzed in various studies through Brunauer–Emmett–Teller 
(BET), scanning electron microscope (SEM), and Fourier-transform infrared spectros-
copy (FTIR) to determine the specific surface area, the pore size and the functional groups 
on the adsorbent surface (Abd El-Latif et al., 2013; Chaudhry et al., 2016). The physico-
chemical characteristics of various NMOs are summarized in Table  4. The specific sur-
face area  (SBET) as a physical property determines the quality and adsorption potential of 
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nano-adsorbents (Poursani et  al., 2016). As can be seen, the  SBET of NMOs varies from 
55.35 to 128.33  m2/g (Mahmoud et  al., 2015; Poursani et  al., 2016). Based on Table  4, 
SEM is another important test, which has been applied to characterize various NMOs. 
According to SEM results, it can be observed that the synthesized powder of NMOs 
approximately has agglomerated, spherical, regular, and uniformly distributed particles 
randomly shaped on the surface of adsorbents. Most NMOs have a size ranging from 20 to 
70 nm (Ghaniem et al., 2016; Madzokere & Karthigeyan, 2017; Panji et al., 2016; Poursani 
et al., 2016; Venkatesham et al., 2013). It is well known that NMOs have different func-
tional groups. Major functional groups of NMOs may be described as follows: (1) broad 
peaks at 1390, 1500, 1536, 1635, 1662, 3398, and 3500  cm−1 as contributed to hydroxyl 
bond (O–H); (2) O–H stretching vibrations observed at 3357.9, 3347.4, and 3440  cm−1; (3) 
the peaks at 1621.8, 1616.6, and 1635  cm−1 probably being due to H–O–H bending vibra-
tion; and (4) Ni–O stretching vibration being detected at 400, 411, and 850  cm−1 (Ghaniem 
et al., 2016; Madzokere & Karthigeyan, 2017; Mahmoud et al., 2015; Panji et al., 2016; 
Poursani et  al., 2016; Venkatesham et  al., 2013). Moreover, the results of X-ray diffrac-
tion (XRD) analysis revealed that most NMOs have crystallite size (Ghaniem et al., 2016; 
Madzokere & Karthigeyan, 2017; Mahmoud et al., 2015; Panji et al., 2016; Poursani et al., 
2016; Venkatesham et al., 2013).

6.1.2  Performance and the effect of variables

The efficiency of NMOs and the effects of environmental and process factors on the 
removal of pollutants have been investigated during previous studies. The identification of 
the effects of factors and their optimization are of particular importance in the application 
of this treatment method. The adsorbent dosage, initial concentration of metals, contact 
time, and pH are the most important parameters discussed briefly below. The adsorbent 
dosage can greatly affect the adsorption process and the adsorption capacity (Pirbazari 
et al., 2014). It also determines the capacity of an adsorbent according to the initial con-
centration of the adsorbent materials (Abd El-Latif et al., 2013). The results of the experi-
ments show that increasing the adsorbent dosage proportionally raises the removal percent-
age because more sites are available for adsorption (Aljeboree et al., 2017).

A number of studies have investigated the effect of NMOs dosage. Taman et al. (2015) 
employed copper oxide nanoparticles for eliminating two heavy metals  (Fe3+ and  Cd2+) 
from the wastewater. In this study, nano-adsorbent dosage varied from 0.1 to 0.4 g/L. It 
was found that higher dosage of 0.4 g/L enhances the removal efficiency of two heavy met-
als (Taman et al., 2015). The results of a similar study by Nadia Moustafa Ahmed (2015) 
showed that larger adsorbent dosage of ZnO nano-adsorbent from 2 to 10 g/L augmented 
the removal percentage of chromium (VI) from 45 to 53% but further increase in the dos-
age to higher than 10 g/L kept the efficiency of the system almost constant (Nadia Moustafa 
Ahmed, 2015). Madzokere and Karthigeyan (2017) synthesized the nano-adsorbent of 
magnesium metal oxide as an effective adsorbent for removing copper from an aqueous 
solution. They concluded the removal efficiency of copper from 30 to 96% by increasing 
the dosage to 2 g/L (Madzokere & Karthigeyan, 2017).

The initial concentration of heavy metals is a key parameter in adsorption efficiency. 
Previous studies have shown that the removal efficiency of metals was lowered as the initial 
concentration of heavy metals increased (Abd El-Latif et al., 2013). At the beginning of the 
adsorption process, there are wider adsorption sites on the surface of nano-adsorbent which 
can adsorb metals, but with increasing the concentration of metals, the number of active 
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sites is not sufficient and hence lower metal removal efficiency (Akpomie & Dawodu, 
2015). This phenomenon can be attributed to the reduction of intermolecular forces and 
possibly the low solubility of nanoparticles at high concentrations of a metal solution (Dar-
gahi et al., 2015). Salem et al. (2017) investigated the effect of the initial concentration of 
trivalent chromium ions, nickel, and cobalt on the removal efficiency of these metals using 
zinc oxide nanoparticles. The results showed that by increasing the initial concentration of 
metals, the percentage of metal adsorption by the nano-adsorbent reduced. These results 
can be associated with a reduction in ZnO active sites due to higher concentration of met-
als so that by increasing initial concentration, the active sites of ZnO become progressively 
blocked and the adsorption percentage of metal ions decrease consequently (Salem et al., 
2017). The study by Bhakta and Munekage (2011) shows that at the dosage of manganese 
oxide of 0.05 g/L, the contact time of 24 h, and pH 7, by increasing mercury concentration, 
the removal efficiency also increased (Bhakta & Munekage, 2011).

Another parameter affecting the adsorption process is the contact time; therefore, to 
obtain the best condition for reducing costs, it is necessary to optimize this factor (Zandi-
pak, 2017). The results of previous studies indicate that adsorption is the fastest at the early 
stages due to the presence of unsaturated active sites on the adsorbent surface (Akpomie & 
Dawodu, 2015). In addition, contact time can affect the interactions between adsorbent and 
adsorbate. Panji et al. (2016) used nickel oxide nanoparticles for removing heavy metals 
(chromium, copper, and nickel) from synthetic solutions with dosage of 60–140 mg/L for 
Cu and 100–700 mg/L for Cr and Ni. The results confirmed that by extending the contact 
time from 5 to 10  min, the removal efficiency increased, but by further increase in the 
contact time, the removal efficiency of chromium, copper, and nickel decreased. In the first 
10 min of the contact time, the copper removal efficiency was about 94%, and the six-valent 
chromium was about 33.3%. The optimal time for the removal of nickel was approximately 
97% in about 5 min (Panji et al., 2016). Fargha et al. (2013) used copper oxide nanoparti-
cles to remove lead metal, and it was observed that as the contact time increases, the maxi-
mum adsorption is enhanced too. The maximum adsorption occurs in 4 h, and after that, no 
more adsorption is carried out (Farghali et al., 2013). Ali et al. (2017) confirmed that the 
removal efficiency of quaternary chromium increased when contact time increased from 10 
to 60 min under constant conditions (guar gum–nano-zinc oxide biocomposite (1 g/L) and 
chromium concentration of 25 mg/L. The time of 50 min was selected as the equilibrium 
time of the process. Furthermore, the maximum removal percentage was 96.5% under the 
mentioned conditions (Ali et al., 2017).

Numerous works considered pH as an important parameter affecting the removal 
of heavy metals from aqueous solutions and stated that the pH value is related to the 
chemistry of metal in solutions and the ionization status of adsorbent groups that 
affects site accessibility (Al-Qahtani, 2016). Therefore, to investigate the effect of the 
acidic and alkaline conditions of solutions on the adsorption, experiments were per-
formed on a wide range of initial pH values (Ghorbani et al., 2012). At low levels of 
pH, the solution is highly acidic and the adsorption surface is surrounded by hydro-
gen ions; therefore, due to the competition between hydrogen ions and metal ions, the 
removal percentage is low (Golkhah et al., 2017). Farghali et al. (2013) applied copper 
oxide to remove heavy metal at a different value of pH (3 to 6.5), and it was observed 
that by increasing the pH, the removal efficiency of the metal also increased, while the 
pH of 6.5 was at an optimal value (Farghali et  al., 2013). Taffarel and Rubio (2010) 
studied the removal efficiency of  Mn2+ from aqueous solution using manganese oxide-
zeolite with varied dosage (1–6 g/L). They found that the adsorption of  Mn2 + ion was 
enhanced with increasing pH from 4 to 8 (Taffarel & Rubio, 2010). The results of a 
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study by Panji et al. (2016), which has been carried out on the removal efficiency of 
Cr (VI), Cu (II), and Ni (II), indicated that the efficiency of the system was strongly 
dependent on the pH value. The adsorption of Cu (II) and Ni (II) was improved by 
elevating the pH from 3 to 11, with the removal efficiency of 99.1% and 98.3%, respec-
tively, but the maximum removal of chromium (VI) occurred at acidic pH of 3 (Panji 
et al., 2016).

6.2  Nanocomposites (NCs)

6.2.1  Physicochemical characteristics

The nanocomposite is a multiphase material in which one of its phases is less than 100 nm 
in one, two, or three dimensions or its structures have duplicate spacing within the nano-
range in different phases of the substance (Singh et al., 2014). Nanocomposites have been 
developed as a critical water purification technique because of outstanding properties such 
as better performance in desalination processes, favorable material separation, and thermal 
stability (Atta et  al., 2016). The other category is a nano-sized composite polymer that 
created a new potential for composite materials by introducing a small number of nanopar-
ticles to the polymers. This type of polymeric NCs has drawn significant interest in recent 
years due to their research and industrial value (Singh et al., 2014). This new and reliable 
nanomaterial present excellent mechanical strength with high adsorption performance of 
various pollutants that can retain their inherent properties (Azad et al., 2021). NCs have 
various configurations and physical and chemical characteristics as scrutinized in earlier 
research. For determining the morphology and chemical structure of nanocomposites, 
different approaches have been adopted such as BET, FESEM, SEM, XRD, FTIR, X-ray 
photoelectron spectrometry (XPS), vibrating-sample magnetometer (VSM), and thermo-
gravimetric analysis (TGA) (Abd El-Latif et al., 2013; Choudhury et al., 2015; Wang et al., 
2010). The characteristics of NCs, with a range of  SBET from 17.31  m2/g (zeolite/ZnO) to 
1737.62  m2/g  (Fe3O4 magnetic polypyrrole–graphene oxide) (Alswata et al., 2017; Zhou 
et al., 2017), used for eliminating HMs from aqueous solution, are illustrated in Table 5. 
It is shown that NCs are reliable adsorbents for HMs removal. As seen in Table 5, many 
functional groups on the nanocomposite surface have been detected, the most important 
of which are as follows: (a) hydroxyl group (O–H) can be ascribed at peak 1648, 3132.8, 
3349,3418.9,3630, 3627  cm−1; (b) vibration of the bond Si–O-Si is attributed to 459, 466, 
548, and 935   cm−1; and (c) the vibration of the Si–OH group can appear at peaks 965 
and 3434  cm1 (Alswata et al., 2017; Choudhury et al., 2015; Shafiabadi et al., 2016; Zhou 
et al., 2017). According to Table 5, by SEM analysis, it can be concluded that NCs have a 
varying surface morphology because of using different NCs for removing HMs. Zhou et al. 
(2017) reported that nanocomposite of  Fe3O4 magnetic polypyrrole–graphene oxide had 
a cauliflower-like and granular morphology on the surface (Zhou et al., 2017). A similar 
study by Alswata et al. (2017) has confirmed that zeolite/ZnO nanocomposite had granular 
shapes on the adsorbent (Alswata et al., 2017). The morphological results of El-Latif et al. 
(2013) and Choudhury et al. (2015) revealed that the surface of NCs is uniformly spheri-
cal and porous, as utilized for the removal of cadmium and lead (Abd El-Latif et al., 2013; 
Choudhury et al., 2015). Based on XRD results, it can be understood that most NCs have 
crystalline structures (Abd El-Latif et  al., 2013; Alswata et  al., 2017; Choudhury et  al., 
2015; Diva et al., 2017; Shafiabadi et al., 2016; Zhou et al., 2017).
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6.2.2  Performance and the effect of variables

A parameter on the efficiency of nanocomposite is the adsorbent dosage, which has 
been studied in many works. The results have confirmed that an initial increase in the 
removal efficiency (by adsorbent dosage increment) is due to a creating larger surface 
area as well as more available adsorption sites (Alswata et al., 2017). It has been men-
tioned that the adsorption capacity and the increase in the adsorbent dosage have an 
inverse relationship so that the adsorption capacity is reduced as the adsorbent dosage 
rises (Farooghi et al., 2018). Furthermore, studies have demonstrated that the quantity 
of adsorbent is used to describe the adsorbent cost per unit volume of solution, which 
is considered for treatment (Zare et  al., 2016). Alswata et  al. (2017) used zeolite/zinc 
oxide NCs for the removal of Pb (II) and As (V) metals from aqueous solution, and 
it was observed that by increasing the amount of adsorbent dosage from 0.2 to 3 g/L, 
the adsorption of two heavy metals was also elevated from 38.9 to 90.8% and from 52 
to 85.5%, respectively. In this study, optimal parameters for removal of toxic metals 
were 93% and 89% for Pb (II) and As (V) at 100  mg/L, pH 4, the adsorbent dosage 
of 3  g/L, and contact time of 30  min (Alswata et  al., 2017). Tizro and Baseri (2017) 
studied the cobalt removal from aqueous solution using NCs based on magnetic proper-
ties. They found that the removal efficiency rose upon increasing the amount of adsor-
bent dosage, due to larger number of available sites on the adsorbent (Tizro & Baseri, 
2017). Dahaghin et al. (2017) employed  Fe3O4@graphene oxide nanocomposite modi-
fied with 2-mercaptobenzothiazole as an adsorbent for the elimination of heavy metals 
(copper, lead, and cadmium). In this study, the dosage of nano-adsorbent varied from 5 
to 30 mg/L. They found that adsorbent dosage had a positive effect on the efficiency of 
the system so that by increasing the nano-adsorbent dosage from 5 to 15 mg/L, the effi-
ciency of heavy metals was also boosted to 100% (Dahaghin et al., 2017).

Another important factor affecting the adsorption process is the pH value. It has been 
stated that at low pH values (acidic pH), hydronium ions are accumulated on the sur-
face of the adsorbent, which leads to competition with metal ions and reduces the effi-
cient adsorption process. At higher pH levels (alkaline pH), because of a reduction in 
the number of hydronium ions on the adsorbent surface, more metals can be adsorbed 
(Shahriari et al., 2014). In addition, pH has a significant effect on the removal of metal 
ions from aqueous solutions, which affects the metal chemistry in the solution and the 
ionization status of adsorbing agent groups on accessible binding sites (Huang et  al., 
2015). Previous research studies indicated that when pH value increases, even higher 
than point of zero charge  (pHPZC), deprotonation brings back the negative charge for 
functional groups (Ma et al., 2019). Farooghi et al. (2018) investigated the effect of the 
varied pH (3–8) for the removal of lead metal using  FeNi3@SiO2 magnetic NCs, and it 
was observed that by increasing pH from 3 to 6, the removal efficiency was increased 
and the optimal pH value was selected at 6 (Farooghi et al., 2018). Molaei et al. (2017) 
revealed that the removal efficiency of five types of HMs (copper, lead, zinc, chromium, 
and cadmium) increased as the pH value was elevated from 4 to 7 due to the depletion 
of the nano-sorbent surface from protons but further increase leads to a decline in the 
removal efficiency of HMs (Molaei et al., 2017).

Many efforts have been made to understand the effect of initial concentration of pol-
lutants on the adsorption process, and it has been concluded that the initial concen-
tration of metal is a major driving force to overcome the resistance of metallic mass 
transfer between the aqueous phase and the solid phase (Shaibu et al., 2014). It should 
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be noted that at higher initial concentrations, the number of metal ions is greater than 
active adsorption sites; therefore, the removal efficiency is lessened at higher initial con-
centration (Diva et al., 2017). Diva et al. (2017) used nickel oxide-CNT nanocomposites 
for the elimination of HMs from aqueous solution and the initial concentration of the 
metal ranged from 20 to 100 mg/L. The results of the study demonstrated that at higher 
initial concentration of metal, removal efficiency decreased, and the concentration of 
20 mg/L was selected as optimal (Diva et al., 2017). Li et al. (2019) investigated the fea-
sibility of nano-composites  Mn3O4@reduced graphene oxide for the removal of uranyl. 
They concluded that by increasing the initial concentration of uranyl from 0 to 20 mg/L 
at temperature of 298  K, ionic strength of 0.01  M and pH equal to 5, the adsorption 
capacity of uranyl also was boosted to higher than 120 mg/g (Li et al., 2019). Besides, 
Pradhan et al. (2017) investigated the effect of different initial concentrations of chro-
mium and copper ions (100–1000 mg/L) in wastewater using silver-yttrium oxide nano-
composite. The results showed that increasing the initial concentration had a reverse 
effect on the removal efficiency of both metals from wastewater so that the removal 
efficiency of copper and chromium declined from 38.6 to 30%, and 38.4 to 29.36%, 
respectively (Pradhan et al., 2017).

Contact time as the most effective adsorption parameter has been widely investigated 
in previous studies. Ions are quickly removed at the onset of the adsorption process, but 
it will decrease with further extending the contact time because a large number of active 
adsorbent sites will be saturated at longer contact time, and therefore, the efficiency of the 
system will be reduced (Dehghani et al., 2015). In a study conducted by Shafiabadi et al. 
(2016) for the removal of mercury metal from aqueous solution using polypyrrole/SBA-15 
nanocomposite, it was observed that, as the contact time was lengthened, the removal effi-
ciency was increased accordingly (Shafiabadi et al., 2016). In another study, the removal 
of lead metal using  FeNi3@  SiO2 magnetic nanocomposite was studied by Farooghi et al. 
(2018), and the contact time varied from 5 to 60 min. They found that by stretching the 
contact time, the elimination efficiency also increased (Farooghi et  al., 2018). Ge et  al. 
(2018) investigated the effect of contact time ranging from 0 to 120 min on the removal 
efficiency and adsorption capacity of lead metal using Fe@MgO magnetic NC. The results 
of the study showed that the lead metal was quickly adsorbed in the first 30 min and then 
reached equilibrium value in 120 min with 98.7% of adsorption, and the adsorption capac-
ity of lead was 1476.4 mg/g of adsorbent (Ge et al., 2018).

6.3  Magnetic nanoparticles (MNPs)

6.3.1  Physicochemical characteristics

Over the past few years, magnetite nanoparticles  (Fe3O4 NPs) have gained momentum in 
environmental engineering due to outstanding properties such as great performance, cost-
effectiveness, high adsorption, being environmentally friendly, their excellent stability, 
recyclability, reusability, high capacity, and simple handling (Bekhit et al., 2020). Further-
more, it has been reported that the two commonly used MNPs in the crystalline phases are 
magnetite  (Fe3O4) and maghemite (ɤ-Fe2O3), which have a high surface area, and eventu-
ally can be easily separated from aqueous solutions by an external magnet; therefore, it can 
be widely used for the adsorption of many environmental pollutants like HMs (Pardo et al., 
2021; Wang et al., 2010).
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Nano-zero-valent Iron (NZVI) is another category of MNPs, which has been recently 
successfully used to extract heavy metals, and quick separation potential from the aque-
ous solution by magnetism is a main property of this NP (Agarwal & Patel, 2015). NZVI 
due to its specific properties, including high reactivity, non-toxic catalytic properties, and 
low production cost attract considerable attention for environmental remediation (Akbari & 
Mohamadzadeh, 2012; Huang et al., 2015).

The physicochemical structure of the magnetic nanoparticles can be analyzed through 
various methods such as BET, SEM, FTIR (Khodadadi et al., 2015; Madivoli et al., 2016). 
To better scrutinize MNPs characteristics, the results of various studies that used MNPs 
for the HMs removal are summarized in Table 6. As can be observed, studies confirmed 
that MNPs have different  SBET, and among them,  Fe3O4@SiO2 core–shell MNPs have 
the highest  SBET of 216.2  m2/g (Wang et al., 2010). Moreover, based on Table 6, studies 
have attested that the MNPs have numerous functional groups on the surface, the most 
important of which are as follows: there is an obvious broad peak around 585, 565,589, 
and 595  cm−1, corresponding to stretching vibration of Fe–O; the peak at 2924, 2945, and 
2522  cm−1 revealed the presence of C–H stretching, the C=O show a stretching vibration at 
1642  cm−1, the peak at 2924, 1563, 1642  cm−1 are related to stretching vibration of C–H, 
C–N, and C=O, respectively (Ahmad et al., 2019; Gao et al., 2015; Shirsath & Shirivas-
tava, 2015; Venkateswarlu et al., 2019; Wang et al., 2010). According to XRD results of 
some previous works, the structure of MNPs is crystalline with an inverse cubic spinel 
structure (Ahmad et al., 2019; Venkateswarlu et al., 2019; Wang et al., 2010). However, the 
results of a study by Liu et al., (2020a, 2020b) indicated the broad and flat amorphous dif-
fraction peaks other than sharp crystalline diffraction ones (Liu et al., 2020b).

The physicochemical characteristics of various NZVI such as BET, SEM, FTIR, and 
XRD are also discussed in Table 6. As indicated, the  SBET of pristine NZVI varied from 
14.2 and 5.64  m2/g for NZVI and also 44.57  m2/g for modified NZVI with granular red 
mud (Du et al., 2019; Üzüm et al., 2008; Zarime et al., 2018). Moreover, the results of sur-
face morphological of NZVI demonstrated that the particles of the prepared nano-adsor-
bents are uniform in size, tight, and globular—spherical in shape; furthermore, it has men-
tioned that fresh iron particles appear to have size distribution within 20–80 nm (Akbari & 
Mohamadzadeh, 2012; Du et al., 2019; Üzüm et al., 2008; Zarime et al., 2018). Besides, 
based on Table  6, the major functional groups of NZVI are as follows: O–H stretching 
vibration appeared at 3415 and 3412   cm−1, hydroxyl group, and nitro agent groups were 
detected at 3412 and 1320   cm−1, respectively. Stretching modes of OH groups observed 
at 3000 to 3600  cm−1, and the peaks at 1419, 2922, and 1002  cm−1 are related to –COOH 
stretching vibration, –CH2 stretching of an aliphatic compound, and Si–O–Si in silicate 
groups, respectively (Akbari & Mohamadzadeh, 2012; Du et  al., 2019; Zarime et  al., 
2018).

6.3.2  Performance and the effect of variables

The effect of the adsorbent dosage on the efficiency of metal removal showed that the 
removal efficiency initially increases and will be constant or slightly decreased after 
reaching the maximum adsorption value (Padmavathy et al., 2016). Studies on the effect 
of adsorbent dosage ultimately concluded that higher adsorbent dosage due to larger 
number of accessible surfaces for adsorption enhances the adsorption efficiency; how-
ever, after the maximum removal at the special dosage, the higher adsorbent dosage 
shows no effect on the process efficiency (Gupta et al., 2016). Nevertheless, it has been 
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reported that by increasing the adsorbent dosage, the adsorption capacity is reduced. 
This may be due to a decrease in the level of accessible surface for metal ions due to 
the overlap or accumulation of adsorption sites (Akpomie & Dawodu, 2015). Research-
ers reported that the enhancement in the removal of pollutants occurs as a result of the 
larger number of active sites, but then its value will be fixed (Adeli et al., 2017). Tizro 
and Baseri (2016) remove Pb (II) and Cu (II) metals by an  Fe3O4 magnetic nanoscale 
adsorbent, and it was observed that by increasing the adsorbent dosage to 0.2  g the 
removal efficiency of metals was improved (Tizro & Baseri, 2016). Similar results have 
been reported by Tizro and Baseri (2017), which investigated the cobalt removal by 
MNPs at different dosage of 40, 80, 120, 160, 200, and 240 mg. They indicated that the 
removal efficiency of Co (II) from the solution increased as the dosage of MNPs rose, 
which is due to larger number of MNPs sites (Tizro & Baseri, 2017). Besides, Ahmad 
et  al. (2019) investigated the effect of a variable adsorbent dosage (0.005–0.03  g/L) 
of  Fe3O4/SiO2/EDTA on the removal of copper as heavy metals. They found that by 
increasing the adsorbent dosage from 0.005 to 0.01, the maximum removal (95%) was 
obtained and then almost kept constant (Ahmad et al., 2019).

Rahmani et  al. (2010) studied the arsenic removal through NZVI and observed that 
increasing  Fe0 concentration boosted the removal efficiency. At 10 min reaction time, pH 
of 7 and Fe concentration of 1 g/L, all of the arsenic was eliminated, but when the con-
centration of Fe was 0.1 g/L, only 52.1% was removed (Rahmani et  al., 2010). Agarwal 
and Patel (2015) aimed at removing metallic minerals using NZVI and revealed that by 
raising the adsorbent dosage from 0.1 to 5 g/L, the removal efficiency increased from 75 to 
93% but the adsorption capacity reduced, with a maximum dosage of 0.1 and 15.61 mg/g, 
respectively. In this experiment, the maximum efficiency was observed at a dosage of 1 g/L 
(Agarwal & Patel, 2015). Kumar et  al. (2017) showed that by increasing the dosage of 
synthesized nanoparticle (nanoscale zero-valent iron-impregnated cashew nutshell) from 
0.5 to 3 g/L, the percentage removal of nickel increased from 50 to nearly 100% by expand-
ing available adsorbent sites due to the high dosage of adsorbents (Kumar et al., 2017). Qu 
et al. (2017) removed hexavalent chromium as an HM from groundwater using activated 
carbon fiber supported by nanoscale zero-valent iron. The results showed that by increasing 
the dosage of nano-adsorbent from 0.13 to 0.67 g/L, the removal efficiency of chromium 
was enhanced from 68.7 to 100%, when the contact time was 30 min. This study confirmed 
that nano-adsorbent dosage had a positive effect on the removal efficiency of chromium 
(Qu et al., 2017). In a similar study, Bagbi et al. (2017) showed that by increasing the dos-
age of L-cysteine (L-cyst) nanoparticle-stabilized zero-valent iron from 1 to 5 g/L under 
constant conditions (temperature 25  °C, initial concentration of 50 mg/L and pH 5), the 
removal efficiency of lead also increased from 64 to 99.9% (Bagbi et al., 2017).

The pH value has a significant effect on the adsorption of heavy metals because it deter-
mines the amount of adsorbent surface charge, the amount of ionization and the property 
of the adsorbing material (Salam et al., 2011). The results of evaluating the effect of the 
pH on the adsorption process by nano-adsorbents show that at high pH values, electrostatic 
gravity between the ligand and the metal increases, which ultimately leads to more efficient 
removal (Venkateswarlu et al., 2019). From another aspect, pH affects the structure and can 
change the level and degree of ionization (Shirsath et al., 2013). In addition, the pH value 
can affect the solubility of the metal ion since the protons can be adsorbed or released; the 
ambient acidity affects the ability of hydrogen ions to compete with metal ions inactive 
sites on the adsorption surface (Ojedokun & Bello, 2016). Besides, it has been reported 
that, when the pH is less than zero charges  (pHzpc), the positive charge level of NZVI elim-
inates metal cations and reduces the removal efficiency (Tehrani et al., 2015).
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Zeinali et  al. (2016) synthesized modified carboxymethyl-β-cyclodextrin with MNPs. 
In this study, pH was altered from 8 to 11, and it was observed that 81.9% of arsenic was 
removed at basic pH (10), and with a further increase in pH, the arsenic removal efficiency 
decreases slightly to 81.22% (Zeinali et al., 2016). Zhou et al. (2017) utilized an efficient 
magnetic  (Fe3O4) nanocomposite of polypyrrole–graphene oxide for the adsorption of mer-
cury (II) from aqueous media. In this work, and the pH value was varied from 2 to 10. The 
results indicated that the performance of synthesized nanocomposite is strongly depended 
on solution pH so that the adsorption capacity of mercury (II) was enhanced to 300 mg/g 
as pH increased (Zhou et al., 2017).

Moreover, a similar study by Yamini and Safari (2018) confirmed that increasing the 
pH range from 5 to 9 had a significant effect on the removal of HMs (copper, cadmium, 
cobalt, manganese, and nickel) from aqueous solutions, and the basic pH of 9 was chosen 
as the optimum condition (Yamini & Safari, 2018). Also, Dil et al. (2017) used MNPs of 
γ-Fe2O3 modified using bis (5-bromosalicylidene) -1,3-propandiamine for removing lead 
from aqueous solutions at the pH values from 2 to 8. They concluded that the adsorption of 
lead increased significantly from 65 to 95% with higher pH values from 2 to 6, and then, it 
decreased (Dil et al., 2017).

Liang et al. (2014) removed heavy metal  Zn2+ by the NZVI. They found that the high-
est removal efficiency was observed at an initial pH of 5. The  Zn2+ adsorption gradually 
increased with larger pH (Liang et al., 2014). A study by Kim et al. (2013) carried out to 
remove lead using zeolite-nanoscale zero-valent iron composite showed that the removal 
efficiency of lead was lowered from 99.9 to 93.5% by increasing the pH from 4 to 6 (Kim 
et  al., 2013). Jia et  al. (2018) investigated the efficiency of NZVI embedded in super 
macroporous cryogels for the removal of hexavalent chromium from aqueous solutions. 
The pH in this study ranged from 2 to 12. The results demonstrated that by increasing the 
pH from 2 to 12, the adsorption capacity of chromium decreased from 140 to 90 mg/g (Jia 
et al., 2018).

In the adsorption process, it is important to investigate the effect of the initial concen-
trations of HMs. It has been mentioned that at the beginning of the process, the adsorbent 
capability of the adsorbent is high due to the presence of large active sites while with fur-
ther increase in initial concentrations of HMs, the adsorbent sites will be saturated by HMs, 
thereby decreasing the adsorbent capacity [204]. Ahmadi et  al. (2017) used maghemite 
(γ-Fe2O3) nanoparticles supported on cross-linked chitosan (γ-Fe2O3@CS) as a reliable 
adsorbent to remove cadmium from contaminated water. In this study, the initial concen-
tration of cadmium metal ranged from 5 to 25 mg/L. The results of the study showed that 
complete removal of cadmium was achieved at an initial concentration of 5 mg/L under 
constant conditions (duration 60 min, the adsorbent dose of 1.5 g/L, and the pH of 5 ± 0.2). 
Then, with increasing the concentration up to 25 mg/L, the removal efficiency decreased 
from 100 to 71% (Ahmadi et al., 2017). Wang et al. (2016) evaluated the performance of 
new MNPs of  Fe3O4@SiO2-SH for the elimination of mercury from aqueous solutions. 
The results showed that by rising the initial concentration of mercury from 5 to 100 mg, 
the maximum adsorption capacity of mercury was enhanced from 25 to 132  mg/g, and 
removal efficiency of mercury diminished from 99.8 to 26.4% (Wang et al., 2016).

The study by Huang et al. (2015) showed that the zero-valent iron nanoparticles modi-
fied with sodium dodecyl sulfate are able to remove chromium (VI) from an aqueous solu-
tion. It was revealed that the removal efficiency of chromium (VI) was approximately 100% 
at the concentration of Cr (VI) below 80 mg/L so that at a low concentration, adsorption 
sites can effectively remove chromium (VI) (Huang et  al., 2015). In another study by 
Arshadi et al. (2014), the performance, mechanism, kinetics, and thermodynamics of the 
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synthesized NZVI as an adsorbent have been investigated for lead removal, when the ini-
tial concentration of metal ions ranged from 5 to 1000 mg/L. The results showed that with 
higher initial concentration, the adsorption capacity of the metal also increased (Arshadi 
et al., 2014). Yu et al. (2020) treated a contaminated water with lead using nano-iron sup-
ported with bentonite/graphene oxide (GO-B-nZVI). In this work, the effect of lead con-
centrations from 100–500 mg/L on the removal of lead was studied, and they concluded 
that under constant conditions (24 h, temperature 18 °C and pH 5 ± 0.3), the rate of lead 
ion removal reduced by higher initial concentration (Yu et al., 2020). Based on the previ-
ous research, it has confirmed that at low concentrations, sufficient adsorption sites are 
available for adsorption of the Pb (II) while by increasing Pb (II) concentrations, the avail-
ability of adsorption sites is relatively lower than the numbers of heavy metal ions (Meena 
et al., 2008).

The contact time between the adsorbent and the adsorbate is another parameter that 
influences the adsorption process. In adsorption systems, contact time plays a critical role 
regardless of other experimental parameters that affect the adsorption kinetics. In addition, 
determining the optimal contact time is key for obtaining the highest metal ion removal in 
adsorption experiments (Ojedokun & Bello, 2016). At the beginning of the process, there 
is a large number of available active sites so the adsorbent has high efficiency, but with 
extending the time, adsorbent sites are saturated, and the removal efficiency is reduced 
consequently (Shirsath et  al., 2013). Tizro and Baseri (2016) reported that removal effi-
ciency of copper and lead using MNPs at the contact time varied from 10 to 60 min, and 
increased by up to 50 min. Fast removal of lead ions using natural zeolite coating mag-
netite nanoparticles was found at 98% (Tizro & Baseri, 2016). Shahriari et  al. (2014) 
investigated the removal of Cr (+ 3) using magnetic nanoparticles, with the optimal time 
of 45 min. It was found that by lengthening the contact time, the removal efficiency was 
also improved (Shahriari et al., 2014). Huang et al. (2015), who aimed at removing the Cr 
(+ 6) metal using zero-valent iron modified nanoparticles, also found that by increasing the 
contact time to 120 min, the removal efficiency of the metal also was enhanced (Huang 
et al., 2015). A similar study was carried out by Rahmani et al. (2010) to remove arsenic 
metal using a synthesized NZVI. It was observed that under constant conditions, the initial 
concentration of arsenic 10 mg/L and pH 7 and extended contact time enhanced removal 
efficiency, and the duration of 10 min was chosen as the maximum adsorption time (Rahm-
ani et al., 2010). Shang et al. (2017) developed NZVI particles supported on herb-residue 
biochar for the adsorption of hexavalent chromium from water. The results showed that by 
increasing the contact time from 0 to 150 min at the constant condition (metal concentra-
tion 4 to 30 mg/L and dosage of 0.2 g/L), the removal efficiency was also increased and 
60 min was considered as the equilibrium time (Shang et al., 2017).

6.4  Nano‑clays

6.4.1  Physicochemical characteristics

Recently, nano-clays as layered mineral silicates have successfully been applied for the 
removal of various pollutants from water and wastewater due to unique properties such 
as non-toxicity, low-cost materials, high cation exchange capacity, high surface area, high 
surface reactivity, and stability (Elhami & Shafizadeh, 2016; Mahmoudian, 2019). Based 
on these properties, nano-clays have been extensively employed in a wide range of appli-
cations such as polymer nanoparticles, color correction, and wastewater treatment (Patel 
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et al., 2006). Moreover, clay minerals especially bentonite have been suggested as a new 
alternative for the adsorption of pollutants because of unique physicochemical properties 
such as high capacity, great heat resistance, low cost, and recyclability (El Haouti et al., 
2019).

Various physicochemical properties of nano-clays (BET, SEM/FESEM, FTIR, and 
XRD) have been discussed based on Table 7. As can be observed, hydroxyl groups can 
appear at peak 1629.97, 3626, 3440, 3423.76, and 1639  cm−1. The peaks at 798.04, 1035, 
529, and 694.4   cm−1 are attributed to bending stretching of SiO; moreover, it should be 
mentioned that inner and outer surface OH stretching vibration are associated with the 
peak 3698.96, 3620.6, and 3423.76  cm−1, respectively (Soleimani & Siahpoosh, 2015; Yin 
et al., 2018).

6.4.2  Performance and the effect of variables

The effects of various parameters (adsorbent dosage, pH, initial concentration of HMs, and 
contact time) have been investigated on the efficiency of nano-clay in the removal of heavy 
metals. The results of previous research works confirmed that by raising the adsorbent dos-
age, the removal efficiency of the system is also increased, which is associated with larger 
number of available surfaces for adsorption (Gupta et  al., 2016). Moreover, it has been 
mentioned that the adsorption capacity (mg/g) of the system is reduced by increasing the 
adsorbent dosage (Akpomie & Dawodu, 2015). Previous studies confirmed the aforemen-
tioned results. In a study by Soleimani and Siahpoosh (2016), the removal of copper from 
water using  Na+-cloisite nano-clay has been examined at different dosages of nano-clay 
from 1 to 10 g/L. According to the results, by increasing the nano-adsorbent dosage, the 
adsorption of metal ions was enhanced (Soleimani & Siahpoosh, 2015). The results of 
Sharififard et al. (2018) showed that the removal efficiency of cadmium as an HM from 
the wastewater using nano-clay/TiO2 composite was improved by increasing the adsorbent 
dosage (Sharififard et al., 2018).

Several studies have investigated the effect of the initial pH of the aqueous solutions 
on the adsorption efficiency of HMs. The results showed that pH affects the binding sites 
and the interlayer between the adsorbent, the metal ion, and the degree of ionization of 
the active groups on the adsorbent surfaces (Kumar et  al., 2017). In general, they have 
shown that in lower pH values (acidic pH), the percentage of metal ion removal is low, 
but the adsorption performance of HMs will be improved by raising the pH (Ojedokun 
& Bello, 2016). On the other hand, in lower pH, there are many  H+ ion on the surface of 
adsorbents that lead to the build-up of positive levels on the sites. Therefore, due to the 
strong competition between metal ions and  H+, the removal efficiency of the system will 
be reduced (Boparai et  al., 2013). In a study by Elhami and Shafizadeh (2016) mercury 
(ii) adsorption by modified nano-clay was investigated at a pH of 2–6. The results demon-
strated that the removal of mercury was boosted as the pH increased from 2 to 4 (Elhami 
& Shafizadeh, 2016). Mojoudi et al. (2019) used activated carbon/nano-clay/thiolated gra-
phene oxide NCs adsorbent to remove lead, and they concluded that the maximum removal 
of lead (about 98%) occurred at pH 5 but with increasing pH to 7, the adsorption efficiency 
decreased (Mojoudi et al., 2019).

Researchers studied the effect of initial concentration on the adsorption process, and 
it has been concluded that the initial concentration of metal is an important driving force 
for overcoming all resisting metal mass transmissions between the aqueous phase and the 
solid phase (Shaibu et al., 2014). It is also noted that the removal efficiency of the system 
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is reduced by higher initial concentrations because of the larger number of metal ions than 
active adsorption sites at higher initial concentrations (Diva et al., 2017). In removing lead 
metal from aqueous solutions using nano-illite/smectite clay, Yin et  al. (2018) observed 
that the efficiency of the process decreased slightly (from 99.45 to 98.90%) by increasing 
the initial concentration from 0.25 to 5 mg/L (Yin et al., 2018).

Contact time is another factor affecting adsorption processes so that the removal of HMs 
is initially quick but decreases with longer contact time, and this trend can be associated 
with a large number of active sites in adsorbents. Conversely, with the increase and satu-
ration of these sites, the efficiency of the adsorption process is reduced (Dehghani et al., 
2015). Almasri et al. (2018) used hydroxy iron-modified montmorillonite nanoclay as an 
adsorbent to remove arsenite (As (III)). The contact time varied up to 120 min, and the 
results showed under constant conditions (initial concentration of 1 mg/L, mixing speed of 
350 rpm, pH equal of 3 and adsorbent dose of 80 mg/L) with longer contact time, removal 
efficiency also increased to about 90% (Almasri et al., 2018).

6.5  Carbon nanotubes (CNTs)

6.5.1  Physicochemical characteristics

Carbon nanotubes (CNTs) were discovered in 1991 by Iijima, and it has been proven that 
the main source of CNTs is carbon, which attracted the attention of many researchers due 
to unique properties such as electrical properties, high electron mobility, high electri-
cal conductivity, remarkable chemical stability, high porosity, hollow structure, possible 
to perform controlled modification/activation of their surfaces, and specific surface areas 
(Mousavi & Janjani, 2018; Mubarak et al., 2016; Obayomi et al., 2020; Šolić et al., 2021). 
Carbon nanotubes have high levels of layered and hollow structures with high levels that 
enhance adsorption efficiency for different types of contaminants especially metal ions 
(Ruparelia et  al., 2008). Besides, researchers have found that nanotubes provide a faster 
flow rate because of their smooth inner surface, which saves energy (Gangadhar et  al., 
2012). These classes of NPs are a new type of adsorbent that has attracted special atten-
tion for the removal of various pollutants such as herbicides and chlorobenzenes, as well 
as lead and cadmium ions. Additionally, it has been demonstrated that CNTs have excellent 
ability to remove bacterial pathogens and other biological impurities from contaminated 
water. The quantum application is a major candidate technique to improve the efficiency of 
nano-adsorbents of CNTs, which creates functional groups on the surface of nanoparticles. 
Generally, modification of CNTs can be applied using agents like acid and molecules such 
as amide, esters and amines (Dehaghi, 2014; Kapinder 2017). Carbon nanotubes can also 
be categorized into single-wall carbon nanotubes (SWNTs) and multi-walled carbon nano-
tubes (MWCNTs) based on the number of layers so that they can be applied for the removal 
of organic and inorganic compounds such as paint, benzene and heavy metals (Hossini 
et  al., 2015) (Hossini et  al., 2015). Graphene oxide (GO) is a nanocarbon material with 
two-dimensional structure that can be produced by chemical oxidation of graphite (Sheet 
et al., 2014). This type of nano-carbon material has achieved tremendous attention due to 
its outstanding characteristics such as unique optical, electrical, and mechanical properties, 
the presence of two-dimensional base levels, simple synthesis process, and a high specific 
surface area of more than 2630  m2/g (Guo et al., 2018; Kapinder 2017). Also, GO con-
tains several functional groups such as epoxy (C–O–C), hydroxyl (OH), and carboxylic 
group (COOH) (Abdi et al., 2018). Studies on the surface topography of the adsorbent can 
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provide valuable information about the interaction between the adsorbent particles and 
molecules (Lobo et  al., 2010). Physicochemical characteristics of CNTs (nanoparticles 
size, functional groups, crystalline structure, specific surface area, and chemical structure) 
can be determined by various techniques such as SEM, transmission electron microscopy 
(TEM), XRD, BET, and FT-IR (Abd El-Latif et al., 2013; Dehghani et al., 2015; Khoda-
dadi et  al., 2015; Madivoli et  al., 2016). Table 8 demonstrates characteristics of various 
CNTs for HMs removal. It has been found that CNTs had a low  SBET (76.2  m2/g) using 
8-hydroxyquinoline- MWCNTs (Kosa et  al., 2012) and a wide surface area of 700  m2/g 
associated with SWCNTs (Dehghani et al., 2015). Generally, based on the results of sur-
face morphology using SEM, it was found that diameter size of CNTs varied between 10 
to 70 nm (Bhanjana et al., 2017; Kosa et al., 2012; Salam et al., 2020; Yaghmaeian et al., 
2015). FTIR spectrum demonstrated several functional groups; O–H stretching vibration 
appeared at 3425, 3433, and 3438  cm−1. The peak at 1734 and 1730  cm−1 represented the 
C=O stretching vibration, C-O stretching vibration detected at 1085 and 1051   cm−1, the 
peaks at 1517 and 1700  cm−1 are related to N–H stretching vibration and carboxylic acids, 
respectively. Moreover, C=N band and N–H stretching vibration are observed at peak 1630 
and 1517  cm−1 (Bhanjana et al., 2017; Kosa et al., 2012; Mobasherpour et al., 2014; Salam 
et al., 2020; Yaghmaeian et al., 2015; Zhan et al., 2019).

6.5.2  Performance and the effect of variables

Adsorbent dosage is a key parameter in determining adsorption capacity (Pirbazari et al., 
2014). Many studies have shown that by increasing the adsorbent dosage, the amount of 
the adsorbed material increases, but the adsorption capacity (mg/g) is reduced. It is easily 
understood that the number of available adsorption sites becomes larger by higher adsor-
bent dosage, which ultimately increases the removal efficiency (Aljeboree et al., 2017). In 
a study conducted by Yaghmaeian et  al. (2015) to remove mercury from aqueous solu-
tions using MWCNTs, the effect of adsorbent dosage (0.2 to 1  g/L) on the process has 
been investigated. The results showed that the adsorption of mercury increased when the 
dosage of CNTs rose from 0.2 to 0.5 (Yaghmaeian et  al., 2015). Dehghani et  al. (2015) 
investigated the efficiency of SWCNTs and MWCNTs for the elimination of chromium at 
an initial concentration of 0.2 mg/L and pH of 2.5. They concluded that the efficiency of 
chromium removal using SWCNTs and MWCNTs improved by increasing the adsorbent 
dosage (Dehghani et al., 2015).

Researchers considered the pH value as an important and effective parameter in the 
adsorption process because the value of pH can determine the surface properties of adsor-
bents like the active groups (Yaghmaeian et al., 2015). It is well documented that at the 
pH levels above the zero point of charge (pH ˃  pHpzc), the adsorbent load level is negative; 
thus, metals are adsorbed on the adsorbent surface (Dehaghi, 2014). In a study, which was 
carried out by Kosa et al. (2012) for the removal of the Cu (II), Pb (II), Cd (II), Zn (II) 
metals from nano-sized carbon nanotubes, pH changed from 3 to 9, and it was observed 
that by increasing the pH, the removal rate of metals also enhanced (Kosa et  al., 2012). 
Dehghani et  al. (2015) investigated the removal efficiency of chromium using SWCNTs 
and MWCNTs. In this study, the pH varied from 2.5 to 9, and the results confirmed maxi-
mum removal of Cr (VI) (approximately more than 75 and 95% by both SWCNTs and 
MWCNTs, respectively) obtained at lower pH (Dehghani et al., 2015). Zhan et al. (2019) 
applied amino-functionalized CNT-graphene hybrid aerogels as an efficient adsorbent for 
removing HMs (copper and lead) from the environmental solution. The pH was studied 
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from 2 to 7, and the results revealed that by increasing the pH from 2 to 5, the adsorption 
capacity of HMs was enhanced significantly and then decreased (Zhan et  al., 2019). In 
addition, the results of a study by Bhanjana et al. (2017) showed that the best condition for 
the removal efficiency of cadmium was obtained at higher pH (Bhanjana et al., 2017).

Availability of metal ions in the contaminated environment depends on the sources 
of contamination with the different concentrations; therefore, it is essential to study the 
various effects of the initial concentration of HMs on the adsorption process (Kosa et al., 
2012). The results of evaluating the effect of the initial concentration of HMs on the 
adsorption process indicated that by increasing the initial concentration of HMs, the trans-
fer of pollutants to the adsorbent sites has been prevented, which leads to the saturation of 
active adsorbent sites, thereby reducing adsorbent efficiency in the removal of HMs (Salam 
et al., 2020). Mobasherpour et al. (2014) reported the adsorption of copper at different con-
ditions (initial concentrations of 10–30 mg/L, pH = 7, 700 rpm, contact time of 120 min, 
and 0.8 g/L from t-MWCNT) and found that adsorption of copper ion was improved by 
increasing initial metal concentration (Mobasherpour et  al., 2014). Rashid et  al. (2019) 
synthesized sulfonated polyethersulfone-reinforced MWCNTs composite to remove lead 
from wastewater. They indicated that by increasing the initial concentration of lead from 
10 to 100 mg/L, the adsorption capacity of lead increased from 7 mg/g to 48 mg/g (Rashid 
et al., 2019).

Investigating the effect of contact time as a decisive factor is essential to evaluate the 
equilibrium and the kinetics of the adsorption process (Anbia & Amirmahmoodi, 2016). 
At the beginning of the process, more active sites are available for the adsorption of HMs. 
Therefore, the adsorbent efficiency is high but with further increase in the contact time, 
the adsorbent sites are saturated from the HMs, so the efficiency of the system diminished 
(Shirsath et al., 2013). Furthermore, contact time can be used to describe the interaction 
between the adsorbate and adsorbent as well as adsorbent efficiency, so that the faster the 
removal means the better the adsorbent (Kosa et al., 2012).

Dehghani et al. (2015) have used CNTs to remove chromium, and they found that the 
removal efficiency of chromium was enhanced as contact time increased (equilibrium time 
was obtained after 60 min). In this experiment, the maximum adsorption capacity using 
SWCNT and MWCNT was 2.35 mg/g and 1.26 mg/g, respectively. The main reason for 
decreasing slightly of efficiency with an increasing time can be related to the abundant 
number of active sites present on the adsorbents, whereas, with the gradual increased occu-
pancy of these sites, the adsorption process becomes less efficient (Dehghani et al., 2015). 
In a similar study, Al-Khaldi et  al. (2015) used carbon nanotubes to remove cadmium, 
which showed that the removal efficiency also increased with extending the contact time 
(Al-Khaldi et al., 2015).

7  Comparison study

The efficiency of many inorganic nano-adsorbents for the removal of the most challenging 
environmental HMs such as Pb (II), As (III), Cd (II), Cr (VI), Cu (II), Ni (II) was compared 
based on major operational factors (pH, initial concentration of HMs, and contact time) 
(Table 9). It should be considered that for better comparing the adsorption efficiency of 
various NPs, it is useful to apply partition coefficient (PC) or sorption distribution coeffi-
cient (DC) (mg/g µM), which can be calculated as the ratio of adsorption capacity to a final 
concentration of adsorbed HMs or is the ratio of sorbed metal concentration (expressed 
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in mg metal/kg sorbing material) to the dissolved metal concentration (expressed in mg 
metal/L of solution) (Allison & Allison, 2005; Tran et al., 2016; Vikrant et al., 2019). The 
PC can be deemed as one of the major environment parameter and is a measure of solute 
sorption or affinity to matrix surfaces (Elbana et al., 2018). This parameter has linear rela-
tionship with ability of the sorbent in adsorption process so that at the higher value of the 
distribution coefficient, the greater ability of the sorbent to retain the species of interest can 
be observed (Engates & Shipley, 2011). Therefore, it is essential to calculate the true per-
formance of each NP using PC value; in this regard, we altered the value of the initial and 
final concentration of HMs (mg/L) to µM to obtain the PC value. Based on Table 9, it can 
be understood that for most NPs, higher PC value was attained at a low initial concentra-
tion of HMs; nonetheless, some NPs do not confirm to the above aforementioned finding 
(Bhanjana et al., 2017; Guo et al., 2018; Mojoudi et al., 2019; Pradhan et al., 2017; Ven-
katesham et al., 2013). It can be found that among the NMOs, the highest partition coef-
ficient was related to ZnO (1087.88 mg/g/µM). ZnO as an alternative inorganic NPs can be 
widely employed for HMs removal (Venkatesham et al., 2013). According to the unique 
properties of the MNPs, it was observed that  Fe3O4@SiO2-SH with a PC of 4596.55 mg/g/
µM had the best efficiency compared to the other MNPs (Wang et  al., 2016). It should 
be noted that NZVI -impregnated cashew nutshell with PC of 1893.24 55 mg/g/µM was 
chosen as the most effective adsorbent among all NZVIs (Kumar et al., 2017). The results 
of a study by Farooghi et al. (2018) demonstrated that the  FeNi3@SiO2 with a high PC of 
1031.98 mg/g/µM has an excellent capability for the removal of HMs (especially lead) from 
aqueous solutions as compared with other nanocomposites (Farooghi et al., 2018). Among 
the nano-clays, activated carbon/nano-clay/ thiolated graphene oxide and nano-illite/smec-
tite clay demonstrated the best adsorption condition with the PC of 43.09 and 42.73 mg/g/
µM, respectively (Mojoudi et al., 2019; Yin et al., 2018). Also, MWCNT as carbon nano-
tube (4.17 mg/g/µM) had the best efficiency for the adsorption of HMs (Bhanjana et al., 
2017). The results of Table 9 conclusively depicted that inorganic nano-adsorbents had an 
excellent efficiency for the removal of HMs, and therefore, they can be deemed as effective, 
suitable, and reliable candidates for the treatment of water and wastewater containing many 
pollutants specially HMs.

8  Nano‑adsorption Kinetics and isotherms

Kinetic adsorption is the study of the adsorption process to understand the factors affecting 
the adsorption process. The kinetics of adsorption involves careful monitoring of experi-
mental conditions that are based on the adsorption rate and the equilibrium over a rea-
sonable time (Li et al., 2012). To examine the behavior of NPs for HMs removal, various 
kinetic models such as pseudo-first-order (PFO) (Yaghmaeian et al., 2015), pseudo-second-
order (PSO) (Foo & Hameed, 2012), intraparticle diffusion (IPD) (Nethaji et  al., 2013), 
and Elovich (El-Sadaawy & Abdelwahab, 2014) have been studied. Among them, PFO and 
PSO have been widely used for the adsorption of HMs using several inorganic NPs in pre-
vious works. Furthermore, equations and major application of the aforementioned kinetic 
models are summarized in Table 10.

An adsorption isotherm is an important tool for evaluating the adsorbent distribution on 
solid/liquid boundaries and can be used to estimate the adsorption capacity (Nanta et al., 
2018). Previous research works have confirmed that the interaction between adsorbate and 
adsorbent can be obtained by adsorption isotherms models (Altıntıg et al., 2017). Exerting 
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isotherms (commonly named equilibrium relationships) in the adsorption processes can be 
useful for several purposes such as: (1) to represent the physicochemical characteristics 
(especially surface properties) and adsorbents capacities; (2) to optimize the adsorption 
process pathways; and (3) to develop an efficient design of the adsorption systems (El-
Khaiary, 2008). Up to now, several isotherm models by Longmuir (Fard et al., 2018; Nanta 
et al., 2018), Freundlich (Bao & Zhang, 2012; Kaveeshwar et al., 2018), Temkin (Foo & 
Hameed, 2012), Sips (Pirbazari et al., 2014), and Dubinin-Radushkevich (D-R) (Chaudhry 
et al., 2017) have been applied to describe equilibrium relations. Notably, among the afore-
mentioned isotherm models, two famous isotherm models of Freundlich (Freundlich, 
1906) and Longmuir isotherm models (Langmuir 1918) were obtained for equilibrium data 
of inorganic NPs (Bao & Zhang, 2012). Other isotherm models and their main application 
are listed in Table 11.

Furthermore, as explained above, to better scrutinize the importance of isotherm-kinetic 
models and adsorption mechanisms, it is necessary to compare several studies. Therefore, 
in this section, adsorption isotherms and kinetics, experimental data, correlation coef-
ficients, and their constants of various NPs, which were applied for HMs removal, are 
compared in Table 12. As can be detected, among the suggested isotherm models (Lang-
muir, Freundlich, and Tempkin), the experimental data for most groups of inorganic nano-
adsorbent were best described by the Langmuir isotherm with a regression coefficient (R2) 
of greater than 0.93. It thoroughly confirmed that the adsorption is a monolayer (Alswata 
et al., 2017; Dehghani et al., 2015; Dil et al., 2017; Mobasherpour et al., 2014)). Neverthe-
less, among the studies, there was only one work in which the experimental data of the 
adsorption process was best fitted with Freundlich isotherms with R2 = 0.99 (Huang et al., 
2015). Moreover, it was found that between the two kinetics (PFO and PSO), the pseudo-
second-order kinetics is more frequently used and best fitted for the removal of HMs from 
aqueous solution by inorganic NPs because of the R2 in the range of 0.98 to 0.99. As stated 
before, it can be observed that HMs adsorption from an aqueous solution is based on the 
chemisorption process (Foo & Hameed, 2012; Prajapati & Mondal, 2020).

9  Negative effects of nanomaterials

Nanotechnology is a fascinating and promising technology in many areas, because of 
the novelty of this science, but the risk associated with the use of nanomaterials has 
not been studied well and it is gradually becoming a public and media concern (Moore, 
2006). Based on the data, it has been estimated that about 2000 tons of NPs were pro-
duced in 2004 (Taghavi et al., 2013), and it can be expected that the production rate of 
this type of materials will grow up to 58,000 tons by 2020, so it is critical to determine 
the hazardous effects of NPs (Taghavi et al., 2013). A growing number of experiments 
are currently underway to explore the impact of nanoscale particles on human health. 
The results indicated smaller particles (< 50 nm) are toxic to inhale because they pen-
etrate into the body by type II lung epithelial cells (Yang & Watts, 2005). The toxicity 
effect of nanoparticles can be associated with (1) average size, (2) element composition, 
(3) surface area, (4) porosity, (5) surface charge, (6) hydrodynamic diameter, (7) ten-
dency to aggregate, and (8) stability (Dietz & Herth, 2011). Consequently, we can note 
the adverse effects of nanoparticles on the living and human health as follows: (a) they 
affect the heart (Chen et al., 2015); (b) they can cross the blood–brain barrier and gather 
in three separate regions of the respiratory system (nose, throat, the trachea and lung 



72 D. Nayeri, S. A. Mousavi 

1 3

Ta
bl

e 
11

  
Is

ot
he

rm
s m

od
el

s a
nd

 e
qu

at
io

ns

Is
ot

he
rm

s M
od

el
s

Eq
ua

tio
ns

 m
od

el
s

C
on

st
an

t p
ar

am
et

er
s

A
pp

lic
at

io
n

Re
fe

re
nc

e

La
ng

m
ui

r
q
e
=

q
0
∗
b
∗
c e

1
+
b
∗
c e

c e q
e

=
1

K
L
∗
q
m

+
c e q
m

q e
 is

 th
e 

am
ou

nt
 o

f a
ds

or
be

d 
at

 e
qu

ili
b-

riu
m

 (m
g/

g)
C

e i
s a

 m
et

al
 c

on
ce

nt
ra

tio
n 

in
 th

e 
aq

ue
-

ou
s p

ha
se

 (m
g/

L)
b 

is
 L

an
gm

ui
r e

qu
ili

br
iu

m
 c

on
st

an
t (

L 
g 

 ad
so

rb
en

t−
1 )

q 0
 is

 m
ax

im
um

 m
on

ol
ay

er
 a

ds
or

pt
io

n 
(m

g 
g 

 ad
so

rb
en

t−
1 )

k L
 is

 th
e 

La
ng

m
ui

r c
on

st
an

t (
L/

m
g)

K
F a

nd
 n

 a
re

 F
re

un
dl

ic
h 

co
effi

ci
en

ts
Te

m
ki

n 
co

ns
ta

nt
 is

 B
 =

 R
T/

b 
an

d 
b 

(J
 

 m
ol

−
1 ) i

s t
he

 a
ds

or
pt

io
n 

he
at

A
n 

(L
  g

−
1 ) i

s fi
xe

d 
Te

m
ki

n 
is

ot
he

rm
R

 (3
31

4 
J  m

ol
−

1   K
−

1 ) i
s a

 c
on

st
an

t g
lo

ba
l 

ga
s i

n 
w

hi
ch

 T
 (K

) i
s a

bs
ol

ut
e

Q
D

-R
 (l

g/
g)

 is
 th

e 
th

eo
re

tic
al

 sa
tu

ra
tio

n 
ca

pa
ci

ty
 o

f t
he

 a
ds

or
be

nt
b 

is
 a

 c
on

st
an

t r
el

at
ed

 to
 th

e 
m

ea
n 

fr
ee

 
en

er
gy

 o
f a

ds
or

pt
io

n 
pe

r m
ol

e 
of

 th
e 

ad
so

rb
at

e
�
 is

 a
 lo

ga
rit

hm
ic

 fu
nc

tio
n 

of
 c

on
ce

nt
ra

-
tio

n 
ca

lle
d 

Po
la

ny
i p

ot
en

tia
l. 

R 
an

d 
T 

ar
e 

ga
s c

on
st

an
t a

nd
 te

m
pe

ra
tu

re
 in

 
K

el
vi

n 
sc

al
e

To
 e

xp
re

ss
 th

e 
si

ng
le

-la
ye

r a
ds

or
pt

io
n 

pr
oc

es
s

Fa
rd

 e
t a

l. 
(2

01
8)

, N
an

ta
 e

t a
l. 

(2
01

8)
, Y

ou
 

et
 a

l. 
(2

01
6)

Fr
eu

nd
lic

h
1/

nQ
 =

 k f
 *(

  c
e)

ln
q
e
=
ln
k
f
+

1 n
ln
c e

To
 su

gg
es

t t
he

 h
et

er
og

en
eo

us
 st

ru
ct

ur
e 

of
 

th
e 

ad
so

rb
en

t s
ur

fa
ce

B
ao

 a
nd

 Z
ha

ng
 (2

01
2)

, K
av

ee
sh

w
ar

 e
t a

l. 
(2

01
8)

, N
as

ru
lla

h 
et

 a
l. 

(2
01

8)

Te
m

ki
n

q
e=
B
ln
A

∗
C
e

q
e
=
B
ln
A
+
B
ln
C
e

A
ss

um
es

 th
e 

he
at

 o
f a

ds
or

pt
io

n,
 e

ffe
ct

s 
of

 in
di

re
ct

 in
te

ra
ct

io
n 

be
tw

ee
n 

ad
so

r-
be

nt
 m

ol
ec

ul
es

 h
as

 p
re

di
ct

iv
e 

po
w

er
 in

 
a 

w
id

e 
ra

ng
e 

of
 c

on
ce

nt
ra

tio
ns

Fo
o 

an
d 

H
am

ee
d 

(2
01

2)
, K

av
ee

sh
w

ar
 e

t a
l. 

(2
01

8)
, N

jo
ku

 e
t a

l. 
(2

01
4)

D
-R

ln
Q

e
=
ln
Q

D
−
R
−
�
�
2

�
=
R
T
ln
(1

+
1 C
e

)
Is

 u
se

d 
fo

r t
he

 is
ot

he
rm

s a
na

ly
si

s w
ith

 a
 

hi
gh

 d
eg

re
e 

of
 re

gu
la

rit
y

C
ha

ud
hr

y 
et

 a
l. 

(2
01

7)
, D

ub
in

in
 (1

96
0)

Si
ps

q
e
=

Q
m
ax
K
s
C
1
∕
n

e

(1
+
K
s
C
1
∕
n

e
)

Is
 a

n 
al

te
rn

at
iv

e 
em

pi
ric

al
 a

pp
ro

ac
h 

w
ith

 
th

e 
ch

ar
ac

te
ris

tic
s o

f t
he

 F
re

un
dl

ic
h 

an
d 

La
ng

m
ui

r i
so

th
er

m
s

Pi
rb

az
ar

i e
t a

l. 
(2

01
4)



73A comprehensive review on the recent development of inorganic…

1 3

Ta
bl

e 
12

  
Is

ot
he

rm
 a

nd
 k

in
et

ic
 c

on
st

an
ts

 o
f v

ar
io

us
 n

an
o-

ad
so

rb
en

ts

N
Ps

A
ds

or
ba

te
Is

ot
he

rm
 c

on
st

an
ts

K
in

et
ic

 c
on

st
an

ts
Re

fe
re

nc
es

La
ng

m
ui

r
Fr

eu
nd

lic
h

PF
O

PS
O

q m
 (m

g/
g)

K
L 

(l/
m

g)
 o

r b
R2

K
F

1/
n

R2
k 1

q e
R2

k 2
q e

R2

M
W

C
N

s
C

u 
(I

I)
12

.3
4

0.
19

0.
99

3.
72

0.
32

0.
99

0.
09

2
7.

16
1

0.
94

8
0.

11
7

18
.8

68
0.

99
M

ob
as

he
rp

ou
r e

t a
l. 

(2
01

4)
SW

C
N

Ts
M

W
C

N
s

C
r (

V
I)

2.
35

0.
42

4
0.

99
0.

27
9

0.
23

0.
82

0.
00

3
0.

20
3

0.
81

1.
55

5
0.

19
3

0.
99

D
eh

gh
an

i e
t a

l. 
(2

01
5)

1.
26

0.
78

9
0.

98
0.

62
3

0.
16

0.
77

0.
00

7
0.

19
8

0.
98

0.
28

9
0.

18
8

0.
99

Ti
O

2
Pb

2+
7.

41
0.

35
0.

97
2.

73
0.

29
0.

82
0.

01
3.

27
0.

66
12

.4
1

5.
78

0.
98

Po
ur

sa
ni

 e
t a

l. 
(2

01
6)

N
ZV

I
C

r (
V

I)
26

4.
55

0.
14

32
0.

93
45

.8
2

0.
04

3
0.

99
0.

01
98

.3
9

0.
90

0.
31

25
98

.3
0.

99
H

ua
ng

 e
t a

l. 
(2

01
5)

Ze
ol

ite
/Z

in
c 

O
xi

de
 N

C
s

Pb
 (I

I)
A

s (
V

)
47

.6
0.

13
0.

99
2.

3
0.

66
0.

97
0.

06
18

.7
0.

99
0.

00
4

27
.7

0.
99

A
ls

w
at

a 
et

 a
l. 

(2
01

7)

Si
lv

er
-y

ttr
iu

m
 o

xi
de

 N
C

s
C

u 
(I

I)
0.

00
3

22
.3

0.
99

2.
5

0.
68

0.
98

0.
04

3
16

.4
0.

95
5

0.
00

3
22

.3
0.

99
Pr

ad
ha

n 
et

 a
l. 

(2
01

7)
C

ar
bo

xy
m

et
hy

l-β
-

cy
cl

od
ex

tri
n 

m
od

ifi
ed

 
M

N
Ps

A
s (

II
I)

12
.3

30
0.

17
1

0.
98

1.
57

1.
52

0.
97

0.
07

7
0.

83
4

0.
96

0.
25

6
6.

91
7

0.
99

Ze
in

al
i e

t a
l. 

(2
01

6)

M
od

ifi
ed

 M
N

Ps
Pb

2+
16

3.
57

25
.1

8
0.

99
8.

85
0.

49
0.

91
2.

74
3.

69
0.

73
5

4.
15

14
4.

70
0.

99
D

il 
et

 a
l. 

(2
01

7)



74 D. Nayeri, S. A. Mousavi 

1 3

alveoli) and can penetrate into the sensory nerves (Baranowska-Wójcik et  al., 2020); 
finally (c) they can penetrate into the skin and cause toxic effects such as skin cytotox-
icity during accumulation of NPs upon long exposure (Tsuji et  al., 2006). Moreover, 
nanomaterials can be directly deposited into the environment (water surface, land, soil) 
(Ray et  al., 2009). Based on the above explanation, new studies should be considered 
to evaluate the toxicity and the main adverse effect of NPs on human health and the 
ecosystem.

10  Conclusion and future developments

Over the past few decades, several techniques have made great progress for water/waste-
water purification containing HMs. Among them, adsorption techniques are a simple 
method in removing pollutants, but the application of this method has been restricted 
because of resistance to the massive mass transport. To overcome their drawbacks, 
recently, inorganic nano-adsorbents have been utilized as next-generation adsorbents 
due to noteworthy features (larger surface areas, higher selectivity, stability, and amend-
able size and shape) in removing HMs. In this regard, we have completely highlighted 
the efficiency of inorganic nano-adsorbents for HMs decontamination from environmen-
tal solution by evaluating various adsorption parameters (initial concentration of HMs, 
nano-adsorbents dosage, contact time, and pH). Besides, the comparison of several iso-
therm and kinetic models has been taken into account. Generally, the results confirmed 
that this type of nano-adsorbents had a high removal efficiency for HMs (approximately 
more than 90%). Furthermore, this review revealed that despite extensive application, 
nanomaterials often have toxic effects on the environment, human beings, and the eco-
system, making it essential to evaluate the toxicity risk. Overall, this comprehensive 
review paves the way for deeper understanding and application of inorganic nano-adsor-
bents that would be invaluable for HMs removal.

Although nanoparticles have been shown outstanding properties for the environmen-
tal remediation, further researches is needed in the future for completing their limita-
tions. So, herein we have recommended some points that will be helpful for future of 
researchers as follow as:

• The study on the human and ecological risks associated with nanoparticles, and the 
release of toxic elements into environment.

• Further interdisciplinary studies and scaling-up strategies would favor the applica-
tion of these in large scale as an alternative approach.

• The study on the NPs economic.
• The study on the integrating methods (nanoparticles and the other type of treatment 

methods)
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