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Abstract
This article investigates the contribution of farmers’ working conditions to production 
efficiency under state-contingent production uncertainty. Directional distance function is 
used to estimate efficiency scores and input shadow prices for 180 Spanish crop farms in 
2015. Results suggest that shadow prices vary considerably between the different states of 
nature, suggesting why incorporating the stochastic production specification is important. 
The present study provides evidence of the important contribution of working conditions to 
technical efficiency. Thus, improved working conditions have the potential to help farms to 
progress toward sustainable agriculture.

Keywords  Data envelopment analysis · State-contingent approach · Shadow prices · Social 
sustainability · Working conditions

1  Introduction

According to the recently published EU Farm to Fork Strategy, farmers’ safety, health and 
working conditions will play a key role in building a sustainable and fair farming system, 
where it is especially crucial to reduce the socioeconomic impacts affecting the food and 
agricultural sector as well as ensuring that the European Pillar of Social Rights principles 
are adhered to. The European Working Conditions Survey (EWCS) reported that around 
57% of farm workers experience backache, 55% upper limb pain and 46% lower limb 
pain, with agriculture and forestry being the most harmful occupations, with a high rate 
of injuries and threatening the sustainability of the sectors. (Eurofound, 2017). To inte-
grate aspects of social sustainability of farming systems into the European Union’s (EU) 
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Common Agricultural Policy (CAP) reform, the incorporation of social dimensions into 
farm performance measurement will be a real challenge. Initially, assessment of produc-
tive technologies was essentially based on economic and environmental aspects1 (Berre 
et al., 2013; Chung et al., 1997; Coelli et al., 2007; Färe et al., 1989; Førsund, 2009; Hailu 
& Veeman, 2001; Hoang & Coelli, 2011). Only recently, this line of research has been 
extended to include social factors into production technology analyses and the literature 
is still scarce, especially for agricultural technologies (Ait Sidhoum, 2018; Chambers & 
Serra, 2018; Skevas et al., 2021).

While several studies have explored the impact of the social dimension on business cor-
porations (Berman et al., 1999; Garcia-Castro et al., 2010; Lima Crisóstomo et al., 2011; 
Margolis et al., 2009; Nollet et al., 2016; Saeidi et al., 2015), the literature is much scarcer 
on the potential benefits of socially sustainable practices on agricultural production activi-
ties. In order to incorporate the social aspects in production models, it is necessary first to 
define the relevant social indicators. The most often used social input indicator is related to 
human labor issues (Zhou et al., 2018). In this study, I have focused on working conditions 
to reflect the contribution of the social dimension to farm performance. In this analysis, 
four dimensions have been identified as components of working conditions: skill discre-
tion; decision autonomy; psychological demand and health risk. A growing literature has 
documented that sustainable agriculture movements are considering workplace conditions 
as an important issue (Dumont & Baret, 2017). According to Gray (2013), in order to pro-
mote the social dimension of sustainability, improving workers’ conditions should be con-
sidered as important as preserving water resources or improving animal welfare.

It is being increasingly recognized that a holistic perspective of the firm performance 
measurement is required when targeting sustainable development. While a number of stud-
ies have already addressed the incorporation of environmental aspects when dealing with 
firms’ production processes (Kumbhakar & Malikov, 2018), few alternatives exist in the lit-
erature on the proper modeling of social netputs in production processes. These social fac-
tors can take a number of forms, such as labor burden reduction, improvement of farmers’ 
well-being, and labor conditions. Some activities, such as working conditions and farmers 
training, may have no direct impact on a firm’s outputs, but they can improve the effective-
ness of other operations (e.g., labor) that have a direct impact on its outputs. Moreover, 
information on the level of the social activities and their role on production processes may 
support the decision-making of managers in making informed choices and inform policy-
makers in planning and implementing sustainable management practices. The considera-
tion of social factors is especially crucial to reduce the socioeconomic impacts affecting 
the food and agricultural sectors. However, assigning a value to nonmarketable goods is 
not an easy process. Computing shadow prices is one methodological option for valuing 
non-traded goods. The literature contains a number of studies using parametric and non-
parametric approaches to compute shadow prices of environmental externalities associated 
with production activities (Chambers et al., 2014; Fare et al., 1993; Lansink & Carpentier, 
2001; Li & Ma, 2015). However, the role of social aspects on production activities has 
been under‐investigated so far. This study adds to the current body of knowledge evaluat-
ing the contribution of working conditions to agricultural efficiency under uncertainty by 
computing shadow prices of the working conditions. Measuring shadow prices of farmers’ 
working conditions is necessary for at least two reasons: (1) Shadow pricing may provide a 

1  See Dakpo et al. (2016) for a good overview of the different methods on modeling polluting-generating 
technologies.
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direct management insight for achieving viability of the sector since they capture the qual-
ity of labor conditions in terms of its contribution to the production process. (2) The advan-
tage of calculating shadow prices of non-marketed inputs is that they make their compari-
son with productive inputs possible,  and therefore, making it easier for policymakers to 
design policies that would enhance sustainability and the economic viability of the sector.

The concept of pricing a non-marketed activity is not new. Previous works used the idea 
of shadow prices to quantify non-marketed goods (e.g., pollution). As the sustainability 
issues of production processes have become of great importance, the concept of shadow 
prices has been applied to other non-marketed activities such as Corporate Social Respon-
sibility (CSR) (Aparicio et al., 2020; Puggioni & Stefanou, 2019). For agriculture, as previ-
ously mentioned, a number of studies employed parametric and nonparametric techniques 
to measure shadow prices of bad outputs. However, due to data challenges, few research 
has been conducted to quantify social activities of the agricultural sector. This work taps 
into this gap by measuring a price of working conditions that captures their contribution 
to agricultural performance.2 According to a recent report from the EU on a new vision 
known as EU Farm to Fork Strategy, safety and working conditions in the agricultural sec-
tor will play an important role in the development of a sustainable food system. In this 
context, this paper provides the foundations for the measurement of the relative importance 
of working conditions in the farming sector.

In addition to the contributions mentioned above, this study also engages in other 
important methodological issues. First, this work addresses the gap in the current literature 
on data envelopment analysis by incorporating social aspects, namely working conditions 
to the productive efficiency of crop farms in the Spanish region of Catalonia. Second, only 
a few studies have accounted for the stochastic environment of the agricultural technology, 
and this paper aims to extend the classical deterministic DEA models by allowing for the 
stochastic environment of agriculture through a state-contingent approach. The rest of this 
article is structured as follows. In Sect. 2, I present related literature reviews. Section 3 is 
devoted to the methodology used in this study and describes the data. In Sect. 4, I present 
the results and discuss them. The last section is devoted to the conclusion.

2 � Literature review

In addition to the traditional agricultural inputs (e.g., land, labor and capital), agricul-
tural systems may require other inputs related to social performance, such as work-related 
issues. There is an increasing body of research exploring the socio-economic determinants 
of technical efficiency scores in a second stage analysis (Berre et  al., 2017; Bozoǧlu & 
Ceyhan, 2007; García-Cornejo et al., 2020; Latruffe et al., 2004; Oladeebo & Fajuyigbe, 
2007; Pérez Urdiales et al., 2016). Nevertheless, this approach has been criticized as the 
sample bias in the first stage affects the second step analysis, leading to inaccurate esti-
mates of the determinants (Johnson & Kuosmanen, 2012). In this context, researchers and 
practitioners  have been  calling  for the need to incorporate social aspects into models of 
production (Tajbakhsh & Hassini, 2018; Zhou et  al., 2018).  While the productivity and 

2  The papers by Ait Sidhoum (2018) and Ait Sidhoum et al. (2020) constitute an exception. Although these 
companion studies incorporate working conditions, they adopt a different approach which involves a multi-
equation framework (Murty et  al., 2012) to characterize farm efficiency. However, no studies on shadow 
prices of working conditions could be found.
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efficiency literature has numerous empirical applications that directly address environmen-
tal and economic measures, there is a scarcity of literature that integrates social aspects. 
The present study contributes to fill the research gap by considering working conditions as 
an input along with conventional agricultural inputs.

Improved working conditions, and similar choices by the farmers may have various 
impacts on crop yields. The literature on the impacts of workplace‐related factors on agri-
cultural production efficiency is very scarce. Outside the agricultural efficiency literature, 
Ødegaard and Roos (2014) rely on the Malmquist productivity index and through boot-
strapped DEA framework, they have investigated the effects of labor quality, measured 
using answers that relate to workers’ health, on the efficiency of Swedish companies. Their 
findings suggest an overall increase in efficiency, around half of the effect could be associ-
ated with an improvement in labor quality attributes. Veltri et al. (2016) propose a com-
bined SFA-DEA approach to evaluate the performance of Italian banks through efficiency 
analysis. Their idea is to get an estimate of managerial ability from the first stage SFA 
model and to introduce it in the second stage DEA model as an input. They find differences 
in results with or without the introduction of managerial ability as a new input, which 
provide evidence of the contribution of work-related factors to efficiency and productiv-
ity. Chambers and Serra (2018) is another recent paper that extended the conventional 
efficiency measures that allow for corporate social responsibility activities of a sample of 
global firms using Data Envelopment Analysis. To allow for the work-related issues, the 
authors consider the average training hours per employee and per year as an input that posi-
tively affect firm performance. Skevas et al. (2021) also propose a framework of production 
performance that allows for socially responsible activities. The authors estimate a socially 
responsible input inefficiency of a sample of dairy farms. The socially responsible input is 
represented by the non-cash benefits (e.g., health insurance, pension contributions, food, 
accommodation, transportation, etc.) provided to workers. However, these two papers deal 
exclusively with efficiency estimation and not with shadow prices computation. Within 
the agricultural efficiency literature, the list of studies dealing with social-related issues 
is much shorter. There is actually only one study that integrates the working conditions of 
farmers in the production process (Ait Sidhoum, 2018). This companion paper seeks to 
quantify social outputs of agricultural activities; however, it does not account for the con-
tribution of work-related issues to production efficiency.

Although the overall sustainability includes environmental, economic, and social dimen-
sions, the latter has been given less attention compared to the other two pillars (Brent & 
Labuschagne, 2006; Lehtonen, 2004; White & Lee, 2009). While the literature has widely 
explored a broad spectrum of environmental indicators, there are few studies that have con-
sidered the social dimension of sustainability, in part due to its subjectivity, making its 
quantification very difficult. This may be reinforced by the fact that there is no scientific 
evidence on the framework used for measuring social sustainability, largely because there 
is still significant debate over the causes and effects of social impact, as well as the design 
and the selection of suitable social indicators (Dubois & Mahieu, 2002; Dyllick & Hock-
erts, 2002; Hutchins et al., 2019; van Haaster et al., 2017).

With the aim of promoting sustainability, the European Union identified appropriate 
metrics for sustainable agriculture (European Commission, 2008; Regulation, 2005, 2006). 
More specifically, the economic indicators that have been identified are linked to produc-
tivity growth, income distribution and investments, while environmental metrics are related 
to natural resources, land use and water quality and threats to biodiversity and wildlife 
habitat. While the social indicators are related to farmers’ quality of life and rural commu-
nities. In this regard, Van Calker et al. (2007) considered that social sustainability at farm 
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level is based on labor conditions and societal sustainability indicators. Similarly, Lebacq 
et al. (2013) grouped the social sustainability indicators under two key categories: a private 
social dimension that corresponds to the well-being of farmers such as working conditions 
and education, and a second social dimension which can be described as a public dimen-
sion as it is linked to general expectations of the society. Our approach reflects the lim-
ited empirical data available and only focuses on the internal social dimension (related to 
farmers). More specifically, this paper provides a farm-efficiency model that incorporates 
farmers’ working conditions and shows the contribution of these work-related factors to 
productive efficiency.

Because of the unpredictable nature of agricultural activities, uncertainty in produc-
tion should be taken into consideration when assessing farms’ efficiency. O’Donnell et al. 
(2010) have shown that efficiency evaluation can be significantly biased when the agricul-
tural stochastic conditions are ignored. In the same spirit, in this paper, the state-contingent 
approach which identifies the relevant states of nature is employed to account for uncer-
tainty (Chambers & Quiggin, 1998, 2000). This technique is used to account for uncer-
tainty in production models by differentiating the outcomes according to the state of nature 
in which they are obtained. Our reading of the efficiency and productivity literature reveals 
very few applications of the state-contingent framework, and those studies which have 
been done have generally been limited to the estimation of very specific technologies that 
are concerned only by economic and environmental issues (e.g., Chambers et  al., 2014; 
Chavas, 2008a, b; Nauges et  al., 2011; Serra et  al., 2014). However, the contribution of 
conventional inputs and social inputs, such as working conditions to production efficiency 
under uncertainty, has not been investigated so far.

The present study aims to derive the economic value of working conditions and assess 
their roles in agricultural production efficiency. To meet this objective, a DEA3 framework 
is employed to measure farm-level efficiency scores and compute the shadow prices of 
working conditions. The contributions of this paper are threefold: First, this work addresses 
the gap in the current literature on data envelopment analysis by incorporating social 
aspects, namely working conditions to the productive efficiency of crop farms in the Span-
ish region of Catalonia. The second contribution is to derive the economic value of work-
ing conditions through the computation of shadow prices and compare them with other 
conventional inputs shadow prices to evaluate their relative importance. Third, only a few 
studies have accounted for the stochastic environment of the agricultural technology, and 
this paper aims to extend the classical deterministic DEA models by allowing for the sto-
chastic environment of agriculture through a state-contingent approach.

3 � Materials and methods

This study investigates farm efficiency while considering working conditions as a non-con-
ventional input to reflect the social dimension of farm performance. The methodological 
roadmap is shown in Fig. 1.

3  In this study, the state-contingent approach is employed as it allows to overcome the main constraint of 
DEA by representing the stochastic production process in terms of state-contingent outputs. While some 
studies combined the state-contingent approach with the parametric stochastic frontier analysis (SFA), the 
strong correlation between outputs in different states causes serious collinearity issues (see Chavas (2008a, 
b)).
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Here, I analyze a technology where the production process is subject to adverse weather 
conditions, pests, diseases, and other sources. The risk of agricultural production has to do 
with uncertainty in terms of potential output level and, sometimes also the level of inputs to 
be allocated, at the moment when production decisions are made.In a state-contingent frame-
work, the stochasticity is represented by using a state-space (S,Ω) , where the symbol S repre-
sents the states’ number, called the states of nature. Random variables are represented by the 
real vector space ℝΩ . The stochastic production technology is represented as follow:

(1)Ψ ∶ {(ỹ, x) ∶ x can produce
∼
y}

Farm Performance Assessment 

Input indicators

Land
Labor

Machinery
EPF

Working conditions 
items

Output indicators

Principal Component 
Analysis

Skill discretion

Decision autonomy

Psychological demand

Health Risk

Output - bad state-

Output - normal state-

Output - ideal state-

Directional Distance function

Efficiency computation Shadow prices computation

Primal form Dual form

Conclusions and implications

Fig. 1    Methodological flowchart
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where a vector of non-random input variables x ∈ ℝ
N
+

 can produce the state-contingent 
outputs4 ỹ ∈ ℝ

Ω
+

 , where ỹ = {ys ∶ s ∈ Ω} , being ys the ex-post value, the realizations of the 
random outputs are then y1s,… , yMs . It is important to note that “nature” makes the final 
decision on the ex-post outcomes, and not the decision-maker (Chambers et al., 2011).

To illustrate the procedure of estimating the best-practice frontier, I assume a single 
output technology (ỹ) , which denotes crop production. Land (x1) , labor (x2) , machinery 
(x3) and I am also considering the use of energy, pesticides and fertilizers (EPF)(x4) within 
conventional agricultural inputs. Although the efficiency literature has largely focused on 
assessing the relationship between traditional inputs and outputs in agricultural produc-
tions, the discussion over the appropriate framework which should be used to include social 
issues in the production technology has just been launched (Chambers & Serra, 2018). In 
this paper, working conditions (x5) are considered as an input along with traditional inputs.

A state-contingent input-oriented DDF is used to fit the primal formulation to the sto-
chastic production technology (Ψ) . The input-oriented DDF projects the input vector, in a 
pre-assigned direction, onto the technology frontier. Let g ∈ ℝ

N
+

  be the directional vector 
in which inputs can be scaled; the state-contingent directional distance function of the sto-
chastic production technology (Ψ) can be represented as (Chambers et al., 1998):

The � is non-negative and scaled to reach the efficient frontier (xn − �g ∈ Ψ) where 
𝛽 = ��⃗D

(
xn, ỹm, g

)
 . A higher � means lower efficiency such that the agricultural holding 

is further away from the best practice frontier. If � equals zero, the farm is efficient and 
located at the production frontier.

��⃗D(x, ỹ, g) inherits its properties from the production possibility frontier and satisfies the 
following properties: (1) ��⃗D(x, ỹ, g) ≥ 0 if and only if (x, ỹ, ) ∈ Ψ assuming (x, ỹ, ) are freely 
disposable; (2) non-decreasing in x ; (3) non-increasing in ỹ ; (4) concavity in x and (5) 
verifies the translation property: ��⃗D(x − 𝛾g, ỹ, g) = ��⃗D(x, ỹ, g) + 𝛾 , 𝛾 ∈ ℝ+ . In the empirical 
application, a directional vector g = x is specified5; thus, the derived distances from the 
DDF indicate the maximum contraction of inputs while keeping the outputs constant. The 
directional distance function is estimated using DEA framework, solving the model (3) for 
each observation in the sample (Chambers et al., 1998):

(2)��⃗D
(
xn, ỹm, g

)
= Max{𝛽 ∶ xn − 𝛽g ∈ Ψ}

(3)��⃗DI

(
xn, ỹm, g

)
= Max

𝜆
{𝛽}

st.

⎧
⎪⎨⎪⎩

∑
i 𝜆

ixi
n
≤ xn − 𝛽gx, n = 1,… ,N,∑

i 𝜆
iỹi
m
≥ ỹm,m = 1,… ,M,

𝜆 ∈ ℝ+

⎫⎪⎬⎪⎭

5  Following Chambers et  al. (1996), the production technology under consideration drives the choice of 
directions. This implies that the selection of a direction toward the efficient frontier depends on the specific 
observed input values. The key feature of this arbitrary choice is that it does not require a priori information 
on the selected directions. However, there are other alternative methods, See Wang et al. (2019) for more 
details on this.

4  The tildes are used to differentiate random variables from their ex-post outcomes.
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where i = 1,… , I denotes the observation number. �i represents the intensity variable that 
weights all firms to define the benchmark for the production technology. (1 − �) is the effi-
ciency measure.

The dual specification of the model in (3) is then used to derive a single shadow price 
for non-efficient units, while for the estimation of shadow prices for the efficient units, I 
follow the approach proposed by Chambers and Färe (2008) who have used a directional 
derivative feature to address this issue.

Because ��⃗D(x, ỹ, g) is concave in x , its directional derivative can be represented as 
follows:

D⃗
′(
x, ỹ, g;x0

)
 can also be defined as a superlinear of ��⃗D(x, ỹ, g) in x , which is denoted as 

𝜕��⃗D(x, ỹ, g) and can be formalized as:

where 𝜕��⃗D(x, ỹ, g) = {v ∈ ℝ
N ∶ ��⃗D(x, ỹ, g) + v�(x0 − x) ≥ ��⃗D

(
x0, ỹ, g

)
∀x0 ∈ ℝ

N}

Chambers and Färe (2008) show how shadow prices can be computed from the direc-
tional derivatives and super-differentials as well as how these shadow prices are associated 
with the concept of willingness to pay (WTP) and willingness to accept (WTA) for effi-
cient firms. The WTP for a small unit improvement in xn can be expressed as:

where x∗ denotes the efficient level of input quantities. Alternatively, the WTA a small 
unit increase in the input vector (xn) can be represented by:

Shadow prices can be obtained directly from the solution to the dual problem in model 
(3). Shadow pricing is a way of assigning a monetary value to inputs in terms of their con-
tribution to farm performance. The dual formulation of ��⃗DI

(
xn, ỹm, g

)
 in (3) can be derived 

as follows (Chambers et al., 2014):

where wn and pm denote the shadow values associated with inputs (xn) and state-contingent 
outputs (ỹm) , respectively. The shadow prices wn and pm  are computed to solve the dual lin-
ear programming model in (8). These dual values6 differ for each firm and are considered 

(4)D⃗�
(
x, ỹ, g;x0

)
= lim

𝛾→0+

{
D⃗
(
x + 𝛾x0, ỹ, g

)
− D⃗(x, ỹ, g)

𝛾

}

(5)D⃗�
(
x, ỹ, g;x0

)
= Inf {v�x0 ∶ v ∈ 𝜕D⃗(x, ỹ, g),

(6)
Wn

W �g
= inf {vn ∶ v ∈ 𝜕D⃗(x∗, ỹ, g)

(7)−
Wn

W �g
= sup {vn ∶ v ∈ 𝜕D⃗(x∗, ỹ, g)

(8)

E⃗I

(
xn, ỹm, g

)
= min

w∈ℝN ,p∈ℝΩ
{w�

n
xn − p�

m
ỹm}

st.

w�
n
g ≥ 1

w�
n
xi
n
− p�

m
ỹi
m
≥ 0, forall i, i = 1,… , I

6  When comparing these shadow prices, it is possible to determine the relative importance of the netputs 
used in the DEA model (Yue, 1992).
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as an internal value estimation for inputs and outputs, consistently with cost minimization, 
these virtual prices represent the implicit values of the netputs to the efficiency of produc-
tion, that can be particularly useful to investigate non-marketed inputs such as working 
conditions.

As shown by Chambers and Färe (2008), when the technology is smoothly differenti-
able, the dual problem in (8) has a single solution and can be formalized as:

In contrast, if the technology is not smooth, the resulting production frontier displays 
kinks, which are associated with the extreme efficient units. The lack of differentiability of 
the frontier yields to multiple solutions that are delimited by a lower (WTP) and an upper 
(WTA) bound within which shadow values are placed. Based on the directional derivative 
approach and the DEA framework, Chambers and Färe (2008) define the WTP for an extra 
unit increase in input:

while the WTA a small reduction in the input vector (xi
n
) is given by:

Under duality theory and consistent with the concept of cost minimization, relative 
shadow prices are calculated from the dual formulation of the input distance function. The 
absolute shadow prices of productive inputs can be computed by assuming that the cal-
culated shadow price of the output is representative of its market price. Following Färe 
et al. (1993), the output market price is used as our normalizing price, since intended out-
puts have an observable market price (while the working conditions do not), then absolute 
shadow prices are derived as follow:

where po
m
 is the observed (market) price of the output. Using the observed price of output 

to calculate absolute shadow prices of inputs is in line with other studies in the efficiency 
literature (Singbo et al., 2015; Skevas & Serra, 2017). In our empirical application, we use 
the expected price (under the normal state of nature) of each crop type (cereals, protein and 

(9)

{(
w∗
n
, p∗

m

)}
= argmin{w�

n
xn − p�

m
ỹm}

st.

w�
n
g ≥ 1

w�
n
xi
n
− p�

m
ỹi
m
≥ 0, forall i, i = 1,… , I

(10)

wn, i,WTP∗ = min
{
wn,i

}

st.

w�
n
xn − p�

m
ỹm = 0

w�
n
g ≥ 1

w�
n
xi
n
− p�

m
ỹi
m
≥ 0, for all i, i = 1,… , I

(11)

w∗
n,i,WTA

= max
{
wn,i

}

st.

w�
n
xn − p�

m
ỹm = 0

w�
n
g ≥ 1

w�
n
xi
n
− p�

m
ỹi
m
≥ 0, for all i, i = 1,… , I

(12)W
�

n
= po

m
⋅

�D(x, y, g)∕�x
�

n

�D(x, y, g)∕�ym
,
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oilseeds crops). Absolute shadow prices have the advantage of being linked to real market 
conditions, as opposed to relative shadow values.

3.1 � Data

The data have been collected through a survey aimed at analyzing the efficiency of crop 
farms in Catalonia. Crops consist of cereals, protein, and oilseeds crops (COP). A farm is 
considered only if more than 80% of overall farm revenues are generated from COP crops. 
A total of 180 farms were surveyed.7 The survey was specifically designed to implement an 
empirical representation of state-contingent technologies. To this end, the first part of the 
questionnaire was conducted before the starting of the growing season in October 2015 to 
gather predicted yields for three different states of nature. Specifically, farmers were asked 
to predict the yields they expect under bad, normal, and ideal states of nature.

Measuring ex-ante production is challenging because it is difficult to obtain objective 
responses from farmers on what represents a bad, normal or ideal growing season. Experts 
from the largest Catalan farmers’ association—Unió de Pagesos (UdP)—that was respon-
sible for carrying out the survey, recommended collecting output data for bad, normal and 
ideal states of nature as the most appropriate and pragmatic method for gathering ex-ante 
output data.8 According to UdP, yields under normal conditions can be used as a reference 
for farmers (e.g., the average yield over a ten-year period), then, identification of yield data 
for the bad and the ideal state of nature should be relatively easy for producers.

The collected data include information about planned use of inputs from each farm. 
These included details on cropland use ( x1 in hectares), labor use ( x2 in hours), machinery 

Table 1   Descriptive statistics

EPF Energy, pesticides and fertilizers.

Variables Dimension Symbol Average Std. Dev Min Max

Output—bad state - Euros y
1

33 024,49 34 050,12 1 239,18 262 162,50
Output—normal state - Euros y

2

52 114,47 50 695,80 4 969,11 387 700,00
Output—ideal state - Euros y

3

71 570,62 72 414,69 8 190,00 573 150,00
Land Hectares x

1

80,65 73,60 10,30 510,00
Labor Hours x

2

827,08 841,85 23,00 5 760,00
Machinery Number x

3

5,57 2,05 1,00 13,00
EPF Euros x

4

14 641,46 15 093,79 645,09 117 110,00
Working conditions Score x

5

46,98 3,93 36,00 59,00

7  With the condition of at least 80% of overall farm revenues are generated from COP, around 250 agri-
cultural holdings have been identified as meeting the specialization criteria from a large list of 7000 farms. 
From there, 180 farms have been surveyed.
8  For the agricultural sector, the states of Nature are typically related to weather parameters (temperature, 
precipitation, solar radiation, etc.…). While using the average yield over a ten-year period to identify yields 
under normal conditions and then the two other states. The constraints associated with collecting ex-ante 
output are known. This data collection is based on farmers’ subjective perceptions, which might lead to 
identification biases. Some procedures have been proposed by the literature to deal with this issue, such 
as the use of “cheap-talk” (Cummings & Taylor, 1999). However, other studies, such as Lusk (2003), have 
shown that these techniques maybe ineffective with experienced participants. Our group of farmers had 
33 years of experience in the crops sector; therefore, our respondents can be regarded as experienced.
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( x3 in physical units) and EPF inputs ( x4 in euros), and working conditions ( x5 in scores). 
A total of 180 farms were chosen for the study purpose. Descriptive statistics are provided 
in Table 1.

Data to assess the contribution of the working conditions to the production process 
were also elicited. Although some studies have focused on developing work conditions 
metrics, these usually depend on the particular sector of interest. Our working condi-
tions indicators are based upon the work by Karasek et al. (1998), Pickett et al. (2008) 
and White and Cessna (1989). The items are, however, adapted to fit the specific con-
text of research. A total of 22 items were introduced in our questionnaire to measure 
the working conditions.

To extract the relevant information from working conditions statements and fur-
ther maximize the discriminatory power of data envelopment analysis, I used princi-
pal component analysis (PCA) as a descriptive technique on the working conditions 
items rated on a 4-point Likert scale, with increasing scores representing greater lev-
els of working conditions. PCA reveals that four components (skill discretion, health 
risk, psychological demands and decision autonomy) provide a good description of 
the working conditions structure. The component skill discretion reflects the degree to 
which the job involves the need for a broad range of skills, development of individual 
skills and abilities, the absence of routinization and creativity. Decision autonomy rep-
resents the farmer’s freedom to make decisions about his own job without constraint or 
coercion. The psychological demands component represents the psycho-social aspects 
of workload. While the health risk component sums up the damaging physical health 
effects of the workplace among farmers. Only the working conditions statements with 

Table 2   Working conditions items that have been considered in this study

Working conditions item Components

In my work, I have to be creative.

Skill discretion
My work requires a high level of skills.

I get to do a variety of different things in my job.

At work, I have the opportunity to develop my own abilities.

My job allows me to take a lot of decisions on my own.

Decision autonomy
I have very little freedom to decide how I do my work.

My opinions influence the management of the agricultural holding.

In the farm, work schedules are flexible.

My work requires working very fast.

Psychological demand
My work requires working very hard.

I do not need to do an excessive amount of work.

I have enough time to get the job done.

Suffer from muscular pain due to farm work

Health Risk
My work entails painful postures

I am exposed to annoying noise in my workplace

In my work, I need to manipulate or breathe noxious or toxic substances
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high factor loadings were retained and considered for further study (Table  2). The 
working condition variable is quantified as the total points score of the four factors.

4 � Results and discussion

4.1 � Efficiency scores

��⃗D(x, ỹ, g) was calculated for each state of nature. Summary statistics on the average effi-
ciency scores and the frequency distribution of ex-ante information as derived from the 
primal approach of the technology are presented in Table 3. The findings show that mean 
efficiency ratings in our sample fluctuate from 0.64 to 0.72 in bad and normal growing 
conditions. This indicates that our sample farms produce 36% and 28% less output than is 

Table 3   Frequency distribution 
of state-contingent efficiency 
scores

Bad state Normal state Ideal state

0 < 𝜑 < 0.1 0 0 0
0.1 ≤ 𝜑 < 0.2 7 0 0
0.2 ≤ 𝜑 < 0.3 3 2 1
0.3 ≤ 𝜑 < 0.4 11 0 0
0.4 ≤ 𝜑 < 0.5 22 11 12
0.5 ≤ 𝜑 < 0.6 35 24 31
0.6 ≤ 𝜑 < 0.7 36 51 55
0.7 ≤ 𝜑 < 0.8 25 43 32
0.8 ≤ 𝜑 < 0.9 11 23 27
0.9 ≤ 𝜑 < 1.0 13 13 5
� = 1.0 17 13 17
Mean score 0.64 0.72 0.71

Fig. 2   Kernel distributions of the 
efficiency ratings for each state 
of nature
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technically possible under the bad and normal setting. Seventeen farms were found to be 
fully efficient (on the frontier) in the bad crop year, thirteen under normal growing condi-
tions, and seventeen in the ideal state of nature. The analysis of individual farms shows 
some differences among units; for instance, larger farms are found to be more efficient, a 
result that is consistent with previous studies (Hallam & Machado, 1996; Skevas & Lan-
sink, 2014), while we were unable to find any common pattern related with their working 
conditions levels.

Nonparametric kernel density distributions for the ex-ante efficiency scores are pre-
sented in Fig. 2. The three density distributions display a bimodal shape of our state-con-
tingent data. Similarly, for the three distributions, the bimodal shape seems to indicate 
the existence of a specific group operating quite far from its output potential level (major-
mode) who is clearly separated from another smaller group that has a high concentration of 
farms around 1. Under bad growing conditions, the major mode shows a concentration of 
farms around 0.55, while for the normal and ideal state, the group with considerable inef-
ficiency is characterized by a high concentration of farms around 0.65. Furthermore, the 
two groups are discriminated by an anti-mode or a minimum, which may suggest the exist-
ence of an efficiency trap between the best performers and the inefficient ones. According 
to the Simar and Zelenyuk test, the efficiency ratings of bad state and normal/ ideal state of 
nature come from different statistical distributions (Table 5). While when comparing nor-
mal and ideal states, the result (similar statistical distributions) of the test is consistent with 
the plots shown in Fig. 1.

Table 4   Average shadow prices (Normalized values in euros)

Inefficient Farms Efficient farms

Bad Normal Ideal

Inputs Bad Normal Ideal WTP WTA​ WTP WTA​ WTP WTA​

Land 83.67 134.69 206.24 16.56 77.60 4.55 120.70 29.40 177.25
Labor 2.58 2.70 2.18 1.18 6.34 0.31 20.19 2.65 30.30
Machinery 137.49 133.97 160.93 197.83 2,050.31 159.69 3,669.65 136.66 4,523.70
EPF 0.13 0.15 0.15 0.04 0.47 0.20 1.18 0.26 1.79
Working conditions 27.15 25.94 25.30 17.92 150.32 19.58 371.01 13.51 435.32

Table 5   Simar and Zelenyuk (2006) test for comparing efficiency scores and working conditions shadow 
prices between the three states of nature

Simar and Zelenyuk (2006) Bad vs. Normal Bad vs. Ideal Normal vs. Ideal

Efficiency scores
Test value (p value) 6.189 (0.000) 4.422 (0.000) 0.071 (0.919)
Working conditions shadow prices
Test value 7.828 15.870 43.454
(p value) (0.000) (0.000) (0.000)
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4.2 � Shadow prices

Shadow values are computed as a means by which non-traded working conditions are 
assigned a monetary value for their contribution to technical efficiency. The virtual prices 
are estimated using Eq. 3. Although Eq. 3 is differentiable for inefficient farms, I use mul-
tiple shadow prices solutions (Chambers & Färe, 2008) for efficient farms. Calculated 
shadow prices (Table 4) present the needed increase in agricultural output while maintain-
ing the efficiency level constant when inputs are changed.9 Our results also provide differ-
ences between shadow prices across states of nature,10 implying that the marginal produc-
tivity of inputs differs across the three different states of nature. The findings show that 
there exist substantial variations in the average shadow price of the inputs used. For the 
inefficient farms, capital machinery shows the higher average shadow value per farm that 
fluctuates from 137.49 euros to 160.93 euros in bad and good crop growing conditions 
(e.g., an additional unit of capital machinery (one machine) requires an increase in the crop 
value of 137.49 euros to keep the efficiency level constant under the bad state of nature). 
Our results also showed that our sample of crop farms presents shadow values of land on 
the order of 206 euros under the ideal state, which differs from the shadow prices levels 
(83–134 euros) under bad and normal states, implying that when the switch from bad to 
the good state of nature occurs, the productivity of an additional unit of land (hectare) 
increases by around 123 euros. Working conditions shadow prices for inefficient farms take 
a value of 27.15 euros per score point under bad conditions to about 25 euros in the normal 
and ideal states of nature. Therefore, an additional unit of working conditions is expected 
to increase the desirable outputs. Working conditions are the third most relevant input after 
capital machinery and land, a result that is consistent with the fact that farmers’ well-being 
at work is likely to enhance agricultural productivity.

Interestingly, results show that for an additional euro of EPF, farmers’ return was less 
than 1 euro for the three alternative states of nature. This result implies that pesticides, 
chemical fertilizers and energy use are the less productive inputs for our sample farms. 
This suggests the possibility that farmers could improve their efficiency by reducing the 

Fig. 3   Farmers’ WTA for their 
working conditions input for each 
state (efficient units)
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9  A shadow price of a productive input can be interpreted as well as the marginal product of that input.
10  To test whether the differences between shadow prices of working conditions across states of nature are 
significant, we rely on the Li (1996)’s test which was adpated and suggested by Simar & Zelenyuk (2006). 
The results of the test (Table 5) confirm that shadow prices of working conditions come from different con-
tinuous distributions.
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use of environmentally detrimental inputs. This can be interpreted as an indication that 
farmers are allocatively inefficient with respect to the use of polluting inputs. These results 
are consistent with the widespread view that farmers overuse fertilizers and pesticides (Ait 
Sidhoum et al., 2020; Skevas et al., 2013; Zhang et al., 2015).

The estimation of the dual representation of the input distance functions in (10) and 
(11) allows us to generate multiple shadow value solutions in terms of WTP and WTA for 
efficient farms. Results are reported in Table 4. On average, the WTA for all inputs values 
in the ‘ideal’ state is relatively larger than the average input values in the ‘bad’ state, imply-
ing that these inputs are especially productive when growth conditions improve from bad 
to ideal. From a visual point of view, Fig. 3 summarizes this for the working conditions 
input in terms of the upper price limit for each efficient observation for each state of nature. 
Relative to inefficient farms, shadow prices of working conditions for the efficient units 
progress to be the second most valuable input after machinery, while land input downshifts 
to the third position. This result for land input is not expected but might reflect land quality 
differences among farms.

4.3 � Working conditions issues and sustainability in agriculture: from theory 
to practice

Based on the findings of this research, several theoretical and practical implications should 
be discussed. In terms of theoretical aspects, this work is among the first that empirically 
examines how working conditions contribute to farm technical performance. In view of the 
importance of working conditions in agricultural production, the incorporation of social 
performance indicators into production models would increase our understanding of how 
social aspects contribute to sustainable farming systems. However, the multi-dimensional 
nature of the social dimension makes it especially challenging from a methodological point 
of view. In light of this, it is crucial to develop harmonized methods and indicators for 
monitoring social indicators (Diazabakana et  al., 2014). Furthermore, Lunner Kolstrup 
et  al. (2013) note that farmers’ well-being and working conditions will be significantly 
affected by the fluctuating weather and the stochastic environment of agriculture and rec-
ommend the adoption of measures that mitigate the impact of these production risks. This 
study empirically measures the relative importance of working conditions in the farming 
sector under production uncertainty. The paper findings provide evidence on differences 
between shadow prices across states of nature. These differences in shadow prices between 
the different states show the importance of taking into account the stochastic environment 
of agriculture when calculating farms’ performance and shadow prices. These results con-
firm relevant previous research on the development of farm performance measures under 
uncertainty (Chambers et al., 2014; Mallawaarachchi et al., 2017; Nauges et al., 2011; Ske-
vas & Serra, 2017).

In practice, this study makes a number of significant contributions to workplace sustain-
ability practice. First, the option of developing better working conditions in the agricultural 
sector is a key organizational investment that spreads positive and green signals among 
co-workers and outside the farm and develops a strong connection with key stakeholders 
in order to gain their support and enhance the reputation of the agricultural sector among 
the general public. For instance, organic farming has been suggested as a production sys-
tem that could provide better workplace conditions and hence contribute to the sustain-
ability and viability of the sector without causing environmental damage. However, it is 
worth mentioning that in some agroecological systems, the farm managers prioritize the 
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economic benefits over the social ones (Shreck et  al., 2006). The estimates for working 
conditions shadow prices reveal that working conditions are the third most relevant input 
after capital machinery and land. This finding is consistent with the notion that work-
related aspects are important factors when adopting more sustainable practices (Delecourt 
et al., 2019). In practice, transitions toward sustainable farming systems may require policy 
intervention to support farmers in adopting smarter and innovative solutions (e.g., preci-
sion and smart farming) that increase the attractiveness of the farming profession. While 
rural depopulation is an increasing source of worry for the European Commission (Schuh, 
2019), as well as national agricultural authorities (Rodríguez-Soler et al., 2020), smart and 
sustainable technologies have the potential to improve safety, reduce the workload, and 
hence, prevent rural depopulation (Jones et al., 2020).

5 � Conclusion

The consideration of social issues in a production system is important to achieve a sustaina-
ble business. Our article integrates farmers’ working conditions into the production process 
as an input and compares its importance relative to other inputs. The use of the state-con-
tingent approach to allow for the stochastic conditions of agricultural production entails an 
improvement compared to the previous literature. Specifically, it estimated shadow prices 
of farmers’ working conditions under production uncertainty. The application focuses on 
the Catalan arable crop sector through a sample of 180 farms in 2015, where information 
on inputs and ex-ante state-contingent outputs have been collected through a survey.

This empirical analysis suggests several interesting results. First, on average, relatively 
poor performance scores have been obtained in terms of technical efficiency, suggest-
ing that inputs use could be significantly reduced while leaving output levels unchanged. 
Additionally, farms appear to be operating at a lower production frontier as crop growing 
conditions worsen. This finding is compatible with the argument that farm performance 
improves with the improvement of conditions during the growing season (Ait Sidhoum 
et al., 2020; Serra et al., 2014). Although the empirical findings are consistent with the ear-
lier literature, the interpretation of these results is limited to a particular geographical loca-
tion. Second, significant differences in inputs shadow values across states of nature show 
the importance of considering production uncertainty when assessing farms performance. 
Finally, shadow prices suggest that working conditions represents the third most valuable 
input after capital machinery and land for the non-efficient farms and the second most 
valuable input after capital machinery for the efficient farms, which makes it significantly 
above the shadow values of EPF and labor for the inefficient farms and also considerably 
above the shadow prices of EPF, labor and land for the efficient farms.

In terms of policy recommendations, three main recommendations emanate from the 
analysis. First, policy-makers need to design agricultural policies that take into account the 
stochastic nature of agricultural production. In the future, climate change will have a signif-
icant impact on farmers’ safety and health (Applebaum et al., 2016). Successful adaptation 
by the farming sector requires appropriate farm performance measurement that allows for 
the stochastic environment of agriculture. Second, given the findings of the relative impor-
tance of working conditions in farm efficiency, this latter could be potentially improved 
by providing more freedom11 for the workers to decide how to do their own work and 

11  As emphasized by one reviewer, higher farm performance may also be achieved by higher supervision 
intensity (Feder, 1985). However, this case is especially relevant for developing countries.
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providing more opportunities to make decisions (Langfred & Moye, 2004). For instance, 
Dumont & Baret (2017) suggested that the capacity to innovate and to participate in the 
decision-making process (e.g., adoption of new technology) can be important factors in 
determining farm performance. Third, the adoption of digital and smart farming technolo-
gies will be the key concern in the future; however, without sufficient training, the use of 
modern technologies alone will not enhance farmers well-being, working conditions and 
their overall performance in general. Finally, this study also shows evidence of differences 
in labor conditions between the efficient and non-efficient farms. This finding clearly indi-
cates the need to improve the quality of workplace conditions for farmers who are lagging 
behind in terms of efficiency. The literature suggests that poor working conditions come 
from the absence/poor safe workplace practices. Therefore, with the aim of promoting sus-
tainability practices, public policies should encourage these farmers to establish internal 
management systems and guide them in the implementation of quality management pro-
grams aimed specifically at improving working conditions and environmental practices 
(Gereffi et al., 2005; Nadvi, 2008).

To conclude, it is worth mentioning that there are different avenues for further follow-
up research. This study confines the analysis to a consideration of working conditions to 
reflect the social dimension of farm performance. However, several indicators can be found 
in the existing literature for measuring social performance, such as investment in workers’ 
health (Ødegaard & Roos, 2014), qualitative control (Kuo & Lin, 2012), education and 
training (Chambers & Serra, 2018) and human rights (Ioannou & Serafeim, 2012). There-
fore, a potential avenue for future research would be to consider other indicators which 
could better represent the social dimension of sustainability. A second future avenue for 
research is to investigate the differential effects of the different components of working 
conditions on farm performance. Finally, it would be interesting to extend the socio-eco-
nomic approach to more recent approaches that allow modeling polluting-generating tech-
nologies (e.g., pesticides pollution). Farmers’ working conditions may be strongly linked to 
environmental protection and climate change mitigation practices. Better farmers’ working 
conditions (e.g., the use of precision equipment) may affect how pesticides and mineral 
fertilizers are applied, this implies that environmental pollution could be reduced by pro-
moting innovative and sustainable solutions. Therefore, future research could explore the 
relative importance of working conditions in terms of their contribution to environmental 
pollution control by building on the methods proposed by Murty et al. (2012) or Murty and 
Russell (2018).
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