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Abstract
Sustainable development has gained significant attention in the literature due to the 
increased global awareness of environmental sustainability during the last decade. Sustain-
able development has three aspects, including economic, social, and environmental. The 
challenge of sustainable development is to establish a balance between these three aspects. 
Assessing the efficiency of a company contributes comprehensive information to improve 
its overall performance. Despite numerous studies in this field, the literature lacks studies 
that simultaneously consider all three aspects of sustainable development, especially the 
social aspect. The main objective of this paper is to calculate the technical, social, and 
environmental efficiency scores. We also introduce a new efficiency called sustainable effi-
ciency that merges all three sustainable development aspects in one efficiency score. This 
study applies two existing data envelopment analysis (DEA) models to evaluate technical, 
social, environmental, and sustainable efficiencies. These models, namely the three-step 
method and the modified three-step method, are computationally intensive. Also, this paper 
introduces two new DEA models, namely the common weight goal programming DEA 
and the common weight DEA, to assess the efficiencies with much fewer computations. 
Each model produces results that are different from one another. Therefore, the TOPSIS 
approach is applied to provide an overall result by integrating the results obtained from 
the four presented models. For this purpose, the implementation of four TOPSIS models 
is required. To illustrate the capability and validity of the developed models in efficiency 
calculation, a case of Iranian airlines is presented. The selected airlines are evaluated in 
different aspects, and final results are obtained by applying TOPSIS. The findings show 
that using TOPSIS to combine the results of several DEA models leads to a fully ranking 
of airlines in four aspects of technical, social, environmental, and sustainable efficiencies. 
Also, it is recommended to managers to probe pairwise comparison between different effi-
ciencies of airlines in order to find and improve the weak ones.
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1  Introduction

We live in a world where communication and the development of its civilizations require a 
transportation network. The transportation industry reflects the economic state and indus-
trial development. Hence, this industry should be considered as one of the crucial factors 
in any society’s economic, cultural, and social development. As a part of the transporta-
tion network, the airline industry plays a fundamental role in different countries’ relations, 
exchanging culture, displaying economic and military powers, and accelerating a coun-
try’s vital affairs. Many people choose air transportation every day for various purposes. 
The airline industry has a growing share of freight and passenger traffic compared to other 
transportation modes in terms of ease of access, high transportation speed, reasonable cost, 
and high reliability. The air transport system facilitates access to global markets and ser-
vices. Air transport has developed a global supply chain in which companies can export 
their products to anywhere in the world in a matter of hours rather than a few days. In 
2019, the International Air Transport Association (IATA) announced that airlines enabled 
the freedom to do business globally by transporting 64 million tonnes of cargo to markets 
worldwide.1 According to the IATA annual review 2019, this activity supported a third 
of global trade by value, generated 65 million jobs, and contributed $2.7 trillion in Gross 
Domestic Production (GDP). In addition, according to the IATA forecast, it is expected 
to increase these values to 105 million jobs and $6 trillion in 2034.2 Iran has a vital role 
in international transportation regarding its particular geographical and strategic location, 
connecting East Asia to West Asia. Therefore, employing scientific methods to evaluate 
Iranian airlines’ performance to improve their productivity is considered an important issue 
as the main subject of this research.

1.1 � Sustainable development

In recent years, sustainable development has attracted the attention of researchers in various 
fields of study. One topic addressed by researchers in this field is to analyze the relationship 
between a company’s financial performance and its social and environmental responsibili-
ties. Aktaş and Demirel (2021) stated that sustainable corporates seek environmental and 
social improvements besides corporates’ profitability. Sustainable development refers to 
the condition in which society can provide life satisfaction using existing resources without 
jeopardizing the sustainability of the natural ecosystem for future generations while balanc-
ing the economic, social, and environmental criteria. In particular, two primary elements 
that must be considered in sustainable development are environmental and social stand-
ards. Environmental sustainability focuses on reducing environmental pollution, and social 
sustainability emphasizes increasing human well-being (Long, 2021). Nowadays, due to 
population growth and declining natural resources, governments and various international 
agencies expect manufacturing and service organizations to update their procedures under 
the principles of sustainable development (Lee & Lam, 2012), which leads to economic 
growth and environmental preservation (Park et  al., 2018). Besides, adhering to sustain-
able development protocols can improve the organization’s reputation due to its attention 
to social responsibility. This study attempts to provide an integrated approach to investigate 

1  www.​iata.​org/​en/​publi​catio​ns/​annual-​review/
2  www.​iata.​org/​en/​press​room/​2014-​press-​relea​ses/​2014-​10-​16-​01/

http://www.iata.org/en/publications/annual-review/
http://www.iata.org/en/pressroom/2014-press-releases/2014-10-16-01/


5901Evaluating sustainable efficiency of decision‑making units…

1 3

the companies regarding social and environmental practices. As a major component of the 
aviation industry, airlines can affect environmental and social indicators. Each airline has 
its own aircraft. These aircraft can emit different amounts of pollutants according to vari-
ous criteria such as aircraft age and engine modifications.

On the other hand, each airline has, directly and indirectly, created several job opportu-
nities, which can be considered as a social factor. Thus, the importance of making airlines 
sustainable is essential in this regard. Although some scholars have strived to investigate 
sustainable development within airlines’ efficiency measurement, the implementation is 
still not adequate, and there are still gaps in the literature.

1.2 � Data envelopment analysis

In today’s competitive environment, organizations consider increasing efficiency as their 
primary goal. Efficiency demonstrates how the organization manages available resources 
to provide a product or service (Chen, 2005). Various efficiency measurement methods are 
used to evaluate the performance of a company or organization. Measurement of efficiency 
and effectiveness enables organizations to identify the causes of inefficiencies, enhancing 
efficiency, and ultimately increasing the organization’s productivity. Efficiency measure-
ment methods can also help policy-makers formulate and implement appropriate policies 
to improve efficiency and increase productivity in the transportation industry. Efficiency 
measurement methods can be categorized into two main groups: parametric models such as 
stochastic frontier analysis (SFA) approach and nonparametric models such as DEA. DEA 
is one of the most used nonparametric models for measuring efficiency which was intro-
duced by Charnes et al. (1978) and hence named CCR. They developed a model that was 
able to convert the fractional linear measure programming to a linear programming model 
to calculate efficiency scores by performing a series of linear programming optimizations 
separately for each decision-making unit (DMU).

DEA is a mathematical programming model capable of calculating efficiency for multi-
ple similar DMUs with various inputs and outputs without assigning former weight to the 
input and output variables. In this method, the efficiency frontier is calculated based on 
efficient DMUs previously defined for the DEA model to calculate other units’ efficiency 
(Shirazi & Mohammadi, 2019). More specifically, DEA defines a production function for 
each DMU, and then, it calculates the efficiency of that single DMU by comparing it with 
the efficiency of other DMUs. The DMUs are divided into two groups in the DEA method: 
efficient DMUs with a score of 1 (100%) and inefficient DMUs with a score of less than 1. 
This classification enables the standard DEA model to calculate each dataset’s efficiency 
without ranking all DMUs (Aldamak & Zolfaghari, 2017).

1.3 � DEA and modeling undesirable outputs

In the standard DEA approach, the DMU’s under evaluation efficiency can be improved by 
decreasing or increasing outputs. However, in real-world conditions, organizations encoun-
ter undesirable outputs that need to be reduced. Standard DEA models lack the power 
to reduce undesirable outputs. To solve this issue, we need to use some advanced DEA 
models.

Researchers have modeled undesirable outputs in the DEA process, and several 
approaches have been proposed based on various techniques categorized into four 
methods. In the first method, the undesirable outputs are ignored. Ignoring undesirable 
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outputs means that these outputs do not affect the evaluation process, which leads to 
inaccurate results (Yang & Pollitt, 2009). The second method offers to consider unde-
sirable outputs as normal inputs. The DEA approach seeks to decrease inputs and 
increase outputs.

Given that undesirable outputs should also be reduced, so it is considered as inputs. 
In the third method, the undesirable outputs are treated in their actual format same as 
desirable outputs. In this approach, the undesirable outputs are modeled through non-
linear modeling methods. This method assumes that undesirable outputs are weakly 
disposable, which means the value of undesirable outputs cannot be increased without 
influencing the values of other desirable outputs (Färe et al., 1989). The final method 
suggests that necessary transformations should be applied to undesirable outputs. For 
example, Koopmans (1951) indicates that undesirable outputs could be converted to 
desirable outputs by multiplying them to minus one.

1.4 � Gaps in the literature

The DEA’s main challenge is simultaneously considering inputs, desirable outputs, 
and undesirable outputs in the evaluation process. Various techniques have been pro-
posed to overcome this issue. Korhonen and Luptacik (2004) and Zhang et al. (2008) 
introduced three types of efficiency, including technical efficiency, environmental effi-
ciency, and eco-efficiency, that should be calculated for each DMU. It should be noted 
that technical efficiency refers to operational, resource, and technology efficiencies. 
They proposed TEf = DesirableOutputs∕Inputs to estimate the technical efficiency and 
EEf = DesirableOutputs∕UndesirableOutputs to estimate the environmental efficiency. 
They combined these two ratios, introduced a new efficiency called eco-efficiency, and 
then proposed various approaches to measuring it. Korhonen and Luptacik (2004) pro-
posed to treat undesirable outputs as inputs in this approach to calculate eco-efficiency. 
This approach is called “the three-step methodology,” which calculates technical, envi-
ronmental, and eco-efficiency scores. The three-step methodology analyzes the effi-
ciency of DMUs from three different aspects separately and offers a practical compre-
hension for the efficiency of DMUs. However, this method has its drawbacks. First, the 
three-step methodology runs three models to calculate technical, environmental, and 
eco-efficiency scores for each DMU; hence, it is computationally intensive. Second, 
according to Mahdiloo et al. (2015), in this method, it is not necessary to calculate the 
eco-efficiency score because the eco-efficiency value is equal to the maximum values 
obtained for environmental and technical efficiency. Mahdiloo et  al. (2015) modified 
the three-step methodology and proposed a single multiple objective linear program-
ming (MOLP) model. We call this model the “modified three-step model.” The devel-
oped model run once instead of running three separate models for each DMU to cal-
culate the eco-efficiency score by determining non-dominated weights for inputs and 
outputs of each DMU. However, we believe that the modified three-step methodology 
proposed by Mahdiloo et al. (2015) is still computationally intensive, and there is still 
room to enhance the model. Furthermore, these two models do not take into account 
the social aspect of sustainable development. Most of the previous studies consider 
only two aspects of sustainable development, namely technical and environmental. 
Thus, in this study, we incorporate the social aspect of sustainable development in the 
model.
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1.5 � Purpose and contributions

In this study, we have tried to contribute to the DEA application development by extend-
ing the three-step methodology and the modified three-step model and also by proposing 
two methods to simultaneously calculate airlines’ technical, social, and environmental 
scores by finding common weights for all inputs and outputs. Also, a new type of effi-
ciency called sustainable efficiency is introduced, which combines economic, social, and 
environmental efficiency to evaluate organizations’ efficiency in terms of sustainable devel-
opment criteria. The developed models are applied in a dataset obtained from (Iran Civil 
Aviation Organization). The first proposed model is called “common weight goal program-
ming DEA” which is developed by integrating and extending the three-step methodology 
(Korhonen & Luptacik, 2004) and the modified three-step method (Mahdiloo et al., 2015) 
into a MOLP model based on goal programming approach. Furthermore, another linear 
programming (LP) model called “common weight DEA” is also proposed. The two pro-
posed models determine common weights for all inputs and outputs rather than optimal 
weights in one run.

The current study introduces four types of efficiency (technical, social, environmental, 
and sustainable efficiency). All four efficiencies are calculated with four discussed models. 
Thus, four technical scores, four social scores, four environmental scores, and four sustain-
able scores are obtained for each DMU. To provide a comprehensive result, the obtained 
efficiency scores are integrated with the TOPSIS method. Figure 1 show a general process 
of the explained procedure. First, we feed the collected data to four different DEA models 
to calculate four types of efficiency scores. Then, each type of calculated efficiency score 
is fed to its own TOPSIS model. Therefore, four TOPSIS models are implemented to cal-
culate the integrated efficiency scores. The main contributions of this study are as follows:
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Fig. 1   The process of calculating the integrated efficiency scores by four different DEA models
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•	 Extending the two existing well-known DEA models (three-step DEA and modified 
three-step DEA) in the literature to evaluate more than two types of efficiency of airline 
performance.

•	 Implementing a goal programming approach to modify the two existing DEA models 
in a way to reduce the complexity of the calculations.

•	 Considering the social aspect of the airlines’ efficiency in the DEA model as well as 
considering undesirable outputs in the calculations.

The remainder of this paper is organized as follows: Sect. 2 reviews the related liter-
ate. In Sect. 3, four DEA models are described. It shows how four different DEA models 
calculate technical, social, environmental, and sustainable efficiency scores. The proposed 
common weight goal programming DEA model and common weight DEA model are also 
described in Sect. 2. A case study is presented in Sect. 4. Four different DEA models are 
applied to calculate efficiency scores in this section. The implementation of the TOPSIS 
method to calculate integrated efficiency scores is also described in Sect. 4. Section 5 dem-
onstrates the achieved results. In Sect. 6, we present a summarized conclusion of the cur-
rent study.

2 � Literature review

A review of previous studies confirms that the employment of the DEA method as a pow-
erful and reliable tool to evaluate the efficiency of companies has expanded rapidly since 
its introduction by Charnes et al. (1978). Cui and Li (2017) reported that several studies 
have attempted to calculate the efficiency of airlines using the DEA method. Kiani Mavi 
et al. (2010) introduced a new method for forecasting in DEA by integrating the group ana-
lytic hierarchy process (GAHP) into DEA. The developed model was superior to conven-
tional methods due to having the advantages of both approaches. Alinezhad et al. (2011) 
combined the multiple criteria decision-making (MCDM) approaches with the DEA model 
to introduce a novel approach for the selection of the best advanced manufacturing technol-
ogy candidates based on a number of attributes. Zhu (2011) measured the efficiency of 21 
airlines using a centralized two-stage network DEA model. Chang et al. (2014) studied the 
economic and environmental efficiency of 27 airlines by applying the slack-based meas-
ure DEA (SBM-DEA) model. They categorized inefficient airlines into two major groups: 
the airlines with fuel inefficiency and the airlines with less diversified revenue structure. 
Amini et  al. (2016) proposed a DEA model to evaluate the efficiency of a green supply 
chain with undesirable outputs. Cui and Li (2016) introduced a new two-stage operating 
framework, including operations and carbon abatement stages. Then, they developed a net-
work SBM model with weak disposability to assess the efficiency of 22 international air-
lines. Barak and Dahooei (2018) have proposed a novel integrated hybrid fuzzy DEA and 
fuzzy Multiple Attribute Decision-Making (MADM) model to assess the safety efficiency 
of airlines. They employed the DEA model only to determine the criteria weights. Then, 
six MADM approaches are utilized to rank the alternatives. Sakthidharan and Sivaraman 
(2018) applied an input-oriented DEA model to examine how efficiently each airline used 
its operating cost relative to other airlines in India between 2013 and 2014. Yu et al. (2019) 
have measured the airline efficiency in China and India using a dynamic network DEA 
approach during the period between 2008 and 2015. Wang et al. (2019) have presented a 
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hybrid model which includes a DEA window model and grey theory approach to estimate 
the present and future efficiency of 16 major Asian airlines. Kuljanin et al. (2019) imple-
mented a fuzzy theory-based DEA model to determine the efficiency of airlines located in 
Central and South-East Europe. Rapposelli and Za (2020) have proposed a hybrid approach 
based on principal component analysis (PCA) and DEA model to estimate the technical 
efficiency and service quality of airlines. Hadi‐Vencheh et al. (2020) have adopted a modi-
fied SBM-DEA approach to calculate the efficiency of 13 major Chinese airlines from 2008 
to 2015 based on CO2 emissions as the environmental factor. Wang et al. (2020) developed 
a DEA model based on the global SBM (GSBM) model and the global Malmquist–Luen-
berger productivity index (GML) to study the static and dynamic efficiencies of carbon 
emissions of 13 Chinese airlines from 2009 to 2013. In their study, Xu et al. (2021) have 
developed a directional distance function DEA model to determine the environmental effi-
ciency of the US airline industry. They suggested flight delay and greenhouse gas (GHG) 
emissions as joint undesirable outputs. Pereira and Soares de Mello (2021) have estab-
lished a multicriteria DEA (MDEA) model to assess the Brazilian main airlines’ operation 
efficiency during the COVID-19 outbreak. They adopted MDEA to evade the limitations 
of the classical DEA approach. Yu et al. (2021) have presented a novel hierarchical data 
envelopment analysis (H-DEA) model to determine the capital index of global airlines. 
Their case study included the airlines ranked in the World’s Top 100 Airlines in 2018. 
In their study, Chen et al. (2021) developed a two-stage undesirable SBM network DEA 
model to investigate the operational and environmental efficiency of nine Chinese airlines 
from 2013 to 2018. They combined the undesirable SBM approach to include the CO2 
emissions into the calculation. Zhang et al. (2021) declared that most existing researches 
only consider operational dimensions in the performance and efficiency evaluation while 
disregarding stock market indicators in their methodological approaches. Hence, they pro-
posed and utilized a two-stage network DEA to consider operational and stock market indi-
cators in evaluating nine major international airline companies from 2006 until 2016. Kim 
and Son (2021) implemented a DEA approach to investigate the environmental efficiency 
for airlines belonging to each continent. They considered fuel consumption, operating cost, 
the number of employees, and the number of fleets as the input and total revenue, revenue 
passenger kilometers, revenue ton kilometers, passenger load factor, cargo load factor, and 
CO2 reduction as the output.

Various DEA models have been proposed in the literature to evaluate the performance of 
airlines in Iran. Tavassoli et al. (2014) introduced a SBM-DEA model to assess the techni-
cal efficiency and service effectiveness of airlines in Iran for the first time. The developed 
model was able to convert both non-storable features of transportation service and production 
technologies into a unified framework. Omrani and Soltanzadeh (2016) proposed a dynamic 
network DEA structure to assess the performance of eight interconnected airlines in Iran. The 
proposed model was able to identify and improve airlines’ inefficient processes by analyzing 
their internal structure. Frontier-type models such as DNDEA models cannot handle uncer-
tain data. Thus, by integrating the DNDEA and fuzzy logic, Soltanzadeh and Omrani (2018) 
proposed a new model that could deal with fluctuations in data. In this method, the efficiency 
scores are represented by membership functions rather than definite values, which provide 
more information about DMUs. Shirazi and Mohammadi (2019) introduced a novel robust 
DEA model based on the SBM approach to evaluate the efficiency of 14 airlines in Iran. They 
included undesirable outputs and inaccurate data in the proposed model to simulate the real-
world situation. Heydari et al. (2020) presented a fully fuzzy network DEA-RAM model to 
measure Iran airlines’ efficiency scores. First, they designed a network structure for airlines, 
and then, they proposed a DEA-RAM model to measure airlines’ performance. They applied 
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a fully fuzzy method to the developed model to control the uncertain data. Tavassoli et  al. 
(2020) developed a stochastic super-efficiency DEA model to estimate the efficiency score of 
Iranian airlines with both stochastic and zero inputs and outputs.

A number of recent studies have addressed performance assessment in terms of one or 
more aspects of sustainability. Gatimbu et  al. (2020) examined small-scale tea processors’ 
environmental efficiency in Kenya using the DEA approach. They considered process waste, 
level of greenhouse gas (GHG) emissions, and wastewater as the environmental outputs. Pais-
Magalhães et al. (2021) measured the waste sector’s eco-efficiency in European countries by 
employing the DEA method. The introduced eco-efficiency indicator was combined with 
energy and environmental efficiency. An SFA approach was developed by Bibi et al. (2020) 
to measure the technical and environmental efficiency of the agricultural sector in South Asia. 
You et al. (2021) introduced an eco-policy efficiency score using the DEA method to evalu-
ate the economic efficiency and social efficiency of Kuwait. They selected primary students’ 
enrollment as the output corresponding with social efficiency and per capita gross domestic 
product (GDP) as the output related to economic efficiency. The results were used to change 
Kuwait’s policy from sustaining economic growth to sustainable development.

3 � Methodology

Here, we discuss four methods to evaluate four types of efficiency scores. First, the three-step 
model developed by Korhonen and Luptacik (2004) is presented. Then, the modified three-
step model introduced by Mahdiloo et al. (2015) is described. Finally, we introduce our two 
proposed models. The overall structure of the presented methodology is illustrated in Fig. 1. 
The notations are listed in Table 1.

3.1 � Three‑step model

Here, we extend the three-step model to calculate four types of efficiencies. Suppose that the 
three-step methodology is applied to a system with n DMUs, s desirable technical outputs, t 
desirable social outputs, and p undesirable outputs. In this method, the desirable outputs are 
divided by inputs to calculate the efficiency scores. Here, we have two types of desirable out-
puts, including social outputs and technical outputs. Models (1) and (2) calculate the technical 
and social efficiency, respectively.
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The above models generate a value between 0 and 1 for the objective function. Value 1 
is the highest efficiency that can be obtained for each DMU. Models (1) and (2) are in non-
linear form, which can be converted into a linear programming model as follows (Charnes 
et al., 1978):
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The simplex method can be applied to solve Models (3) and (4). Models (3) and 
(4) seek to find the optimal weights of inputs, desirable technical outputs, and desir-
able social outputs to optimize the technical and social efficiency scores, respectively. 
In Model (4), the maximum possible value of the objective function is equal to 1, 
since 

∑t

q=1
wqy

g
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≤
∑m

i=1
vixij and 
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i=1
vixio = 1 . To calculate the technical and social 

efficiency of n DMUs, Models (3) and (4) should be solved separately for each DMU. 
Hence, there are n × 2 models that should be solved.

Furthermore, to calculate the environmental efficiency, the desirable outputs are 
divided by undesirable outputs. The achieved values indicate how efficiently the DMUs 
add worth in return for their environmental implications. Model (5) calculates the envi-
ronmental efficiency based on technical and social outputs.

The above model generates a value between 0 and 1 for the objective function. Value 
1 is the highest efficiency that can be obtained for each DMU. Model (5) is in nonlinear 
form, which can be converted into a linear programming model:
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considered simultaneously. Models (3), (4), (6), (7) are employed to calculate technical, 
social, environmental, and sustainable efficiency scores, respectively.

3.2 � Modified three‑step model

Another model was developed by Mahdiloo et  al. (2015), which is less computationally 
intensive compared to conventional three-step methodology. The proposed model is based 
on a goal programming approach. In this method, deviation variables are defined for each 
DMU. The number of deviation variables for each DMU is equal to the number of objec-
tive functions. Thus, three deviation variables corresponding to technical, social, and envi-
ronmental objective functions are defined. Assume 
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Model (8) calculates the optimal values for weights to maximize technical, social, envi-
ronmental, and sustainable efficiency scores for each DMU. The following equations calcu-
late efficiency scores of DMUo:

3.3 � Proposed models

Here, we develop two new models that can assess technical, social, environmental, and sus-
tainable efficiency scores of all DMUs with only one run by finding the common weights 
for inputs and outputs. The developed models are based on a goal programming approach. 

(8)

Min do
tec

+ do
soc

+ do
env

s. t.

s∑
r=1

ury
g
ro
+

t∑
q=1

wqy
g
qo

= 1

s∑
r=1

ury
g

rj
−

m∑
i=1

vixij + do
tec

= 0 j = 1, ..., n

t∑
q=1

wqy
g

qj
−

m∑
i=1

vixij + do
soc

= 0 j = 1, ..., n

s∑
r=1

ury
g

rj
+

t∑
q=1

wqy
g

qj
−

p∑
k=1

�ky
b
kj
+ do

env
= 0 j = 1, ..., n

ur ≥ 0 r = 1, ..., s

vi ≥ 0 i = 1, ...,m

wq ≥ 0 q = 1, ..., t

�k ≥ 0 k = 1, ..., p

d
j

tec, d
j
soc
, dj

env
≥ 0 j = 1, ..., n

(9)Technical efficiency (E1o) =

∑s

r=1
u∗
r
y
g
ro∑m

i=1
v∗
i
xio

(10)Social efficiency (E2o) =

∑t

q=1
w∗
q
y
g
qo∑m

i=1
v∗
i
xio

(11)Environmental efficiency (E3o) =

∑s

r=1
u∗
r
y
g
ro +

∑t

q=1
w∗
q
y
g
qo∑p

k=1
m∗

k
yb
ko

(12)Sustainable efficiency (E4o) =

∑s

r=1
u∗
r
y
g
ro +

∑t

q=1
w∗
q
y
g
qo∑m

i=1
v∗
i
xio +

∑p

k=1
m∗

k
yb
ko
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Therefore, we first discuss the goal programming approach, and then, we will present our 
proposed models.

3.3.1 � Goal programming

Charnes et  al. (1955) introduced the goal programming for the first time, and then, Ijiri 
(1965) extended it in more detail. Goal programming is one of the fundamental models in 
which the decision-maker seeks to achieve several goals simultaneously. Goal program-
ming consists of three main components: goal, aspiration level, and deviation variables. 
The goal is a general expression that reflects the demands of the decision-maker in the 
form of mathematical relations. For instance, in the present study, the goal is to maximize 
efficiency scores. The aspiration level is a specific numerical value with an acceptable or 
desirable level of success for the given goal. Achieving the aspiration level of the goal is 
constrained by a set of factors such as facilities and resources. In many cases, the aspira-
tion level of the objective function cannot be achieved in practice, and there is always a 
difference between the value of the goal and the achievable aspiration level. This difference 
is measured by a variable called the deviation variable. The general form of the goal pro-
gramming is as follows:

where m is the number of goals, d+
j
, d−

j
 are the deviation variables, and fj(x) is the objec-

tive functions of the problem. The D can be assigned with various combinations of d+
j
 and 

d−
j
 according to the needs of the decision-maker. D is set to D = d−

j
 to achieve a minimum 

level of goal. To be sure that the objective function does not exceed the specific level, we 
set the D to d+

j
 . If we want the objective function to be as close to a certain level of aspira-

tion, then D = d+
j
+ d−

j
 . To maximize the obtained value relative to a certain level of the 

aspiration, we assign d−
j
− d+

j
 to the D. Finally, D = d+

j
− d−

j
 means that the obtained value 

relative to a certain level of the aspiration should be minimized.

3.3.2 � Common weight goal programming DEA model

In the proposed model, three objective functions need to be optimized under their 
constraints for DMUo. These objective functions are Teff =

∑s

r=1
u
r
y
g
ro∕

∑m

i=1
v
i
xio , 

Seff =
∑t

q=1
w
q
y
g
qo∕

∑m

i=1
v
i
xio , and Eff =

∑s

r=1
ury

g
ro +

∑t

q=1
wqy

g
qo∕

∑p

k=1
mky

b
ko

 , where 
Teff is technical efficiency, Seff is social efficiency, and Eff is environmental efficiency. 
Given that each objective function’s maximum optimal value is known in advance and 
equal to one, the linear goal programming method can be applied simultaneously to opti-
mize these objective functions. In fact, goal programming attempts to achieve a common 
optimal solution for all objective functions by minimizing the sum of all objective func-
tions’ deviation values from their ideal value. Therefore, a deviation variable is defined 
for each of the objective functions. djtec , d

j
soc , and djenv are a deviation of the DMUj from the 

aspiration level of technical, social, and environmental efficiency, respectively.
Here, a mathematical linear programming model is developed that calculates the com-

mon weight for inputs, desirable, and undesirable outputs while minimizing all deviation 

(13)

Min D = {d+
j
, d−

j
}

s.t ∶

fj(x) + d−
j
− d+

j
= bj (j = 1, ...m)

x, d+
j
, d−

j
≥ 0
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variables simultaneously. The summations of weights are normalized to one. The djtec and 
d
j
soc are minimized through minimizing 

∑m

i=1
v
i
xij . The djenv is minimized through minimiz-

ing 
∑p

k=1
�
k
yb
kj
.

The constraints (1) to (3) of the model (14) are related to technical, social, and environ-
mental efficiencies. Also, in the constraints (4) to (7), the weights are normalized. In Model 
(14), � is a very small positive constant that prevents the weights of variables be equal to 
zero. Model (14) is a DEA model that is developed based on the MOLP approach. Model 
(14) runs only once for all DMUs to find non-dominated common weights for inputs and 
outputs. Then, the efficiency scores are calculated for each DMU by Eqs. (9) to (12).

It should be noted that the efficiency scores calculated by Model (14) can be higher 
than 1. For instance, consider the technical objective function for DMUo, which is 
equal to E1o =

∑s

r=1
ury

g
ro∕

∑m

i=1
vixio . The ideal value for efficiency score is 1, so ∑s

r=1
u
r
y
g
ro =

∑m

i=1
v
i
xio→ 

∑s

r=1
u
r
y
g
ro −

∑m

i=1
v
i
xio = 0 . In goal programming, a deviation 

variable from the ideal value is defined for each objective function. Hence, the technical 

(14)Min d
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−
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−
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objective function can be rewritten as 
∑s

r=1
u
r
y
g
ro −

∑m

i=1
v
i
xio + d1

−

tec
− d1

+

tec
= 0 . The two sides 

of the equation are divided by 
∑m

i=1
v
i
xio . Thus, E1o = 1 − [(d1

−

tec
− d1

+

tec
)∕

∑m

i=1
v
i
xio] , since 

E1o =
∑s

r=1
u
r
y
g
ro∕

∑m

i=1
v
i
xio , and 

∑m

i=1
v
i
xio∕

∑m

i=1
v
i
xio = 1 . According to the Model (14), 

either d1−
tec

 takes a positive value and d1+
tec

 equals zero or d1+
tec

 takes a positive value and d1−
tec

  
equals zero. Thus, if d1+

tec
 takes a positive value, E1o becomes more than one. The same infer-

ence also applies to E2o,E3o , and E4o . Model (14) is not able to provide optimal weights and 
instead will produce non-dominated common weights. For more details, readers are referred 
to Li and Reeves (1999).

3.3.3 � Common weight DEA model

We also propose another common weight DEA model to calculate technical, social, environ-
mental, and sustainable efficiency scores of all DMUs with only one run. The present study 
attempts to calculate sustainable efficiency by combining three types of efficiency: technical, 
social, and environmental efficiencies. The technical efficiency of DMUj is equal to ∑s

r=1
ury

g

rj
∕
∑m

i=1
vixij . The maximum value the technical efficiency can reach is one so in 

ideal condition 
∑s

r=1
ury

g

rj
∕
∑m

i=1
vixij = 1 . By multiplying the two sides of the equation 

by
m∑
i=1

vixij , we have 
∑s

r=1
ury

g

rj
−
∑m

i=1
vixij = 0 . The same inference applies to social and envi-

ronmental efficiencies. Therefore, in the proposed common weight DEA model, the goal is to 
maximize the total summation of 

∑s

r=1
ury

g

rj
−
∑m

i=1
vixij , 

∑t

q=1
wqy

g

qj
−
∑m

i=1
vixij , and ∑s

r=1
ury

g

rj
+
∑t

q=1
wqy

g

qj
−
∑p

k=1
�ky

b
kj
 . We also showed that the efficiency value is always 

between zero and one. Thus, 
∑s

r=1
ury

g

rj
−
∑m

i=1
vixij ≤ 0 , since 

∑s

r=1
ury

g

rj
∕
∑m

i=1
vixij ≤ 1 . 

The exact inference applies to social and environmental efficiencies. By these definitions, 
Model (15) is developed.

(15)
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t∑
q=1

wqy
g

qj
−

p∑
k=1

�ky
b
kj
)]

s. t.

s∑
r=1

ury
g

rj
−

m∑
i=1

vixij ≤ 0 j = 1, ..., n

t∑
q=1

wqy
g

qj
−

m∑
i=1

vixij ≤ 0 j = 1, ..., n

s∑
r=1

ury
g

rj
+

t∑
q=1

wqy
g

qj
−

p∑
k=1

�ky
b
kj
≤ 0 j = 1, ..., n

ur ≥ � r = 1, ..., s
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The objective function of Model (15) maximizes the summation of technical, social 
and environmental efficiency, simultaneously for all DMUs. The first three constraints 
indicate that these efficiencies cannot be more than one.

3.3.4 � TOPSIS

Here, to obtain final efficiency scores for DMUs, the TOPSIS method is applied. TOP-
SIS method is one of the most well-known Multi-Attribute Decision-Making (MADM) 
techniques introduced by Hwang and Yoon (1981). TOPSIS is a method used to select 
the best alternative based on a number of criteria. In this method, m alternatives are ana-
lyzed by n criteria. The underlying logic of this method defines the positive ideal point 
and the negative ideal point. The best alternative is the one that has the shortest distance 
from the positive ideal point and the farthest distance from the negative ideal point. The 
mathematical procedure for TOPSIS is as follows:

1.	 The first step is to form a decision matrix. The decision matrix evaluates i alternatives 
based on j criteria. In other words, each alternative is scored based on a number of 
criteria in the decision matrix.

2.	 The second step is to normalize the DM matrix to eliminate the scale of the data. 
nij = aij∕

�∑m

i=1
a2
ij
 is used to normalize the data. The normalized DM matrix is shown 

as:

3.	 In the third step, the Shannon entropy approach is applied to calculate each criterion’s 
weights. Then, the estimated weights are multiplied by the normalized matrix. The 
normalized weighted matrix is shown as:

4.	 In this step, each alternative’s relative proximity to the positive and negative ideal point 
is calculated by the following formulas. Assuming that all criteria are good, v+

j
  is equal 

to the maximum value of vj , and the v−
j
 is equal to the minimum value of vj.

(16)DM =

⎛⎜⎜⎝

a11 … a1j
⋮ ⋱ ⋮

ai1 ⋯ aij

⎞⎟⎟⎠

(17)N =

⎛⎜⎜⎝

n11 … n1j
⋮ ⋱ ⋮

ni1 ⋯ nij

⎞⎟⎟⎠

(18)V =

⎛
⎜⎜⎝

v11 … v1j
⋮ ⋱ ⋮

vi1 ⋯ vij

⎞⎟⎟⎠

(19)dis+ =

√√√√ n∑
j=1

(vij − v+
j
)2
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5.	 The fifth step is to calculate the ideal solution. In this step, the relative proximity of each 
alternative to the ideal point is calculated. To do this, we use the following formula:

6.	 In the final step, the alternatives are ranked based on the calculated CL values.

The same decision matrix created in the TOPSIS method is used to calculate weights by 
the entropy method. The first step is to normalize the DM matrix to eliminate the scale of 

the data. nij = aij∕

�
m∑
i=1

a2
ij
 is used to normalize the data. Each element of the normalized 

matrix is shown with pij . The next step is to calculate the entropy of each criterion with 
Ej = −k

∑m

i=1
pij × Ln(pij) where k = 1∕Ln(i) . Next, the value of deviation degree is calcu-

lated by dj = 1 − Ej . The deviation degree of each criterion indicates how much useful 
information it provides for the decision-maker. The final step is to determine the weight for 
each criterion wj = dj∕

∑n

j=1
dj.

4 � An application of Iranian Airlines

Iran Civil Aviation Organization, known as CAO, was established in 1946. This organi-
zation is responsible for planning, setting policies, formulating rules and regulations, and 
concluding international contracts in the Iran aviation industry. Iran Civil Aviation Organi-
zation joined International Civil Aviation Organization (ICAO) in 1949. By providing avi-
ation security, the organization will help increase public satisfaction with the country’s avi-
ation and ultimately contribute to developing a sustainable economy. “Iran Airway” is one 
of the oldest airlines in Iran, which has been known as one of the leading and most active 
domestic airlines since 1946. “Persian Airway” is another Iranian private airline that was 
established in 1954. The mission of this airline was to transport cargo from Iran to Euro-
pean countries. Due to various reasons, including Iran’s particular geographical position, 
increasing people’s desire to use airplanes as a means of public transportation, and expand-
ing relations with other countries caused the government to establish a national airline. 
Therefore, in 1962, an international airline called “Iran Air” was established by merging 
“Iran Airway” and “Persian Airway.” Following the advancement of technology and socie-
ties’ development, the need for airlines has increased, and today 16 airlines are operating in 
Iran, responsible for passenger and cargo transportation. “Iran Air tour” is an Iranian pri-
vate airline that was launched in 1972. The main hub of this company is Tehran Mehrabad 
Airport and Mashhad International Airport. Iran Air tour is one of the companies with a 
license for aviation training in Iran from the National Aviation Organization. Iran Air tour 
is a member of the International Air Transport Association (IATA) and holds the IATA 
Operational Safety Audit (IOSA). Iran Air tour Airlines consists of more than 1300 spe-
cialized and skilled personnel. “Aseman Airlines” was established in 1980 by integrating 
four airlines: Air Taxi, Pars Air, Air Service, and Hoor Aseman. Aseman Airlines currently 
has one of the broadest flight networks to domestic cities, emphasizing flying to deprived 

(20)dis− =

√√√√ n∑
j=1

(vij − v−
j
)2

(21)CLi =
dis−

dis− + dis+
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areas of the country. Aseman Airlines has established three flight centers in Tehran, Shiraz, 
and Mashhad, respectively, to cover its flight network better. Each of the three centers has 
its own flight crew and independent maintenance hangars, so that daily flights can be suf-
ficiently independent while attracting and training local specialists. Aseman Airlines, like 
other airlines in the world, pays special attention to the safety of its flights before any other 
indicator. Therefore, by creating a safety management system called S.M.S, it applies and 
monitors the latest global safety approaches in its organization to provide a safe and com-
fortable flight. “Saha Airlines” was established in 1990 following the standards of the CAO 
and started serving customers. Saha is one of the oldest airlines with the most extended 
history in the domestic aviation industry. One of the most significant advantages of this 
airline is the use of the latest technologies in the world in the aviation industry along with 
young and motivated personnel to satisfy customers. Simultaneous development and align-
ment of the country’s aviation fleet and the growth of technical, operational, and safety 
capabilities have been essential features of this airline in its goals. Ongoing staff training 
and the development of Saha Aviation’s vast infrastructure are among the steps taken by 
the relevant authorities to advance the airline’s goals. “Kish Airlines” was established in 
1991 to develop the activities of Kish Island by building connections with the centers of 
the provinces of Iran and the countries near the Persian Gulf. The company is currently 
one of the IATA members companies and the first domestic IOSA-certified company with 
all the essential features and international standards. “Mahan Air” is another Iranian air-
line that was established in 1991. A year after, “Katun Airlines” was launched with only 
five airplanes. The two main objectives of these two airlines are: (1) safe, efficient, and 
efficient transportation of passengers, cargo, and mail; (2) providing superior quality ser-
vices by a professional and trained team of pilots, flight attendants, and ground crew in 
line with international standards. Caspian Airlines was established in 1993 as one of the 
private airlines in the aviation industry and has started its activity with 4 Yak-42 aircraft. 
“Qeshm Airlines” started its flight and cargo activities in 1993 by renting one airplane. 
Since 1995, by concluding a lease agreement with the owners of wide-body aircraft, it has 
operated its flights on Tehran–Qeshm, Tehran–Dubai, and other cities in Iran. “Zagros,” 
“Taban,” “Ata,” “Meraj,” “Puya,” “Sepehran,” and “Varesh” airlines are relatively new air-
lines established during 2005 and 2017. From now on, we indicate each airline by a num-
ber: Mahan (1), Aseman (2), Caspian (3), Iran air tour (4), Zagros (5), Ata (6), Iran Air (7), 
Kish (8), Qeshm (9), Taban (10), Karun (11), Sepehran (12), Varesh (13), Meraj (14), Saha 
(15), and Puya (16).

The current paper selects three inputs and four outputs to calculate Iranian airlines’ 
efficiency, based on previous studies conducted by Heydari et al. (2020) and Cui and Li 
(2019). Fleet size 

(
v1
)
 , available seat-kilometer 

(
v2
)
 , and available ton-kilometer 

(
v3
)
 are 

considered as inputs. The number of employees (w) is considered as social output. Passen-
ger-kilometer performed 

(
u1
)
 and ton-kilometer performed 

(
u2
)
 are considered as technical 

outputs. The amount of emitted CO2 (�) is considered an undesirable output which is the 
main undesirable output of the transport sector (Chen et al., 2020). Fleet size is equal to the 
number of active airplanes operating in each airline. Ton-kilometer is the fare for transport-
ing one ton of cargo per kilometer. Seat-kilometer is the fare for transporting one passen-
ger per kilometer. The number of employees is equal to the number of people working in 
the airline. It should be noted that the required data is available only for 2019, which has 
been obtained from the Iran CAO website (https://​www.​cao.​ir/). The dataset is displayed in 
Table 2.

The values of inputs and outputs have diverse measurement units that can adversely 
affect the analysis results. Therefore, the data must be normalized. To normalize the data, 

https://www.cao.ir/
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we divide the values of inputs and outputs of each DMUo by the summation of the values 
of the DMUj. Using the normalized data to calculate the efficiency scores produces the 
same results as non-normalized data (Wang et al., 2009).

5 � Modeling and results

First, we calculate the efficiency values using the three-step method. To do this, we run 
Models (3), (4), (6), and (7) separately for each DMU. A total of 4 × n = 64 linear program-
ming models are implemented to calculate all technical, social, environmental, and sustain-
able efficiency scores. To prevent giving zero values to weights, we assume that all weights 
are greater than or equal to a very small value called epsilon ( � = 10−6). The efficiency 
scores equal to 1 are bolded in all Tables.

The ranking of all 16 airlines and their technical, social, environmental, and sustainable 
efficiency scores are presented in Table 3. For example, the technical, social, and environ-
mental efficiency scores of DMU1 are 0.87, 0.56, and 0.49, respectively, while the sustain-
able efficiency score is equal to 0.92. Airlines 2, 3, 4, 14, and 15 are technically efficient, 
and airlines 2, 7, and 14 are socially efficient. Airlines 9, 11, 13, and 16 obtained the full 
environmental efficiency score of 1. According to Table 3, all airlines are sustainable effi-
cient except airlines 1, 5, 6, 8, and 12. The sustainable efficiency score is calculated by inte-
grating technical, social, and environmental efficiency. Airlines are ranked based on their 
sustainable efficiency scores. The three-step methodology identified 11 airlines sustainably 
efficient, which is more than half of the DMUs. Furthermore, airline 10 is recognized as 
a sustainable, efficient DMU, although it is not technically, socially, and environmentally 
efficient. Thus, the sustainable efficiency scores obtained from the three-step methodology 
are not accurate and need to be modified.

The following discussion also shows how the three-step method produces inaccurate 
results by determining unreliable weights for inputs and output. The achieved values for 
the weights of the inputs and outputs determined by Model (7) are shown in Table 4. It 
can be seen that Model (7) gives values almost equal to zero ( 10−6 ) to some of the weights 
leading to disregarding the efficiency score corresponding to these weights. Table 5 shows 
the efficiency type ignored by Model (7) for each DMU. It should be noted that the mini-
mum possible value obtained for weights is equal to 10−6 imposed by constraints vi ≥ 10−6 , 
ur ≥ 10−6 , wq ≥ 10−6 , and �k ≥ 10−6 to the model. Without these constraints, the value 
10−6 obtained for the weights will be replaced by zero. As a result, the factors correspond-
ing to these weights are eliminated and completely ignored in the efficiency calculations 
process. Thus, the three-step approach provides inaccurate results by determining unreli-
able weights for inputs and output.

Mahdiloo et al. (2015) improved the three-step methodology due to its calculation com-
plexity and inaccurate weighting system. The modified three-step methodology is a MOLP 
DEA model that runs only once for each DMU to determine the non-dominated weights for 
inputs and outputs. The non-dominated weights are used in Eqs. (9) to (12) to assess the 
technical, social, environmental, and sustainable efficiency scores. The achieved results for 
efficiency scores are shown in Table 6. In the developed goal programming DEA model by 
Mahdiloo et al. (2015), the maximum sustainable efficiency score calculated for each DMU 
can be equal to 0.5. Therefore, the results presented in Table 7 are normalized so that the 
values calculated for sustainable efficiency scores are between 0 and 1.
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It can be seen that the technical, social, environmental, and sustainable efficiency scores 
of each airline obtained from the modified three-step methodology are less than or equal 
to their scores calculated by the three-step methodology, because the modified three-step 
methodology finds the non-dominated weights for inputs and outputs instead of optimal 
weights for each DMU. According to Table 6, airlines 2, 3, 4, and 14 are technically effi-
cient, airlines 2, 7, and 14 are socially efficient, and airlines 9, 11, and 16 are environmen-
tally efficient. Although airline 16 is only socially efficient, Model (8) recognized it as a 
sustainable, efficient DMU. Airlines 2 and 14 are technically and socially efficient, while 
their sustainable efficiency scores are less than 1. Also, airline 14, with its technical and 
social efficiency of 1 and having the highest average of technical, social, and environmen-
tal efficiency, is ranked 5th. Airline 2 has the second-highest average of efficiency and is 
technically and socially efficient while ranked 6th. It can be concluded that the extended, 
modified three-step model cannot generate accurate results when calculating four types of 
efficiency scores.

As previously mentioned, implementing the three-step and the modified three-step 
methodology faces two significant difficulties. For the case of the Iranian airlines, which 
has 16 DMUs, running 64 and 16 models is required for the three-step and the modified 
three-step methodology, respectively. Apart from being computationally intensive, these 
two models cannot produce accurate, sustainable efficiency scores. Therefore, a new com-
mon weight goal programming DEA and common weight DEA models are developed to 
find technical, social, environmental, and sustainable efficiency scores. Our developed 
model finds the common non-dominated rather than optimal weights for all inputs and 
outputs in one run. The achieved results for common weight goal programming DEA and 
common weight DEA models are shown in Tables 7 and 8, respectively.

As discussed before, in Model (14), the efficiency scores can reach values higher than 
1. Hence, the results shown in Table 7 are normalized scores to bring the calculated effi-
ciency scores to the range between zero and one. The rankings determined by Model (14) 
are more acceptable than rankings determined by the three-step and the modified three-
step methodology. Airline 3 is technically efficient, airline 7 is socially efficient, and airline 
11 is environmentally efficient. Also, airline 14 is sustainably efficient and ranked as the 
top DMU. In these methods, the sustainably efficient airline is not necessarily technically, 
socially, and environmentally efficient.

In this paper, four different methods have been applied to calculate four types of effi-
ciency scores, including technical, social, environmental, and sustainable efficiency scores 
for 16 airlines. Therefore, airlines are ranked with four different results. The TOPSIS 
method is used to provide an overall ranking by integrating the results obtained from the 
four described methods. For this purpose, the implementation of four TOPSIS models is 
required. Each TOPSIS model integrates one type of efficiency score. The entropy weight 
method is used to determine the weights. The results are shown in Tables 9 and 10. It can 
be seen that the first rank of each efficiency is assigned to a different airline. Airlines 3, 7, 
11, and 13 rank first in technical, social, environmental, and sustainable efficiency. In the 
proposed TOPSIS approach, the airlines are ranked based on four aspects: technical, social, 
environmental, and sustainable development. The diverse rankings help managers to inves-
tigate DMUs based on different criteria. For example, if the country’s macro-strategy is to 
pursue environmental sustainability, airline 11 can be a good role model for other airlines.

According to the obtained results, the key findings of the present study can be expressed 
as follows:

•	 The three-step DEA model needs complex calculations to evaluate efficiency scores.
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•	 The three-step DEA model is not able to produce accurate results due to the errors in 
determining weights.

•	 The modified three-step DEA model cannot generate accurate results when calculating 
four types of efficiency scores.

•	 The common weight goal programming DEA and common weight DEA models pre-
sented in this paper are able to provide more accurate results when calculating four 
types of efficiency scores by determining the common non-dominated rather than opti-
mal weights for all inputs and outputs in one run.

5.1 � Managerial implication

Here, we present a pairwise comparison between achieved efficiency scores for better anal-
ysis. However, providing this type of analysis for all the approaches is too detailed to be 
pursued here; thus, the pairwise comparison analysis is only presented for the integrated 
efficiency scores obtained from TOPSIS. We assume that efficiencies above 0.5 are sat-
isfactory and DMUs with efficiencies below this value need to be enhanced. It should be 
noted that choosing the minimum acceptable value depends on management decisions, and 
in this study, we chose the value of 0.5 at will. Airlines having satisfactory efficiency scores 
in both examined aspects are considered the “star” DMUs (Boussofiane et al., 1991). The 
airlines determined as the star DMUs are benchmarks for other DMUs. Inefficient DMUs 
can emulate the star airlines to reach an ideal efficiency. Airlines with an efficiency score 
lower than 0.5 in both examined aspects are known as weak DMUs. Weak DMUs need 
special attention to determine the cause of their inefficiency and to enhance their efficiency.

The calculated sustainable efficiency and technical efficiency scores are illustrated 
in Fig. 2. Six DMUs are specified as star DMU, which means they are both technically 
and sustainably efficient. DMU3, DMU6, DMU9, and DMU10 are socially inefficient, yet 
they are considered as sustainable, efficient DMUs. The reason behind this is illustrated 
in Fig. 6. As we can see in Fig. 6, DMU3, DMU6, DMU9, and DMU10 are characterized 
as star DMUs in terms of technically and environmentally. Hence, the social aspect of 
sustainability has been dominated, and these DMUs are specified as star DMUs. Sus-
tainable efficiency scores versus social efficiency scores are presented in Fig. 3. Airline 

Fig. 2   Sustainable efficiency versus technical efficiency
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3 obtained the highest social efficiency and sustainable efficiency simultaneously, which 
can be considered the social benchmark for other DMUs. Although DMU1 is techni-
cally efficient, according to Fig. 7, this DMU lacks social and environmental efficiency; 
therefore, it is specified as a weak DMU. Figure 4 presents sustainable efficiency ver-
sus environmental efficiency. It can be seen that more than half of the DMUs are envi-
ronmentally sustainable. DMU4 is the only DMU with desirable sustainable efficiency, 
which is not environmentally efficient. As shown in Fig. 5, DMU4 is identified as a star 
DMU in terms of social and technical efficiency; thus, its environmental sustainability 
aspect is dominated and ignored. Providing such pairwise comparison analysis can help 
managers to recognize where improvement should be investigated with priority. It also 
can prevent misunderstanding the results. For instance, based on Figs. 2, 3 and 4, air-
line 7 has been introduced as a sustainable DMU, but it should not be assumed that this 

Fig. 3   Sustainable efficiency versus social efficiency

Fig. 4   Sustainable efficiency versus environmental efficiency
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DMU is efficient in all three aspects of sustainability. Because according to Fig. 5, this 
DMU is technically inefficient.

6 � Conclusion and direction for future research

One of the factors affecting the development of countries is the quality of the air transpor-
tation industry. The air transportation system accelerates a country’s economic processes 
by linking various sectors of the economy. Besides, as a critical component of the air 
transportation network, airlines significantly influence any country’s economic, social, and 
environmental issues. Therefore, evaluating airlines’ efficiency given sustainable develop-
ment aspects can be a vital issue for policy-makers. DEA is one of the most well-known 
approaches applied to assess the efficiency of DMUs. However, the literature lacks studies 

Fig. 5   Technical efficiency versus social efficiency

Fig. 6   Technical efficiency versus environmental efficiency
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that simultaneously consider all three aspects of sustainable development in airline effi-
ciency calculation, especially the social aspect.

This study extended the existing DEA models, including the three-step methodology 
introduced by Korhonen and Luptacik (2004) and the modified three-step method proposed 

Table 1   Notations
DMU

o
The decision-making unit under evaluation

j = 1, ..., n Index of DMUs (airlines)
i = 1, ...,m Index of inputs
r = 1, ..., s Index of desirable technical outputs
q = 1, ..., t Index of desirable social outputs
k = 1, ..., p Index of undesirable outputs
xij ith input of DMUj

xio ith input of DMUo

y
g

rj
rth desirable technical output of DMUj

y
g
ro rth desirable technical output of DMUo

y
g

qj
qth desirable social output of DMUj

y
g
qo qth desirable technical output of DMUo

yb
kj

kth undesirable output of DMUj

yb
ko

kth undesirable output of DMUo

vi The weight for ith input
ur The weight for rth desirable technical output
wq The weight for qth desirable social output
�k The weight for kth undesirable output

Table 2   Dataset of Iranian airlines

Airlines Fleet Size Available
seat-kilometer

Available
Ton-kilom-
eter

Seat-kilom-
eter
performed

Ton-kilom-
eter
performed

Number of
employees

CO2
(106 kg)

1 62 12,965,463 2,322,346 9,212,453 1,027,055 4759 12,252
2 38 2,297,567 32,070 2,028,792 182,767 3272 2976
3 9 1,726,253 199,353 1,532,112 171,582 587 1465
4 8 1,584,045 149,438 1,475,938 129,886 900 1827
5 18 3,190,384 321,377 2,146,102 194,813 823 2314
6 16 2,134,520 222,064 1,760,681 154,967 1021 1595
7 62 4,962,888 746,441 3,218,163 346,343 8492 6340
8 12 2,089,923 1,767,017 1,798,896 169,279 838 2021
9 22 2,676,196 273,639 2,273,378 208,730 766 1259
10 9 1,455,460 148,724 1,244,523 105,668 759 1112
11 9 549,610 54,577 429,583 37,843 413 290
12 5 108,046 35,520 98,103 25,126 260 770
13 5 292,848 30,633 256,907 22,609 377 264
14 6 17,669 46,253 16,189 41,305 430 403
15 2 233,224 20,605 217,816 18,546 233 258
16 8 28,785 127,125 19,232 50,443 187 204
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by Mahdiloo et al. (2015), to be applicable to calculate four types of efficiency. We also 
proposed two models called “common weight goal programming DEA” and “common 
weight DEA” to calculate efficiency scores. The extended three-step model and the modi-
fied three-step model calculate optimal weights and non-dominated weights for each DMU, 

Table 3   Technical, social, environmental, and sustainable efficiency scores of airlines obtained from the 
three-step model

Airlines Technical
efficiency

Social
efficiency

Environmental
efficiency

Sustainable
efficiency

Rankings

1 0.87 0.56 0.49 0.92 5
2 1 1 0.77 1 1
3 1 0.48 0.66 1 1
4 1 0.82 0.49 1 1
5 0.72 0.33 0.52 0.82 6
6 0.88 0.47 0.66 0.94 4
7 0.69 1 0.94 1 1
8 0.93 0.51 0.52 0.95 3
9 0.91 0.25 1 1 1
10 0.92 0.62 0.68 1 1
11 0.84 0.44 1 1 1
12 0.97 0.64 0.24 0.97 2
13 0.94 0.73 1 1 1
14 1 1 0.76 1 1
15 1 0.90 0.63 1 1
16 0.91 0.32 1 1 1

Table 4   The achieved values for the weights of the inputs and outputs calculated by the three-step model

Airlines u1 u2 w � v1 v2 v3

1 0.000001 2.03 1.01 0.000001 4.69 0.000001 0.000001
2 12.72 0.000001 0.51 0.000001 0.000001 15.71 1.25
3 0.000001 16.83 0.000001 18.26 6.84 0.66 0.000001
4 18.79 0.000001 0.000001 0.000001 0.12 22.85 0.000001
5 10.61 0.000001 0.000001 4.99 5.17 0.000001 7.14
6 13.52 0.000001 1.85 5.12 3.11 10.18 0.000001
7 0.000001 0.000001 2.84 0.000001 2.37 3.62 0.000001
8 14.28 0.37 0.000001 2.41 0.33 14.75 0.000001
9 12.20 0.000001 0.000001 2.07 0.000001 12.57 0.000001
10 13.35 0.000001 12.73 22.90 9.04 0.000001 0.000001
11 53.48 0.000001 10.01 38.49 0.000001 45.21 0.000001
12 274.61 0.22 0.000001 0.000001 0.000001 336.09 0.000001
13 8.33 0.000001 59.04 91.06 0.000001 39.67 0.000001
14 0.000001 0.000001 56.09 0.000001 46.81 71.52 0.000001
15 52.11 0.000001 61.13 86.84 35.25 0.000001 39.07
16 0.000001 57.23 0.000001 10.36 33.02 41.04 0.000001
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respectively. In contrast, the common weight goal programming DEA model and the com-
mon weight DEA model determine non-dominated common weights for all inputs and 
outputs.

This paper showed that the existing DEA models, including the three-step methodology 
and modified three-step methodology, require complex calculations since for a case with 
n DMUs, the three-step model needs to run 4 × n models and modified three-step method 

Table 5   Disregarded efficiency 
scores by the three-step model

Airline Disregarded efficiency

1 Environmental
2 Environmental
3 Social
4 Social and Environmental
5 Social
6 –
7 Technical and Environmental
8 Social
9 Social
10 –
11 –
12 Social and Environmental
13 -
14 Technical and Environmental
15 –
16 Social

Table 6   Technical, social, environmental, and sustainable efficiency scores of airlines obtained from the 
modified three-step methodology

Airline Technical 
efficiency

Social efficiency Environmental
Efficiency

Sustainable
efficiency

Ranking

1 0.87 0.56 0.41 0.58 14
2 1 1 0.58 0.82 6
3 1 0.15 0.66 0.76 10
4 1 0.82 0.43 0.63 12
5 0.71 0.17 0.49 0.57 15
6 0.79 0.36 0.62 0.73 11
7 0.53 1 0.63 0.81 7
8 0.90 0.32 0.47 0.62 13
9 0.87 0.13 1 0.91 4
10 0.80 0.54 0.61 0.76 9
11 0.68 0.40 1 0.94 2
12 0.66 0.64 0.21 0.33 16
13 0.74 0.67 0.79 0.92 3
14 1 1 0.61 0.85 5
15 0.76 0.90 0.60 0.80 8
16 0.91 0.32 1 1 1
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needs to solve n linear programming models. We showed that the three-step model is not 
able to provide accurate, sustainable efficiency scores for some DMUs due to its unreliable 
weighting system. The three-step methodology specified DMUs as sustainable efficient 
if they are technically, socially, or environmentally efficient. This method also identified 

Table 7   Technical, social, environmental, and sustainable efficiency scores of airlines obtained from the 
developed common weight goal programming DEA model

Airline Technical 
efficiency

Social efficiency Environmental
efficiency

Sustainable
efficiency

Ranking

1 0.81 0.33 0.42 0.63 13
2 0.49 0.72 0.64 0.84 5
3 1 0.30 0.53 0.75 8
4 0.89 0.51 0.43 0.71 12
5 0.63 0.22 0.42 0.54 15
6 0.67 0.36 0.58 0.71 11
7 0.47 1 0.70 0.99 2
8 0.67 0.28 0.44 0.59 14
9 0.69 0.21 0.80 0.72 10
10 0.74 0.43 0.59 0.77 7
11 0.42 0.38 1 0.75 9
12 0.54 0.55 0.22 0.43 16
13 0.46 0.63 0.85 0.90 3
14 0.77 0.88 0.68 1 1
15 0.70 0.72 0.60 0.87 4
16 0.67 0.28 0.98 0.81 6

Table 8   Technical, social, environmental, and sustainable efficiency scores of airlines obtained from the 
developed common weight DEA model

Airline Technical 
efficiency

Social efficiency Environmental
efficiency

Sustainable
efficiency

Ranking

1 0.71 0.20 0.46 0.31 14
2 0.66 0.66 0.58 0.40 6
3 1 0.21 0.60 0.40 7
4 0.99 0.38 0.47 0.35 11
5 0.69 0.16 0.49 0.31 13
6 0.76 0.27 0.63 0.39 9
7 0.49 0.73 0.59 0.40 8
8 0.33 0.09 0.50 0.23 15
9 0.77 0.16 0.94 0.47 1
10 0.83 0.32 0.64 0.41 5
11 0.51 0.30 1 0.45 3
12 0.47 0.42 0.19 0.16 16
13 0.55 0.51 0.79 0.45 2
14 0.53 0.63 0.51 0.36 10
15 0.83 0.56 0.59 0.41 4
16 0.38 0.16 0.81 0.32 12
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airline 10 as a sustainable, efficient DMU, while its all three efficiency scores were less 
than 1. We also proved that the modified three-step model was not able to provide accu-
rate results for some DMUs. The current paper introduced two approaches to deal with 
undesirable outputs in the DEA model and used them to evaluate the technical, social, 
environmental, and sustainable efficiency scores of 16 airlines in Iran based on their atten-
tion toward sustainable development principles. Our proposed models integrate four dif-
ferent technical, social, environmental, and sustainable efficiencies into a single model and 
only run once to calculate the common weights instead of calculating optimal weights for 
inputs, desirable and undesirable outputs.

In the current study, airlines are ranked based on four types of efficiency scores obtained 
from four different models. Hence, each DMU has four technical efficiency scores, four 
social efficiency scores, four environmental efficiency scores, and four sustainable 

Table 9   The weight of each efficiency calculated by entropy method for each DEA model

DEA Model Technical 
efficiency

Social efficiency Environmental
efficiency

Sustainable 
efficiency

Three-step
DEA model

0.06 0.16 0.24 0.02

Modified three-step
DEA model

0.15 0.32 0.27 0.35

Common weight goal 
programming

DEA model

0.30 0.22 0.26 0.27

Common weight
DEA model

0.49 0.30 0.23 0.36

Table 10   Integrated efficiency 
scores and rankings of airlines 
based on TOPSIS results

Airline Technical 
efficiency

Social effi-
ciency

Environmen-
tal efficiency

Sustainable 
efficiency

CL Rank CL Rank CL Rank CL Rank

1 0.59 6 0.32 9 0.29 15 0.45 14
2 0.44 9 0.84 3 0.53 7 0.78 6
3 1 1 0.14 14 0.50 10 0.74 8
4 0.91 2 0.56 6 0.30 14 0.58 12
5 0.50 8 0.08 15 0.34 13 0.45 13
6 0.59 7 0.26 11 0.52 9 0.70 9
7 0.21 15 1 1 0.60 5 0.78 5
8 0.21 16 0.15 13 0.34 12 0.27 15
9 0.62 5 0.06 16 0.86 3 0.86 3
10 0.69 3 0.39 8 0.52 8 0.76 7
11 0.23 12 0.30 10 1 1 0.87 2
12 0.21 14 0.52 7 0.00 16 0.00 16
13 0.29 11 0.62 5 0.78 4 0.92 1
14 0.39 10 0.88 2 0.53 6 0.69 10
15 0.68 4 0.76 4 0.50 11 0.80 4
16 0.23 13 0.15 12 0.89 2 0.61 11



5927Evaluating sustainable efficiency of decision‑making units…

1 3

efficiency scores. We applied the TOPSIS approach to integrate the four values of each 
efficiency score for each DMU. The developed models in this study extend the DEA 
approach’s capability to assess airlines’ efficiency based on sustainable development cri-
teria. This study is the first effort to calculate Iranian airlines’ efficiency considering all 
three aspects of sustainable development: technical, social, and environmental. Also, our 
proposed models are the first attempt to calculate common weights for all inputs, desirable 
outputs, and undesirable outputs by running only one model.

Various models have been proposed in the literature to evaluate the performance of air-
lines. However, due to some limitations, a few of these models have considered social and 
environmental criteria. One of the main limitations of this study is that we do not have 
access to other undesirable outputs’ data, such as the amount of CO2 caused by other air-
lines’ activity other than aircraft’s emissions due to data unavailability. On the other hand, 
we could not personally inspect airlines’ activities to determine more than one social factor 
due to security reasons. We offer the following topics for future researchers to consider in 
their studies. In classical DEA models, the input and output data are specified with pre-
cise and definite values. In contrast, in real-world problems, the data are usually fluctuated, 
uncertain, or dependent on different scenarios and cannot be collected in a precise way. 
Therefore, one of the most challenging issues related to DEA studies is the uncertainty 
correlated with the data. Thus, developing approaches to handle data uncertainty in DEA 
models can be an exciting topic for researchers. Based on the findings of this study, future 
researchers can also implement similar models employing other techniques of contributing 
undesirable outputs and undesirable inputs. Furthermore, the developed model in this study 
can be implemented in other similar cases. In other words, the proposed approach in this 
study is applicable to other sectors and industries where technical, social, environmental, 
and sustainable efficiency is required.

Acknowledgements  The authors would like to thank Professor Luc Hens, the Editor-in-Chief of Environ-
ment, Development and Sustainability journal and two anonymous reviewers for their insightful comments 
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Fig. 7   Social efficiency versus environmental efficiency
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