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Abstract
Catalysts play a major role in the transesterification process. In recent years, heterogeneous 
catalysts have gathered attention due to the advantage of reusability and easy separation. 
The use of renewable sources for catalyst preparation has advanced the use of heterogene-
ous catalysts. The biomass-derived catalysts are important in decreasing the cost of pro-
duction and promoting the commercialization of biodiesel. Various renewable sources such 
as sea sand, shells, fish bones, large-scale industrial wastes can be used for catalyst prepa-
ration. Catalysts prepared from these wastes can make the transesterification reaction more 
sustainable and cost-effective. Thus, this work comprises a review of the advancements 
of various catalyst technologies used in biodiesel production, including the use of waste 
biomass for catalyst preparation. The paper also discussed the Bimetallic and trimetallic 
heterogeneous catalysts for several applications in energy and biodiesel generation from 
microalgal lipids.
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1 Introduction

The growth of the world and its well-being is directly reliant on energy growth. Rapid 
urbanization and industrial evolution have increased the high demand for energy world-
wide [1, 2]. Hence, energy plays an important role in supporting our economic and social 
growth [3, 4]; however, the growing energy requirements and limited reserves make it dif-
ficult. Thus, it is a serious concern to develop alternative energy sources to meet the rising 
energy demand. The world energy consumption from 2008 to 2018 is shown in Table 1.

As shown in Table 1, it can be observed that there is a continuous increase in energy 
consumption per year which is making world energy security a tough task. Figure 1 shows 
our over-dependency on fossil fuels. This over-dependency is causing the depletion of fos-
sil fuels. This depletion can lead us to fail to meet the energy demand in upcoming years. 
Besides energy security, the burning of fossil fuels also causes high harmful gaseous emis-
sions that affect the environment and human beings [6, 7, 8].

Thus, there is a high need to work for alternative energy sources so as to meet the energy 
demand and control the pollution in upcoming years [9, 10]. Considering these problems, 

Table 1  Energy consumption (MT oil equivalents) [5]

Regions Year Growth rate per annum

2008 2018 2008–2018 (%) 2018 (%) 2019 (%) Share 2019 (%)

North America 2751.0 2832.0 0.2 2.8 − 1.0 20.0
South and Central America 600.8 702.0 1.3 0.3 0.3 4.9
Europe 2173.3 2050.7 − 0.7 0.03 − 1.1 14.4
CIS 844.7 930.5 0.9 4.4 − 0.3 6.7
Middle East 653.7 902.3 3.2 2.4 3.15 6.6
Africa 365.4 461.5 2.4 2.9 2.5 3.4
Asia Pacific 4316.2 5985.8 3.3 4.1 3.3 44.1
The world 11,705.1 13,864.9 1.6 2.9 1.3 100

Fig. 1  Primary energy sources (MT oil equivalent) [5]
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various researchers, industrialists, and world leaders are efficiently promoting energy sus-
tainability. The only way is to maximize the use of alternative sources of energy.

This research aims to examine the technical and economic aspects of the various types 
of catalysts used in biodiesel production. It includes a thorough examination of the lat-
est developments in various biodiesel catalyst technologies, including waste biomass for 
catalyst manufacturing. In addition, Bimetallic and trimetallic heterogeneous catalysts for 
energy and biodiesel synthesis from microalgal lipids were also studied in the article.

1.1  Biofuel production

Fuels derived from biomass have been promising alternatives due to their renewable nature 
and less exhaust emissions [11,  12]. Therefore, among different biofuels, biodiesel has 
gained attention all over the world. Various processes produce biodiesel, but transesteri-
fication is the most commonly used [13, 14]. Figure 2 shows the procedure of biodiesel 
production from two methods using different catalysts.

In Fig. 3, an increasing trend in biodiesel production can be observed worldwide. This 
is because the transport sector has been proved the most energy-consuming and emission-
producing sector globally. Hence, biodiesel has been promoted as an alternative to petro-
leum due to its biodegradability [18].

Fig. 2  Biodiesel generation procedure using different catalysts from feedstock: a dual step procedure [15] 
and b single step procedure [16]
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Biodiesel is a fatty acid alkyl ester produced from vegetable oils and animal fats. There 
are four common methods to produce biodiesel like micro-emulsification, blending, ther-
mal cracking, and transesterification. Transesterification is the method given more atten-
tion to producing biodiesel by various researchers as it produces biodiesel with good fuel 
properties [2,  19]. In transesterification reaction, triglycerides react with alcohol in the 
presence of a catalyst to produce alkyl ester and glycerol as a by-product [20, 21, 22]. The 
process undergoes three consecutive reversible reactions, where triglyceride is sequentially 
converted into diglyceride, monoglyceride, and glycerol. As a result, an alkyl ester is pro-
duced at each stage.

2  Parameters affecting the reaction

Four different parameters take part in the transesterification reaction. These are catalyst 
concentration, methanol to oil ratio, reaction time, and reaction temperature. The catalyst 
is used to speed up the reaction for converting triglycerides into fatty acid alkyl ester. Ini-
tially, a lower amount of catalyst is used to get enough time to complete the reaction. On 
further increasing the catalyst amount, a decrease in biodiesel yield has been observed due 
to a decrease in the diffusion rate of the reactants [23]. Excessive use of catalyst is found to 
form emulsions reflecting on higher viscosity, thereby making biodiesel recovery difficult. 
In the case of high FFA, the esterification process is performed, which produces water as 
a byproduct. The water content in the reaction can decrease the catalyst’s reactivity, thus 
affecting the biodiesel yield.

The alcohol to oil molar ratio has a significant effect on the biodiesel yield. In case of 
an insufficient amount of methanol, a reverse reaction occurs due to which a decrease in 
yield takes place. On the contrary, in the case of using excess alcohol, a higher conversion 
percentage takes place, which increases the yield. However, this excess methanol requires 
higher energy to recover the unreacted methanol after the reaction, increasing production 

Fig. 3  Worldwide biodiesel production by various feedstock [17]
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costs [24]. Furthermore, methanol with polar hydroxyl group results in the emulsification 
of glycerol and the biodiesel formed during the reaction. This aids to the backward reac-
tion, i.e., recombination of glycerol and esters, thus decreasing the biodiesel yield. There-
fore, it must be noted that the transesterification reaction is reversible, and therefore a large 
amount of alcohol is required to keep the reaction in the forward direction.

Biodiesel yield is generally observed to increase with an increase in the reaction time. 
However, excess reaction time also negatively affects the biodiesel yield, resulting in 
a decrease in yield. This excess time also increases the energy cost. On the other hand, 
an increase in temperature is found to speed up the reaction, and more yield is achieved, 
which may be due to the reduction of oil’s viscosity on increasing the temperature, result-
ing in better mixing of oil with alcohol and faster separation glycerol from biodiesel. The 
reaction time and temperature majorly depend upon the type of catalyst and the amount of 
catalyst used in the reaction [25, 26]. Chavan et al. [27] have reported the maximum yield 
for the varying amount of catalyst and reaction temperature with different feedstock; for 
catalyst (3 wt%) with Pongamia oil, 90% yield obtained at the reaction temperature 65 ℃, 
whereas the reaction temperature decreases to 50 ℃ yield decreases to below 80%.

It was observed that the reaction parameters mainly vary according to the catalyst. Thus, 
this work focuses on studying different catalysts used in biodiesel production and discusses 
various advantages and disadvantages of different types of catalysts.

3  Homogeneous catalyst

Homogeneous catalysts are the commonly used catalysts in biodiesel production. These 
catalysts are also used in commercialized biodiesel production as they possess high cata-
lytic activity; however, mainly solid base catalysts are used in the reaction. Nevertheless, 
using the base catalyst in case of high free fatty acids in the feedstock oil, saponification 
occurs to prevent this; acid pretreatment is performed over the oil to reduce its FFA. This 
process of treating biodiesel with acid is known as esterification [28, 29, 30]. Mostly used 
base catalysts are potassium hydroxide (KOH) and sodium hydroxide (NaOH) [31] and 
acid catalysts used are sulfuric acid  (H2SO4) and phosphoric acid  (H3PO4) [32] (Table 2). 

The use of homogeneous catalysts increases the production cost of biodiesel as they 
are non-recyclable. These catalysts also face problems in separating homogeneous phase 
products and increasing the amount of wastewater produced during fuel purification [46]. 
Furthermore, from a technical point of view, the homogeneous catalysts consume two step-
process due to the presence of FFA in oils which is a time-consuming and cost-increasing 
factor. Therefore, there is a need to introduce recyclable catalysts that can treat the problem 
of high FFA, reducing the steps in the process.

4  Heterogeneous catalysts

4.1  Solid acid catalyst

In concern of various disadvantages of using a homogeneous catalyst, heterogeneous cata-
lysts were developed. These catalysts possess various advantages over homogeneous cata-
lysts. These catalysts are prepared from the naturally aspirated metals and their derivatives. 
These catalysts are reusable, recyclable, and not affected by the amount of FFA present in 
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triglycerides [47]. Thus, these can improve the overall energy consumption and reduce the 
time of pretreatment. Table 5 depicts various studies which show the potential use of het-
erogeneous acid catalysts with the process parameters in biodiesel production. The applica-
tion of these catalysts obtains a high yield (Table 3).

Besides the advantages of homogeneous acid catalysts, there are certain disadvantages 
of using these catalysts, which must be considered when considering the catalyst. First, 
some catalysts possess low reactivity, which directly affects biodiesel yield. Second, they 
require high reaction temperature and poor reusability [63]. Finally, some catalysts of these 
categories have complicated preparation processes. Thus, there is a need to develop other 
catalysts that can tackle these disadvantages of homogeneous acid catalysts mentioned 
earlier.

4.2  Solid base catalyst

CaO is the most widely used alkaline metal catalyst in transesterification reactions for bio-
diesel production. The catalyst’s reactivity depends on the calcination temperature of the 
catalyst, whereas the reusability depends upon the efficiency of extraction of the catalyst 
from pure biodiesel during the cleaning process. Therefore, these catalysts have been found 
to have very effective reusable properties [64, 65]. The reactivity of these catalysts is very 
high thus, resulting in high biodiesel yield. In addition, these catalysts possess high cata-
lytic life and are non-corrosive in nature. Table  4 depicts various studies performed by 
researchers using the solid base catalyst for biodiesel production from different feedstocks 
and their impact on other process parameters in Table 6.

Unlike heterogeneous acid catalysts, these catalysts are highly sensitive to the amount 
of water and FFA present in the feedstock oil. FFA requirement is less than 1%. The have 
a slow reaction rate compared to homogeneous catalysts, and in some cases, saponifica-
tion occurs, resulting in degradation in the quality of biodiesel produced. The preparation 
method is also complex and expensive [85].

Besides the advantage of catalyst reusability, the high cost of biodiesel production is still 
a serious concern. The naturally aspirated metals present in the catalyst increase the cost of 
the catalyst as well as the process. Thus, there is a need to focus on eco-friendly methods to 
prepare the catalysts from renewable sources to be economical and less energy-consuming.

4.3  Heterogeneous catalyst derived from waste biomass

On considering problems with natural heterogeneous-based catalysts, researchers world-
wide have worked for alternate sources for catalysts preparation. The new method of cata-
lysts was developed by using lignocellulosic waste biomass and converting it into value-
added products, i.e., heterogeneous catalysts. These catalysts are prepared from various 
types of biomass. Tables 5 and 6 depict various catalysts prepared from different types of 
feedstocks for transesterification reaction. This can help in reducing the cost of biodiesel 
production and can promote the commercialization of biodiesel.

4.3.1  Solid base catalyst from waste biomass

These catalysts are mainly prepared by direct calcination of biomass and integrating bio-
mass with existing CaO catalysts. CaO was found one of the most widely used and prom-
ising heterogeneous base catalysts for biodiesel production [86]. Table 7 depicts various 
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heterogeneous base catalysts developed from different feedstocks of biomass. These cata-
lysts possess low surface reactivity, thus are integrated with other compounds to increase 
the reactivity and improve the biodiesel yield. As mentioned in above section, these base 
catalysts require low FFA oil for the transesterification reaction. Otherwise, there might be 
the formation of soap during the process. That means a pretreatment of oil is required in 
the process.

For further improvement in the performance of biomass CaO catalysts, researchers 
developed another method of integrating biomass with CaO. Researchers have limited the 
use of available CaO catalysts. Instead, more emphasis is provided on the CaO produc-
tion from calcination of waste biomass [25]. Thus, various studies have been proposed o 
biomass-derived CaO and biomass as supporting materials for CaO.

4.3.2  Solid acid catalyst from waste biomass

The most common method for preparing acid catalysts is the sulfonation method compris-
ing direct sulfonation by thermal treatment of carbon material concentrated with  H2SO4. 
These carbon materials are produced from waste biomass. These catalysts are ineffective of 
high FFA present in triglycerides of oils. This sulfonation process helps in high biodiesel 
yield at the low reaction temperature. However, the corrosive behavior of  H2SO4 has lim-
ited the use of solid acid catalysts [97].

4.4  Bimetallic and tri metallic catalyst

Nowadays, bimetallic and trimetallic heterogeneous catalysts have been examined for a 
variety of applications in energy and Biodiesel production and be used for environmen-
tal remediation. These catalysts have tunable properties that is controlled by their metallic 
compositions, morpho structure, and preparation method [107]. The performance of some 
bimetallic catalysts such as Au–Ag, Ca/Fe, Al–MCM-41, Ni–W, Mo–Zn, Mo–Mn, Mo–Sn 
supported on mixed metal oxide, W–Zr/CaO have been evaluated by different authors 
[82, 108, 109, 110] for the efficient production of biodiesel. However, few trimetallic het-
erogenous catalyst offered better catalytic properties over the mono and bimetallic catalyst. 
Abdulkareem et al. [111] experimentally reported the catalytic performance of Fe–Co–Ni 
predominates over Fe–Ni, Fe–Co, Ni–Co or their monometallic form. In addition to mono, 
bi and tri metallic catalyst, some ternary and quaternary metal compound such as Cu/Zn/
Ca/Al2O3 and Cu/Ni/Ca/Al2O3 are also competent to produce methyl esters with greater 
yield and quality [112].

4.5  Catalysts used for biodiesel synthesis from microalgae

As the demand for oil crops increases for human consumption, it is not desirable to use 
oil crops for biofuel production. Hence, the researchers and scientists focused on alterna-
tive oil source lipids that contain aqua biomass in terms of microalgae or macroalgae. The 
application of microalgae over macroalgae toward biodiesel production has several advan-
tages such as higher growth rate (doubling in 24 h); higher yield (15–300 times) as com-
pared to the conventional oil crops in area wise; harvesting is also possible multi times 
in a year; they are highly biodegradable and nontoxic. Biodiesel can be made from the 
esterification and transesterification of a variety of microalgal/macroalgal lipids (such as 
Chlorella protothecoides, Oedigonium and Spirogyra) and an alcohol with the help of a 
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catalyst [113]. Several homogenous catalysts such as sulfuric acid or sodium hydroxide 
used with methanol due to their high reaction at low temperature and atmospheric pressure. 
In addition to the homogenous catalysts, various heterogenous catalysts such as alumina 
supported calcium oxide and magnesium oxide, H-Beta zeolite, calcium methoxide, chro-
mium–aluminum mixed oxide [114] are also used to produce methyl ester biodiesel from 
Nannochloropsis oculate, N. gaditana, Scenedesmus obliquus and Spirulina sp. microalgal 
lipids, respectively [113].

5  Economics of biodiesel

Several important factors drive the economics of biodiesel production and its feasibility in 
a practical world. First, government policies play a critical role in the biodiesel economy. 
Over the last decade, biodiesel production and usage have increased substantially with the 
involvement of governments and non-profit organizations in the form of biofuel mandates, 
subsidies to user groups and production companies, tax advantages, and compulsory tar-
gets. In the initial stages, vegetable oil feedstock was used for biodiesel production due 
to its principal usage for food and high cost. Hence the focus has been shifted to produce 
biodiesel from waste stream feedstock such as non-edible oils, micro-algae, waste plastics, 
and waste tyres. Thus, the major factors that influence the economics of biodiesel are crude 
oil prices, the production cost of feedstock, market requirements, and government contri-
bution in the form of tax subsidies. Biodiesel made from microalgae has become a viable 
alternative to traditional feedstock in terms of industrial production and commercialization. 
Microalgae have a high rate of growth and carbon sequestration and can be easily grown in 
fresh and/or marine water without the use of arable soil. The cost of producing microalgae 
biodiesel is 0.38 USD per litre [115], which is commercially viable over a 10-year period 
when considering the economic value of residual biomass and glycerol by-products.

6  Major findings

The significant findings based on the current study are appended as follows:

• Potassium hydroxide (KOH) and sodium hydroxide (NaOH) are the most commonly 
used base catalysts, while sulfuric acid  (H2SO4) and phosphoric acid are the most com-
monly used acid catalysts  (H3PO4).

• In the transesterification reaction for biodiesel production, CaO is the most extensively 
utilized alkaline metal catalyst among KOH (32%)/ZrO2-5,  Nd2O3–KOH, Sr/MgO, 
 BaCeO3, and  K2Al2O4.

• Alternative catalyst preparation sources have been sought by researchers all around the 
world. The new catalytic approach was created by turning waste lignocellulosic bio-
mass into value-added. Despite the benefit of catalyst reusability, the high cost of bio-
diesel manufacturing remains a major concern. In addition, the presence of naturally 
aspirated metals in the catalyst raises the cost of both the catalyst and the process. As a 
result, eco-friendly approaches for preparing catalysts from renewable sources must be 
prioritized in order for the process to be cost-effective and energy efficient.
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• Bimetallic and trimetallic heterogeneous catalysts are being investigated for several 
applications in energy and biodiesel generation and environmental cleanup. Trimetallic 
Fe–Co–Ni outperforms bimetallic Fe–Ni, Fe–Co, Ni–Co or its monometallic form.

• Various heterogeneous catalysts are used to produce methyl ester biodiesel from Nan-
nochloropsis oculate, N. gaditana, Scenedesmus obliquus, and Spirulina sp. microalgal 
lipids, including alumina supported calcium oxide and magnesium oxide, H-Beta zeo-
lite, calcium methoxide, and chromium–aluminum mixed oxide.

7  Conclusions

For commercial biodiesel production, most firms employ homogenous catalysts, which 
causes separation and waste neutralization issues. In addition, during the purification of 
biodiesel, these catalysts produce a substantial volume of wastewater. Advances in hetero-
geneous catalysts have helped to alleviate the issues associated with homogeneous catalysts 
while also lowering the cost of producing biodiesel. They have a non-corrosive nature and 
can be reused. The use of biomass for catalyst manufacture has also advanced the prepa-
ration of heterogeneous catalysts. As a result, the transesterification reaction is processed 
in a green manner. These catalysts lower the transesterification process’ activation energy, 
reducing energy consumption and reaction time. The use of biomass-derived catalysts low-
ers the cost of manufacturing biodiesel while maintaining a high output.
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