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Abstract
Improving carbon emission efficiency (CEE) would promote the development of the green 
and low-carbon economy in the Beijing-Tianjin-Hebei (BTH) region, China. This paper 
uses the EBM model of unexpected output to measure the city-level CEE of the BTH 
region from 2007 to 2016. The spatial distribution characteristics and evolution law of 
CEE are analyzed with respect to overall and local aspects, and the spatial quantile regres-
sion model is used to verify the influencing factors of CEE. The main findings are as fol-
lows: (1) The carbon emission in the BTH region is considered to be of medium efficiency, 
and there are eight cities within the region at middle- and high-efficiency levels. The over-
all efficiency values show a downward trend. Beijing, Cangzhou, Baoding have high-CEE 
values, whereas Handan, Tangshan, and Zhangjiakou have low-CEE values. (2) The CEE 
values for BTH show significant spatial agglomeration characteristics at both the global 
and local levels. The “H–H” agglomeration areas are primarily distributed in the central 
region, and the “L-L” agglomeration areas are chiefly distributed in the southern and north-
ern regions. The spatial pattern change is generally stable. (3) The selected factors, URB, 
PGDP, DS, ISG, FDI, and TEL, have different regression coefficients on CEE at different 
quantiles.
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1 Introduction

Within the context of the global response to the challenge of climate change, as the larg-
est developing country in the world, and with the highest global carbon dioxide emissions, 
China is facing the dual pressure of economic development and carbon emission reduction. 
The Beijing-Tianjin-Hebei (BTH) region, an important player in the country’s regional 
economic layout, plays a vital role in driving China’s economic development. Since the 
‘Planning Outline of Collaborative Development of Beijing, Tianjin and Hebei Provinces’1 
was proposed by the Chinese government in 2015, the integration of the BTH region has 
formally become a national strategy, and BTH regional cooperation has shown remarkable 
results in reducing emissions. The key tasks of strengthening the environmental protection 
of the BTH region and bolstering the joint prevention and control of regional pollution 
were again proposed at the Beijing-Tianjin-Hebei Cooperative Development Forum in July 
2018. This provides a strong indication that the energy consumption structure and carbon 
emissions of the BTH region need to be further improved.

In 2018, the total GDP of the BTH region was 7.9 trillion yuan (or 8.6% of the coun-
try’s total GDP2) and represented an increase of 18.8% compared to 2014 when the BTH 
integration strategy was first proposed. However, the contradictions between economic 
development and the demands of the resource environment are also more prominent in the 
BTH region. For example, the energy consumption in 2017 was 0.62 billion tons of coal 
equivalent (tce), accounting for about 8.9% of China’s total energy consumption.3 This 
indicates that the region’s economic growth is still accompanied by high levels of energy 
consumption and emissions. To solve this problem, some scholars believe that scientifi-
cally improving the levels of CEE would provide a direct and effective method through 
which to achieve a reduction in carbon emissions and an increase sustainable development 
(Amini et al., 2018).

The concept of carbon emission efficiency (CEE) has received extensive attention in 
the research on carbon emissions and emission reduction policies with respect to taking 
economic and social development, as well as environmental protection into account and the 
implementation of green sustainable development. No clear definition of CEE has yet been 
put forth. However, through examining and summarizing the existing literature, CEE can 
be defined as the causal transformation efficiency between the relevant factors that affect 
carbon emissions (i.e., the level of technological development, capital, personnel input, 
etc.) and carbon emissions (Ang, 1999; Kaya & Yokobori, 1999; Mielnik & Goldemberg, 
1999). It can reflect the economic development model of a region and the degree of efforts 
made to combat climate change (Sun, 2005). CEE estimation methods under a single fac-
tor, such as Carbonization Index (Fernández González et  al., 2015; Mielnik & Goldem-
berg, 1999) and Carbon Intensity (Acheampong & Boateng, 2019), can only measure CEE 
from a certain aspect. In contrast, total factor efficiency evaluation has the advantage of 
being able to determine the production frontier, and the evaluation results will be more 
comprehensive and holistic (Cheng et al., 2018). Therefore, total factor CEE will be evalu-
ated in this study.

1 BLRQHD (The Bureau of Land and Resources Qinhuangdao). Collaborative Development of Beijing, 
Tianjin, and Hebei Province. The Bureau of Land and Resources Qinhuangdao; 2015. http:// www. hebqh 
dsgt. gov. cn/ gtzyj/ front/ 6048. htm.
2 NBS. China Statistical Yearbook 2019. Beijing: China Statistics Press; 2019.
3 NBS. China Energy Statistical Yearbook 2018. Beijing: China Statistics Press; 2018.

http://www.hebqhdsgt.gov.cn/gtzyj/front/6048.htm
http://www.hebqhdsgt.gov.cn/gtzyj/front/6048.htm
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The research on CEE has made great progress in recent years, especially with respect 
to the situation in China. The research objects cover many regions and various industries, 
mainly including industries in different provinces (Cheng et al., 2018; Wang et al., 2019a), 
30 provinces and province-level municipalities (Ding et al., 2019; Liu et al., 2016; Meng 
et  al., 2016; Wang et  al., 2016), manufacturing (Li and Cheng 2020), urban (Liu et  al., 
2018a), airlines (Wang et al., 2015), the thermal power industry (Yan et al., 2017), and the 
construction industry (Zhou et al., 2019), etc. As for research on city level, some schol-
ars have conducted energy conservation and emission reduction assessments on more than 
200 cities in China (Wang et al., 2015; Zhou et al., 2016), and recently Zhou et al. (2020) 
have carried out research on urban green development efficiency (UGDE) in 285 prefec-
ture-level cities in China (Zhou et al., 2020). The research content primarily involves the 
measurement of carbon emissions (Meng et al., 2016; Wang et al., 2012, 2016), forecasting 
(Chen et al., 2020), and the analysis of influencing factors (Sun & Huang, 2020; Tan et al., 
2020). Table 1 indicates the specific research information on CEE.

According to the existing literature, the methods for measuring the total factor CEE 
mainly include the following two, stochastic frontier analysis (SFA) (Sun & Huang, 2020) 
and data envelopment analysis (DEA) (Meng et al., 2016). Considering the frontier bound-
ary obtained from SFA is random and requires the explanatory variables to be independ-
ent of each other, while DEA can evaluate multiple input–output indicators at the same 
time without previous acquaintance of the correlation between indicators (Molinos-Sen-
ante et  al., 2016). So the DEA model is selected for CEE estimation in this study. As a 
superior evaluation method, DEA method has been widely used in efficiency evaluation 
and ranking, involving the performance measurement in many occasions or fields, such as 
energy (Wu et al., 2012; Yang et al., 2018), economy (Shuai & Fan, 2020; Wu et al., 2020), 
environment (Cecchini et al., 2018), production (Wu et al., 2019). The results of quantita-
tive analysis have practical significance for guiding environmental policy, energy policy, 
and economic planning. Recently, Meng et  al. focused on ranking information based on 
data envelopment analysis model and believed that a better understanding of grade reversal 
phenomenon has an important enlightenment for energy efficiency assessment and policy 
making using DEA (Meng et al., 2019).

In recent years, the theoretical basis and model of DEA are constantly improved and 
developed, as summarized by Zhou et al. (Zhou et al., 2016) and Meng et al. (Meng et al., 
2016). In terms of theory and model construction, most of the traditional DEA models 
belong to the measurement of radial and angle, without consideration of slack variables in 
the objective function, so that the input–output ratio does not match the actual production 
state. Based on the traditional radial DEA model, Tone proposes an SBM model that can 
relax input and output to calculate efficiency (Tone, 2001). It is a non-radial, non-angled 
model, and the adjustment of inputs and outputs can be disproportionate (Wang et  al., 
2019a). However, most coal efficiency measures based on radial or non-radial methods are 
found to expand or underestimate the efficiency improvement (Tone & Tsutsui, 2010; Wu 
et al., 2019). To this end, Tone further proposed a mixed distance function EBM model that 
takes into account both radial and non-radial characteristics, which can more accurately 
and comprehensively calculate the efficiency values (Tone, 2010). Based on the following 
two considerations, this paper decided to refer to the EBM model to estimate carbon effi-
ciency. On the one hand, EBM model is widely used to estimate the efficiency in different 
fields (Wu et al., , 2019, 2020; Yang et al., 2018), but relatively few in carbon emission. 
On the other hand, in the research of CEE, most of the DEA methods are based on the tra-
ditional radial or non-radial models (Choi et al., 2012; Iftikhar et al., 2016), which reflects 
the deficiency of methodology.
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In a study of spatio-temporal effects, Tobler’s first theorem of geography shows that 
everything between regions is connected (Gale, 1979). The research on spatio-temporal 
effects covers many fields including water resources, climate, and energy and character-
izes their geographical interactions (Welder et  al., 2019; Xu et  al., 2019). Recently, Yu 
et al. (2021) have carried out research on the spatiotemporal patterns and urban facilities 
determining cycling activities in the downtown area of Beijing, which provides an effective 
reference for this article to explore the spatio-temporal effects and influencing factors of 
smaller regional units (Yu et al., 2021). However, relatively few studies combine CEE and 
its influencing factors with time–space effects (Wang et al., 2019). Since Spatial Econo-
metrics proposed by Anselin (Anselin, 1988) and Lesage (Lesage, 2008) systematically, it 
has been applied to the field of environmental economy including carbon emission with its 
irreplaceable advantage of considering spatial effects. However, it is still relatively scarce 
on CEE influencing factors. In addition, the general spatial measurement model’s analysis 
of influencing factors is based on the mean regression of OLS. When the data distribution 
shows the characteristics of thick tail, the accuracy of the mean regression result is low 
(Zietz et al., 2008). Quantile regression can regress different quantile points separately and 
propose more information. Therefore, this study combines quantile regression with spatial 
measurement model as spatial quantile regression model to study the influencing factors of 
CEE.

To summarize, the existing research has achieved some results in the study of measure-
ment, spatio-temporal effects, and influencing factors of CEE, but the research contents are 
independent of each other and do not form a complete research system. Besides, relatively 
few studies have yet been conducted on carbon emission-related issues in the BTH region. 
Therefore, this study takes 13 cities in BTH region as the research object, including two 
municipalities and 11 prefecture-level cities, and 2007–2016 as the research period, com-
prehensively considering the timeliness and availability of individual indicator data. The 
CEE on a city level is estimated applying super-efficient EBM model. Then the spatio-
temporal dynamic evolution analysis is carried out by using spatial autocorrelation index, 
taking account of the spatial interaction effect between cities. Besides, the combination of 
quantile regression and spatial measurement model is used to analyze the influencing fac-
tors of CEE. And some implications and suggestions are proposed to the policy makers 
based on the results and analysis above.

The main contributions and innovations of this article are as follows. First, this study 
compensates for and perfects the research on carbon emissions in the BTH region from the 
perspective of research objects and methodology. Taking cities as the smallest research unit 
can propose more specific and feasible emission reduction strategies. Second, the analysis 
of spatio-temporal characteristics can reflect the spatial interaction effects of CEE, for it 
can consider the exchange and flow of resources and people between cities. And the explo-
ration of influencing factors of CEE takes both spatial effects and quantile regression into 
consideration, which can provide a more accurate and diversified information. Finally, this 
study integrates the two major research contents of CEE, taking the spatio-temporal effects 
of CEE and its influencing factors into a closed loop, so as to form a complete research 
system of CEE in BTH region, which can provide references for related research in other 
regions or countries.
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2  Methodology and data

2.1  Non‑radial EBM super‑efficiency model

The super-efficiency EBM model used in this paper is an improved efficiency value meas-
urement model based on the traditional SBM model. Traditional DEA models, such as rep-
resentative CCR (Ang, 1999) and BCC (Liu et  al., 2018a), mainly use a radial distance 
function. They improve the invalid DMU by increasing (reducing) all inputs (outputs) in 
the same proportion and ignore the slack variables so that the efficiency values are inac-
curate. The non-radial SBM model based on slack variables proposed by Tone (Molinos-
Senante et al., 2016) has improved the accuracy of efficiency measurement and becomes 
one of the main methods for carbon efficiency measurement (Li & Cheng, 2020; Meng 
et al., 2016; Wang et al., 2016). The non-radial model peels off the influence of input–out-
put slack part in order to obtain the maximum input reduction rate, but this is at the cost of 
the possibility that different proportions of the original input resources will be discarded.

In addition, the traditional SBM was found embarrassing situation that there are many 
effective DMUs of 1 in efficiency measure, which restricts distinction and ranking of 
DMUs. To the blemish of the traditional DEA models that can only distinguish inefficient 
decision-making units but not efficient decision-making units, Andersen and Petersen 
(Wang et  al., 2020) proposed the super-efficiency model of data envelopment analysis. 
The efficiency value calculated by the super-efficiency EBM can exceed 1, a function that 
greatly reduces the possibility of multiple regions showing the same efficiency levels, and 
which meets the needs of all DMU evaluation and ranking so that this model’s rationality 
and applicability are greatly enhanced. Meng et al. (Meng et al., 2019) used five different 
DEA models to study the impact of rank reversal on regional energy efficiency evalua-
tion. The results indicated that SBM shows the smallest rank reversal when measuring the 
energy efficiency of 30 provinces in China. Less rank reversal means the efficiency evalu-
ation is more robust. Theoretically, the ideal DEA ranking model shall keep the ranks of 
other DMUs from changing after the addition or removal of one or more DMUs (Liu et al., 
2016). It is found that the efficiency evaluation results based on SBM model can provide 
more stable guidance and suggestions for us to improve CEE. Wu (Fernández González 
et al., 2015) put forward a super-PEBM model based on Pearson correlation coefficient on 
the basis of EBM model and super-efficiency model on the research of green economy effi-
ciency (GEE) and used the panel data of China from 2008 to 2017 to compare the results of 
CCR, SBM, and EBM models on GEE. The results indicated that there are relative advan-
tages of EBM from the perspective of the model, and it is proved that the results of SBM, 
EBM, and PEBM are consistent by Pearson correlation analysis and paired sample t-test. 
As mentioned above, EBM model has the advantages of both radial proportion improve-
ment and non-radial relaxation improvement, making it an advanced means to estimated 
efficiency. This paper uses this model to estimate the CEE of BTH region on a city level.

The expressions and constraints are shown in Eqs. (1) and (2), respectively.
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Constraints are:

where λ is the linear combination coefficient of the decision unit DMU, m and q are the 
number of input indicators and output indicators, s- and s + are the relaxation variables of 
input and output, θ is the radial efficiency value calculated by the CCR model, ω is the rel-
ative weight of each input index and satisfies Σω = 1. ε is one of the key parameters and the 
value range is [0,1], which indicates the importance of the non-radial part in the calcula-
tion of the efficiency value: When ε = 0, the EBM model will be simplified to a radial CCR 
model; when θ = ε = 1, the EBM model will be transformed into the SBM model.

2.2  Spatial autocorrelation index

In the past 20  years, improvements in geographic information systems and computer 
technology have led to the rapid expansion of statistical methods for spatial data analysis 
(Zhang, 2016). Spatial autocorrelation analysis is a spatial data analysis technique that is 
widely used in economic and social regional research (Ma & Chen, 2019), and it is divided 
into the two aspects of global autocorrelation analysis and local autocorrelation analysis 
(Li, 2015; Talen & Lee, 2016). The former is used to evaluate whether there is a spatial 
autocorrelation overall, and it is measured by the global Moran’s I value. Its essence is a 
standardized spatial covariance. The latter is used to evaluate local spatial differentiation 
patterns. It is measured by the local Moran’s I value, which is called the Local Indicator 
of Spatial Association (LISA). It is based on the analysis of the global Moran’s I, which 
can accurately evaluate the global spatial heterogeneity. By evaluating the correlation of 
parameters between spatially similar or adjacent regions, the Moran’s I quantifies the spa-
tial aggregation and connectivity between clusters (Thompson & Declercq, 2018). The 
expression is seen in Eq. (3) below:

where xi is the observed value of area i, and n is the number of observed val-
ues,x= 1

n

∑n

i = 1
xi

 , �2= 1

n
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i = 1

�
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�2
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�2 . The spatial weight matrix wij is 
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where E(I) is the expectation, and Var(I) is the variance. If I is significantly positive, it 
indicates that there is a positive spatial correlation, and the regions with high (low) CEE 
values are spatially concentrated. Global space autocorrelation assumes that the space is 
homogeneous and cannot reflect the characteristics of local agglomeration. Local space 
autocorrelation analysis is required. The local spatial autocorrelation reflects the degree 
of spatial correlation between each city and adjacent cities. The local Moran’s I formula is 
seen in Eq. (5):

where Ii is the local Moran’s I of area I, zi is the standardized Z of the CEE value of area I, 
and wij is the spatial weight matrix. Where the local Moran’s I is positive (negative) it indi-
cates that the elements of similar (different) type attribute values are close to each other, 
and larger absolute values indicate higher proximity. The Moran scatter plot is a scatter plot 
with the observed value Z as the abscissa and the corresponding spatial lag factor Wz as the 
ordinate. There are four types of aggregation: High-High (H–H) aggregation, Low-Low 
(L-L) aggregation, Low-High (L–H) aggregation, and High-Low (H–L) aggregation.

2.3  Spatial quantile regression model

Quantile regression model is an improved model based on traditional OLS regression. The 
OLS regression that reflects the mean regression alone is convenient for explaining many 
phenomena in the traditional sense. However, when the distribution of the sample statistics 
of the research object has the characteristics of sharp peaks or thick tails, the least squares 
method that reflects the mean regression alone will no longer have the above advantages, 
and even smooth out or lose a lot of key information. In order to make up for the short-
comings of this regression method, Koenker and Bassett proposed the idea of quantile 
regression in 1978 (Koenker & Bassett, 1978). Conditional quantile estimation on different 
quantiles of the dependent variable can describe the overall regression of the independent 
variable to the dependent variable or focus on the regression of a specific quantile. Com-
pared with OLS regression, quantile regression analysis can provide richer information and 
avoid many arbitrary and fallacious conclusions. It is of great significance to the study of 
complex economic and social activities. The basic form of the quantile regression model is 
as follows.

where � is the quantile set artificially, and the most common quantile settings are 10%, 
25%, 50%, 75%, and 90%. Generally, 10% quantile regression is used to reflect the tail 
regression near the minimum value of the dependent variable, and 90% quantile regression 
is used to reflect the tail regression near the maximum value of the dependent variable. The 
50% quantile regression is theoretically the general mean regression.

Spatial quantile regression is essentially a combination of spatial econometrics theory 
and quantile regression thinking, and its appearance is not long. After Kostov (Kostov, 
2009), Liao and Wang (Liao & Wang, 2010), and Zietz (Zietz et  al., 2008) made early 
attempts to use spatial autoregressive (AR) models to estimate quantiles, scholars realized 
the importance of the combination of the two. This paper introduces the idea of quantile 
regression into the spatial measurement model, to expand the research on the influencing 

(5)Ii = zi

n∑
i≠j

wijzj

(6)Qy(�|x ) = a0 + a1x1 + a2x2 +⋯ + akxk + Qu(�)
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factors of CEE. A spatial quantile regression model is established based on the spatial Dur-
bin model, and its basic form is as follows.

where yi,t and xi,t represent the dependent variable and independent variable (or explana-
tory variable) of the spatial unit i in year t, respectively. ∑n

j=1
wi,jyi,t

 is the spatial lag vector, 

describing the spatial adjacency of the observations. � is the spatial autocorrelation coeffi-
cient, reflecting the effect of adjacent regions on local region. � is a constant parameter, 
and � and � are the fixed unknown coefficient parameter of the independent variable xi,t . �i,t 
is an independent and uniformly distributed error term, and �i and �t are used to describe 
space-specific effects and time-specific effects, respectively. � has the same meaning as for-
mula (6).

2.4  Index Selection

In this paper, the total GDP (actual), number of urban employees, and fixed asset inputs 
collected in each city area are all derived from the China City Statistical Yearbook, and 
the energy consumption data are sourced from the city-level statistical yearbooks at pre-
fecture-level cities. CO2 emissions are calculated using the carbon emission coefficient 
method provided by IPCC (2006). The carbon emission coefficient refers to the carbon 
emission generated by various energy sources during the combustion or the use of a unit 
of the energy (the carbon emission coefficient of this energy is generally considered to be 
unchanged during use). It is expressed as Eq. (8):

where i represents the type of fossil fuel, Ei represents the energy consumption of various 
fossil fuels, NCVi is the average low calorific value of various fuels, CEFi is the carbon 
emission coefficient per unit calorific value, and COFi is the carbon oxidation factor. Fos-
sil energy types include charcoal, coke, crude oil, gasoline, fuel oil, kerosene, diesel, and 
natural gas, so n is 8.

There are two types of indicators: input indicators and output indicators. The selection 
of indicators is shown in Table 2. When we select input indicators, we should consider the 
data from the three perspectives of "human input, capital input, and energy input." The 
number of employees, the amount of fixed asset investment, and energy consumption were 
selected as input indicators (fixed asset investment is based on 2006 data and calculated by 
the perpetual inventory method). When we select output indicators, we should choose these 
according to two perspectives: expected output and undesired output. The expected output 
index is the actual GDP, and the undesired output (bad output) is the  CO2 emissions. The 
data come from the China City Statistical Yearbook and the statistical yearbooks for each 
city.

(7)yi,t = �(�)

n∑
j=1

wi,jyi,t + � + �(�)xi,t + �(�)

n∑
j=1

wi,jxi,j,t + �i + �t + �i,t

(8)CO2=

n∑
i = 1

Ei × NCV i × CEFi × COFi × 44∕12
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3  Results and discussion

3.1  Spatial–temporal analysis of CEE

3.1.1  Results and analysis of CEE in the BTH region

Based on the results of the super-efficiency EBM model that were conducted by MAXDEA 
software, this study estimated CEE of 13 cities in BTH region in 2007–2016. Feng and 
Li (2017) have measured CEE of 13 cities in BTH region during 2005–2014, using SBM 
model with undesired output (Feng & Li, 2017). In order to visually show that the EBM 
estimation results are better, the CEE estimations of EBM are compared with SBM from 
Feng and Li (2017), which are shown as radar charts in Fig. 1. Considering that the over-
lap research year of the two research, the comparison results of 2007, 2010, and 2014 are 
selected for display.

It can be seen that the CEE results of undesired-output SBM and super-efficiency EBM 
are quite different in most cities, especially in some high-CEE cities, like Beijing, Baoding, 
Cangzhou, etc. The estimations of these high-CEE cities obtained from undesired-output 
SBM are equal to 1, while they are greater than 1 from super-efficiency EBM, indicating 
that the estimated efficiency value of the EBM model is not limited to 1. Besides, there are 
also some differences in CEE of other cities from the two kinds of DEA models, indicating 
that the super-efficiency EBM effectively improves the accuracy of the estimation com-
pared with undesired-output SBM.

The CEE calculated by the super-efficiency EBM model reflects the overall and local 
efficiency levels of the BTH region during the ten years from 2007 to 2016. The estimation 
results are detailed in Appendix Table A1. From the magnitude and evolution of the esti-
mated results, CEE in BTH cities has the following characteristics:

Firstly, the overall CEE value of the BTH region is generally at a moderately high level, 
and there are 4 low-efficiency cities, 4 medium-efficiency cities, and 5 high-efficiency cit-
ies. Besides, the average CEE of the 13 BTH cities from 2007 to 2016 is between 0.596 
and 0.781, showing a downward trend in fluctuations. And the maximum variation coef-
ficient of CEE for the BTH region is 0.21, showing that the fluctuation range is small. The 
overall difference does not change significantly during the period, and the overall spatial 
pattern is relatively stable (Fig. 2).

The evolution trend of the CEE values of the BTH cities generally shows a downward 
trend in fluctuations, and the partial evolution basically coincided with the overall evolu-
tion pattern. There are three types of evolution trajectories of each city-level CEE: station-
ary, fluctuating, and declining. The evolution results and 3 types of the cities in the BTH 
region from 2007 to 2016 are shown in Fig. 3.

Table 2  Measurement index 
system of CEE in the BTH 
region

Indicator type First-level indicators Secondary indicators

Input indicator Manpower input Number of employees
Capital investment Investment in fixed assets
Energy input Energy consumption

Output indicator Expected output Real GDP
Unexpected output CO2 emissions
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Fig. 1  Comparison of CEE estimations obtained from different DEA models

Fig. 2  CEE value and coefficient of variation for BTH region
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Fig. 3  Evolution results and types of CEE in BTH cities
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Stationary cities include Cangzhou, Zhangjiakou, Tangshan, Chengde, and Xingtai. 
During the study period, the CEE estimates of these cities did not change much. It shows 
that the level of economic development and development structure is relatively stable. Cit-
ies such as Tangshan and Chengde that have always maintained a low level of CEE have 
huge emission reduction potential and should be focused on in the overall BTH emission 
reduction strategy. Fluctuating cities include Baoding, Beijing, Hengshui, and Tianjin; the 
CEE levels of these cities have remained at a relatively high level, and the large fluctua-
tions are due to related explorations of emission reductions, with mixed results. We can 
extract experience from these cities’ emission reduction exploration to provide guidance 
for other cities’ emission reduction efforts. Declining cities include Langfang, Handan, 
Shijiazhuang, and Qinhuangdao. The carbon efficiency of these cities is decreasing year 
by year, and special attention should be paid to their development models to find out the 
reasons for the reduction in CEE. If it is a temporary development pain, it is necessary to 
reduce the negative impact through the joint efforts of the region as a whole. If there is a 
problem with the development model, it is necessary to stop the loss in time and strictly 
rectify it.

The local level of CEE in the BTH region is measured by the differences in CEE val-
ues for each city. The difference in the CEE value of each city represents the strength of 
its equilibrium. The Chinese government proposed an integrated development strategy 
for Beijing-Tianjin-Hebei in 2014.4 Considering that China’s construction planning and 
economic development were planned for five years, and the time when the BTH integra-
tion strategy is proposed is close to the research period, the time interval was determined 
to be 3 years. So we show the results of four years with equal time spans, namely 2007, 
2010, 2013, and 2016, while the remaining years that are not shown have little change and 
do not affect the overall dynamic distribution trend. Besides, this study divides the BTH 
region into northern region, central region, and southern region. Northern region includes 
Zhangjiakou, Chengde, Tangshan, and Qinhuangdao, central region includes Beijing, 
Baoding, Langfang, Tianjin, and Cangzhou, while southern region includes Shijiazhuang, 
Hengshui, Xingtai, and Handan. The distribution map of CEE in BTH region is drawn for 
in-depth analysis of the evolution of dynamics distribution, shown in Fig. 4.

It can be seen that there are significant differences in the CEE of the different loca-
tions. Throughout the designated study periods, the CEE of Zhangjiakou, Tangshan, and 
Handan is relatively low and can be regarded as low-CEE cities. In contrast, the CEE of 
Beijing, Baoding, Cangzhou, Tianjin, and Hengshui is relatively high and can be seen as 
high-CEE cities. Among them, Beijing and Baoding have the highest CEE values and have 
been maintained at a high level, while the CEE of Langfang, Shijiazhuang, and Xingtai 
decreased significantly after 2010 and gradually evolved into low-CEE cities. BTH’s CEE 
exists spatial agglomeration within this region. The CEE values in the central of the BTH 
region are significantly higher than those in the north and south region, showing spatial 
agglomeration characteristics centered on Beijing. The efficiency values of the northern 
part of the BTH region have shown low values throughout the years under study, while 
the southern region has shifted from higher levels to lower ones. After General Secretary 
Jinping Xi put forward the concept of BTH integration in 2014, the Beijing, Tianjin, Baod-
ing, and Langfang were designated as core functional areas, but their performance in CEE 
is quite different. With respect to these cities, the CEE values of Beijing, Tianjin, Baoding 

4 State Council. 2014 government work report. http:// www. gov. cn/ guowu yuan/ 2014- 03/ 14/ conte nt_ 26389 
89. htm.

http://www.gov.cn/guowuyuan/2014-03/14/content_2638989.htm
http://www.gov.cn/guowuyuan/2014-03/14/content_2638989.htm
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have steadily maintained high levels. However, the CEE values for Langfang have gradu-
ally weakened, moving from high efficiency in 2007 to low efficiency in 2016. As such, 
particular attention needs to be paid to this area (Fig. 3).

3.1.2  The spatial effect relationship of CEE

The global Moran’s I values of CEE in the BTH region from 2007 to 2016 are calculated 
according to Eqs. (3)–(5) (Table 3). It can be seen that the overall CEE of the BTH region 
has a positive spatial correlation, and that it passed the test at the 5% significance level for 

Fig. 4  CEE distribution map in BTH region
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2007–2016. Furthermore, the BTH’s region’s CEE has a significant overall agglomeration 
characteristic. The distribution of high-value areas and low-value areas is relatively clear. 
The central region represented by Beijing has been at the high level of CEE, while the 
regional efficiency values at the northern and southern regions are lower, and the degree of 
agglomeration in these regions shows fluctuates. Between 2010–2011 and 2013–2015, the 
global Moran’s I in the BTH region showed a downward trend, while between 2007–2009, 
2011–2012, and 2015–2016, the global Moran’s I in the BTH region showed an upward 
trend. The peak of agglomeration appeared in 2009, and it was the end of the upward trend 
of agglomeration in 2007–2009. The reason is that the 2008 Beijing Olympics accelerated 
the integration of BTH, and the docking and complementarity of industrial structures were 
realized in Beijing, which promoted the spatial agglomeration of CEE. This high degree of 
regional cooperation only lasted until 2009. Since 2010, the overall concentration of CEE 
has been on a downward trend. In response to this trend, the Chinese government proposed 
a national strategy for the coordinated development of BTH in 2014. By 2016, the concen-
tration of CEE began to slowly increase. Due to many factors such as the adjustment of 
industrial structure, ecological governance, and market demand, in 2015, CEE showed a 
trend of "stagnation before starting."

The global Moran’s I does not specifically indicate the spatial agglomeration character-
istics of the region, so the local agglomeration characteristics should be further analyzed 
and studied. Geoda software was used to calculate the local Moran’s I from 2007 to 2016, 
and a local Moran scatter plot for four years was generated, as shown in Fig. 5.

From the analysis of Fig. 5, it can be seen that the local spatial agglomeration status 
of CEE in the BTH region has changed significantly in the four years studied. Among the 
four years selected, the cities in BTH are distributed in the first and third quadrants, indi-
cating that the H–H and L-L regions account for a large proportion of the cities, reach-
ing more than 3/4 of the total number tested, indicating that the cities have a significant 
driving or inhibiting effect. In the selected years, there were fewer L–H cities in the BTH 
region and no H–L cities existed. From 2007 to 2010, the number of cities with H–H CEE 
concentration in the BTH region decreased by one, and the number of cities with L–H 
concentration increased by one. After that, from 2010 to 2016, the number of CEEs in 
cities in the BTH region remained unchanged in cities of different agglomeration types. 
After further analysis, in 2007–2010, Langfang’s CEE changed from H–H agglomeration 
to L–H agglomeration; although the number of cities with different types of agglomeration 
remained unchanged from 2010 to 2016, the types of CEE agglomeration in some cities 
changed. In 2013–2016, Shijiazhuang’s CEE changed from H–H agglomeration to L–H 
agglomeration, and Tianjin’s CEE changed from L–H agglomeration to H–H agglomera-
tion. CEE agglomeration types in cities such as Beijing, Baoding, and Cangzhou have been 
relatively stable for four years.

In 2016, the spatial distribution characteristics of CEE in the BTH region are 
reflected in the following four aspects: (a) High-efficiency cities such as Beijing, Baod-
ing, Cangzhou, Hengshui, and Tianjin are surrounded by other high-efficiency cities. 

Table 3  Global Moran’s I of CEE in BTH

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

I 0.3008 0.3454 0.4189 0.2584 0.2153 0.2640 0.1582 0.1483 0.1447 0.1590
P 0.0052 0.0036 0.0068 0.0013 0.0019 0.0011 0.0024 0.0038 0.0037 0.0023
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These cities are located in the central region of BTH, and the CEE of this region is in 
the leading position in the BTH region; (b) low-CEE cities such as Langfang, Shiji-
azhuang, and Zhangjiakou are surrounded by high-CEE cities, and almost all of these 
cities’ CEE are lower than that of neighboring cities. The surrounding high-efficiency 
cities could support them in various ways to improve their CEE. Among them, Shiji-
azhuang, as the capital city of Hebei Province, has better policy guidance and financial 
support but has not paid attention to the concept of green collaboration while devel-
oping, so it was reduced from a H–H city to a L-L city, something that should attract 
attention; (c) there were no H–L cities in the four years observed; (d) as low-efficiency 
cities, Xingtai, Tangshan, Qinhuangdao, and other cities are surrounded by other low-
efficiency cities.

Fig. 5  Local Moran scatter plot in 2007, 2010, 2013, and 2016 of BTH region
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3.2  Influencing factors of CEE

3.2.1  Selection and examination of factors affecting CEE

This paper has used the super-efficiency EBM model to measure the CEE of the BTH 
region from 2007 to 2016 and has analyzed the characteristics of the region in terms of 
their spatio-temporal effects. In order to further explore the influencing factors of CEE in 
the BTH region, according to the three aspects of scale effect, structural effect, and tech-
nical effect of environmental quality influencing factors proposed by Grossman and Kru-
ger (Grossman & Krueger, 1991), the level of urbanization (URB), the rate of economic 
growth (RGDP), GDP per capita (PGDP), final consumption rate (DS), industrial growth 
share (ISG), foreign direct investment (FDI), and technology investment (TEL) were 
selected as the influencing factors of CEE in the region. Table 4 shows the specific descrip-
tions and the descriptive statistics for each influencing factor.

It can be seen that the standard deviations of most indicators are relatively low, indicat-
ing that there are relatively small differences in urbanization, consumption level, industrial-
ization, and some other aspects among cities in BTH region, which proves that the develop-
ment is relatively balanced, while the standard deviations of PGDP and TEL are relatively 
high, which are 56.69 and 58.34, respectively. It indicates that the economic development 
and technological level are quite different in BTH region. Therefore, in further analysis, we 
should focus on economic and technical indicators, and for other indicators, we should be 
able to better identify the impact of differences in details on CEE.

In order to avoid the problem of multicollinearity among influencing factors to improve 
the reliability of regression results, it is necessary to conduct a correlation test. The Pear-
son correlation coefficient reflects the degree of linear correlation between indicators. The 
coefficient value is from -1 to 1, and when the absolute value of the coefficient is closer to 
1, the correlation between indicators is greater. Figure 6 shows the Pearson correlation heat 
map of influencing factors.

According to Fig.  6, the correlation between TEL and ISG is relatively high and 
shows a negative correlation, with a correlation coefficient of -0.66. This is because 
the development of industry and technology is often complementary to each other. 
However, considering that these two indicators reflecting the structural effect and the 
technological effect, respectively, both of them should be retained in the study. In addi-
tion, the correlations between other influencing factors are relatively small. Therefore, 
all indicators in the correlation test pass the test. In general, it suggests that there is no 

Table 4  Descriptions of influencing factors

Indicator Ave Min Max Std Description

URB 27.86 16.53 44.59 6.92 Comprehensive urbanization rate (%)
RGDP 11.10  − 1.96 29.16 6.73 GDP growth rate (%)
PGDP 9.36 1.27 684.06 59.69 Population demand of GDP  (104 yuan)
DS 40.57 5.67 65.37 7.87 Final consumption expenditure/GDP (%)
ISG 42.41 16.12 56.19 8.98 Industrial value added/GDP (%)
FDI 2.00 0.15 8.08 1.79 Foreign direct investment/GDP (%)
TEL 23.00 0.40 287.80 58.34 Science and technology expenditure  (108 yuan)
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serious multicollinearity problem between the indicators. Next, the Jarque–Bera test is 
performed on the influencing factor indicators to determine that the indicator data have 
a sharp peak and thick tail distribution, to be suitable for quantile regression analysis. 
The results show that all indicators except RGDP have passed the Jarque–Bera test at a 
5% significant level. As such, the quantile regression coefficient graphs of the 6 influ-
encing factors are drawn using R language software, as shown in Fig. 7.

Fig. 6  Correlation heat map of 
influencing factors

Fig. 7  Quantile regression estimation of influential factors of city-level CEE in BTH region



7658 L.-M. Xue et al.

1 3

It can be seen that the conditional distribution of CEE in the six graphs has obvious 
differences between different quantiles, that is, the regression estimation coefficient of 
each influencing factor on CEE varies with the change of quantile, indicating that quantile 
regression can provide more abundant information. Specifically, the impact coefficient of 
URB fluctuates with the quantile, and changes from negative to positive, indicating that the 
level of urbanization has an inhibitory effect on CEE in the low-quantile area and promotes 
CEE in the high-quantile area. The coefficient of PGDP is relatively stable, and changes 
from positive to negative, indicating that CEE increases with the economic level only in 
a few low-quantile areas, while it has the opposite effect in most high-quantile cities. The 
evolution trends of coefficients of DS and ISG with quantile are similar as that of PGDP, so 
the influence effects are similar of the three. The coefficient of FDI fluctuates strongly with 
the quantile, and all values are positive, reaching the maximum at the 0.7 quantile. It indi-
cates that the impact of FDI on CEE varies greatly at different quantiles, and the impact is 
greatest around 0.7 quantile. The coefficient of TEL fluctuates around 0 with the quantile. 
Overall, TEL has a positive promotion effect on the low-quantile area of CEE and a nega-
tive inhibitory effect on the high-quantile area.

3.2.2  Analysis of influencing factors on the spatial effects of CEE

Figure 7 shows the overall trend of the changes in the CEE coefficients of the six influenc-
ing factors at different points. In order to conduct a more specific and in-depth analysis, a 
spatial quantile regression model on CEE, URB, PGDP, DS, ISG, FDI, and TEL is estab-
lished, as shown in Eq. (9).

Table 5  Regression results of spatial quantile regression model

Variables Penal OLS Spatial quantile regression

0.1 0.25 0.5 0.75 0.9

LNURB 0.4217 − 0.1818 − 0.0660 0.1552 0.4134* 0.5256*
LNPGDP 0.0034 0.4164** 0.0668* − 0.0624 0.0546 − 0.0150
LNDS 0.1822 1.0820** 1.5680*** 0.6721 0.0432 − 0.0035
LNISG 0.2320 1.8776*** 0.8282** − 0.2306 − 0.7724*** − 0.5324**
LNFDI 0.1107 0.1416* − 0.0431 0.1333* 0.3584*** 0.1821**
LNTEL 0.0198 − 0.0507 0.1497*** 0.0324 − 0.1918*** − 0.1236*
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where the meanings of the relevant parameters are the same as formula (8). Since the 
research object of this study contains 13 research units, five quantile points are selected, 
which are 0.1, 0.25, 0.5, 0.75, and 0.9, respectively.

The spatial quantile regression results are shown in Table 5, and the general panel 
OLS regression results are listed for comparison.*, **, and ***, respectively, denote 
significance at different levels (10%, 5%, and 1%).

According to Table 5, all of the regression coefficients obtained by panel OLS regres-
sion are not significant, while they are significant in at least two quantiles by spatial 
quantile regression. This proves that the general mean regression is difficult to accu-
rately reflect the actual situation, and the quantile regression can make up for this defect. 
Then, the analysis and discussion of the influencing factors are carried out in detail.

(1) Urbanization The indicator URB in this study reflects the comprehensive urbanization 
degree of population, roads, and urban built-up area. It can be seen that the estimated 
coefficient of URB is significant and positive in the high-quantile area, indicating 
that the promotion of urbanization in high-CEE areas is conducive to improving CEE 
in BTH region. This is because in areas with relatively high CEE, such as Beijing, 
where urban development is relatively complete, intensive energy use is the main form 
of energy consumption. This can not only effectively reduce energy waste, but also 
improve the degree of control over energy use. Therefore, the urbanization of these 
areas has a positive effect on CEE.

(2) Economic development PGDP and DS are indicator reflecting economic development. 
According to Table 5, the estimated coefficients of PGDP and DS are significant and 
positive in the low-quantile area, indicating that economic development in low-CEE 
areas is conducive to increasing CEE in BTH region. This is because low-CEE cit-
ies such as Tangshan and Handan mainly rely on high-energy-consuming and high-
emission industries such as steel for their economic development. Under the Beijing-
Tianjin-Hebei integration strategy, with the capital Beijing’s environmental governance 
in surrounding areas, economic development such as Tangshan pays more attention to 
cleanliness and efficiency. Therefore, economic development in low-CEE regions has 
a positive effect on the improvement of CEE.

(3) Industrialization ISG is the contribution degree of industrial added value to the regional 
GDP, which reflects the industrialization level of a region. The coefficient of ISG is 
significant in most quantiles except for the 0.5 quantile and is positive in low-CEE 
areas and negative in high-CEE areas, according to Table 5. It indicates that the degree 
of industrialization has a significant impact both in high-CEE and low-CEE areas in 
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BTH region, and when the level of industrialization becomes higher, the CEE of the 
low-CEE regions will increase; on the contrary, the CEE of the high-CEE regions will 
decrease. Generally speaking, the industrial industry belongs to the secondary industry, 
and the increase in its proportion should have a negative inhibitory effect on CEE. The 
opposite is true in low-CEE regions. This is because in low-CEE cities such as Tang-
shan, the proportion of industrial output value is already quite large, reaching about 
half of the total regional output value. In this case, fierce competition among industrial 
enterprises will stimulate production efficiency. Therefore, when the industrial output 
value continues to increase, it is actually the improvement of production technology 
and production efficiency, which will increase CEE instead.

(4) Foreign direct investment. FDI reflects the introduction and utilization of foreign capital 
by cities. The coefficient of FDI is significant and positive in most quantiles except for 
the 0.25 quantile, indicating that utilizing foreign capital is conducive to increasing 
CEE. This is because the foreign capital introduced in BTH region often possesses 
some new technologies and advanced management concepts, which can promote the 
technological upgrading and management upgrading of relevant local industries. There-
fore, the BTH region should continue to maintain introducing foreign investment with 
high standards and high quality in order to promote the improvement of CEE.

(5) Technological investment Technological investment drives technological progress, 
although we would expect it to have a positive effect on CEE. According to Table 5, 
the coefficient of TEL is significant and positive in 0.25 quantile and negative in high 
quantiles, indicating that technology investment has different impact mechanisms on 
CEE at different quantiles. This is because the technological investment into this area 
has not met the level of scientific and technological support required for productiv-
ity enhancement. This therefore still inevitably results in industrial production being 
accompanied by higher levels of energy consumption and greenhouse gas emissions. 
Investment in science and technology should focus on energy-intensive industries by 
helping high-emission industries establish scientifically based and environmentally 
friendly energy-saving management measures.

4  Conclusions and policy implications

This paper uses qualitative and quantitative analysis methods to measure and analyze the 
carbon emissions efficiency (CEE), spatio-temporal effects, and influencing factors for 13 
cities in the BTH region of China. The main conclusions are as follows: (a) The CEE of the 
BTH region has shown a generally downward trend from 2007 to 2016, and three types of 
evolution trajectories have been identified: stationary, fluctuating, and declining. (b) The 
overall spatial distribution pattern of CEE was not significantly different for the different 
periods, and the development of CEE in the same region in different periods was more sig-
nificant. Beijing, Tianjin, Cangzhou, Baoding, and Hengshui were at the forefront of CEE 
values. Zhangjiakou, Tangshan, and Handan were shown to be carbon inefficient regions. 
(c) The CEE of BTH has significant spatial effects, manifested in spatial interaction and 
dependence of CEE between cities. The global spatial agglomeration characteristics are 
significant, and the degree of agglomeration shows a fluctuation trend. The local spatial 
agglomeration of CEE in the BTH region is mainly dominated by H–H and L-L cities, and 
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the local spatial agglomeration status has not changed significantly. Except for Langfang, 
Shijiazhuang, and Zhangjiakou, the local Moran’ I patterns are relatively stable. (d) With 
respect to the various influencing factors, URB and FDI are significantly positive in high-
CEE cities, PGDP and DS significantly positive in low-CEE cities, while ISG and TEL are 
significantly positive in low-CEE cities and negative in high-CEE cities.

The coordinated development of Beijing-Tianjin-Hebei has broken regional restrictions 
of  CO2 reduction. As such, the characteristics of the spatio-temporal effects of CEE in the 
BTH region were analyzed. It is of great significance for carrying out macro-control and 
taking precise measures of the carbon emission levels of cities, thereby improving the over-
all CEE level in the BTH region. Based on the analysis above, the following policy recom-
mendations are proposed.

From a macroperspective, since China is still a developing country, some crucial 
factors such as its industrial structure, the educational level of its population, and the 
country’s scientific and technological level, etc., cannot be rapidly improved over the 
short term in the BTH region. However, China’s coal-based energy structure and its 
industrial structure, which is centered primarily on secondary industry, result in the 
BTH region having high levels of greenhouse gas emissions. As such, it is important 
that the BTH region actively explores ways to balance economic growth and low-car-
bon development and promotes a green and healthy development between regions. It 
is particularly crucial to coordinate the ways in which society, the economy, and the 
environment develop as a whole, and to direct green and low-carbon development from 
the legal, technical, and conceptual levels.

In terms of local control, considering the significant differences in CEE between the 
cities in BTH region, it is necessary to promote the complementary advantages across 
cities. Differentiate management and control, and the implementation of policies in 
accordance with local conditions will be more effective in terms of reducing emis-
sions. For cities with lower CEE, such as Tangshan and Handan, the focus should be 
on accelerating economic development, raising consumption levels, improving indus-
trial structure, and upgrading technology. For cities with higher CEE, such as Beijing 
and Baoding, the focus should be on accelerating the process of urbanization, optimiz-
ing the industrial structure, introducing high-quality foreign investment, and increas-
ing investment in high-tech R&D. In addition, because low-efficiency cities have high-
emission reduction potential, it will be easier to achieve related results to improve the 
CEE levels of low-efficiency cities, thereby improving the overall CEE of the BTH 
region. For example, through high-efficiency cities such as Beijing and Tianjin, the 
neighboring low-efficiency cities such as Zhangjiakou and Langfang will gradually 
develop into highly efficient cities. And furthermore, the development model of the 
central high-efficiency cities will also spread to surrounding cities, benefiting Lang-
fang and other places. At the same time, low-efficiency cities should take the initiative 
and study the development experiences of cities such as Tianjin that have made suc-
cessful transitions from low-efficiency to high-efficiency cities.

Appendix 1

See Table 6
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