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Abstract
Reservoirs play a major role as an essential source of surface water, especially in arid and 
semi-arid regions. To optimize the operation of a reservoir and determine its storage, which 
varies in time, the uncertainties of major influencing factors such as its inflow and evapo-
ration should be considered. The objective of this study is to examine the effects of joint 
uncertainties of the inflow and evaporation of Durudzan reservoir on its performance for 
the first time. The Monte Carlo simulation is used for uncertainty assessment. Specifically, 
the monthly time series of inflow and evaporation were generated by using artificial neural 
networks and the standard operation policy was used for reservoir operation. Furthermore, 
the probabilistic distributions of four performance indices, including time-based reliabil-
ity, volumetric reliability, vulnerability, and resiliency were calculated to assess the effects 
of the joint uncertainties of inflow and evaporation as well as the physical parameters on 
the reservoir variables (e.g., water release, storage, and spill). The results showed that the 
highest and lowest uncertainties of the reservoir water release occurred in July and May, 
respectively. In addition, the highest and lowest uncertainties were, respectively, observed 
in March and October for the reservoir storage, and in March and May for the water spill. 
The results also showed that the volumetric reliability had the highest uncertainty with a 
coefficient of variation (CV) of 0.158, while the resiliency had the lowest uncertainty with 
a CV of 0.020.

Keywords  Reservoir operation management · Artificial neural network (ANN) · 
Probability distribution · Uncertainty analysis · Monte Carlo simulation · Reservoir 
performance indices

1  Introduction

Increasing population and consequently increasing water demand for various needs require 
optimal water resources development and management (Bozorg-Haddad et  al., 2009; 
Chang & Chang, 2009; Delli Priscoli, 2000; Delpasand et al., 2020; Shokri et al., 2013). In 
this regard, reservoirs, as one of the main sources of surface water, play an essential role in 
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meeting the water needs and reducing the potential damages caused by destructive floods, 
especially in arid and semi-arid regions (Akbari-Alashti et al., 2014; Asgari et al., 2016; 
Bozorg-Haddad et al., 2020; Liu et al., 2017). The water balance of a reservoir is affected 
by many factors such as its inflow, evaporation from the free surface, direct rainfall, water 
leakage and percolation, and water release, which are uncertain. Therefore, to develop a 
comprehensive and optimal operation policy for a reservoir system, the uncertainties of 
meteorological and hydrological processes/variables should be considered (Bozorg-
Haddad et  al., 2014, 2019). By knowing the volume of storage, it is possible to operate 
the reservoir and implement different utilization projects. Generally, simulation and opti-
mization policies are used for reservoir operation (Loucks et al., 1981). Simulation meth-
ods have been a fundamental tool for planning and managing reservoirs. Reservoir simula-
tion models are usually based on the mass balance equation, which shows the reservoir’s 
hydrological behavior in response of its water inputs, outputs, and operating conditions 
(Bozorg-Haddad, 2018). In addition, uncertainty is a major factor that needs to be consid-
ered in water resources planning and management. Decision making in reservoir operation 
often involves the uncertainties of natural phenomena and inaccurate characterization of 
important parameters and variables. Thus, ignoring such uncertainties may lead to over-
estimation or underestimation of the performance of a reservoir in the development of its 
operation rules (Loucks & van Beek, 2005; Tehrani et al., 2008). Reservoir performance 
indices are usually used to evaluate the operation of the system. Important indices include 
reliability, vulnerability, and resiliency (Bozorg-Haddad et al., 2014; Srdjevic et al., 2004).

Lowe et  al. (2009) evaluated the uncertainty of evaporation from water supply reser-
voirs by developing a framework for determining the uncertainties of the reservoir evapo-
ration estimated by using the pan coefficient method. Their results showed that the largest 
decrease in uncertainty was gained by installing an evaporation pan at the reservoir. Zhang 
et al. (2009) evaluated four types of Bayesian neural network and applied for estimating 
the uncertainties of streamflow simulations in two watersheds in Georgia and Idaho. The 
results showed that by considering informative prior knowledge and using a variable model 
structure, the Bayesian neural networks provided more accurate quantification of the uncer-
tainties of streamflow simulations. Zhao et al. (2011) proposed a method to explicitly quan-
tify the uncertainty and assess the effect of the uncertainty of inflow on reservoir operation. 
Using a hypothetical example, they showed that the predicted uncertainty had a significant 
effect on the performance of the reservoir. Also, their results showed that the efficiency of 
reservoir operation decreased as the uncertainty increased, indicating that the efficiency 
was dependent on the forecast methods. By using two case studies from Norway and New 
Zealand, McMillan et  al. (2017) emphasized the importance of streamflow uncertainty 
analysis in water management decisions and demonstrated that proper analysis and assess-
ment of the uncertainties associated with streamflow data could effectively reduce the costs 
in water resources planning and management.

There is a need for long-term and short-term predictions of hydrologic processes in 
order to optimize a water resources system and/or plan for the future (Soltanjalili et al., 
2011). In general, the artificial neural network (ANN) method has been widely used 
for such forecasting purposes and its effectiveness and performances have been demon-
strated in many relevant applications (Cigizoglu, 2008). Bozorg-Haddad et  al. (2016) 
used the ANN method to determine the optimal set of variables for streamflow fore-
casting and their results demonstrated the high accuracy of the ANN in runoff simula-
tion. Application of the Monte Carlo simulation method for uncertainty analysis has 
gained significant attention (Soundharajan et al., 2016), because of its applicability in 
combining various forms of uncertainty (e.g., uncertainties associated with input data 



2916	 O. Bozorg‑Haddad et al.

1 3

and model) to estimate the final prediction uncertainty. Cremon et al. (2018) examined 
the convergence properties of the Monte Carlo simulation (MCS) of a reservoir model. 
They found that the use of a small ensemble (with a limit of 500 realizations) could 
yield errors of hundreds of percent. They concluded that it was possible to use large 
sets of realizations for profitability and decision-making analyses because of the parallel 
nature of MCS and also, optimization studies could benefit from using large ensembles, 
despite some difficulties. Tegegne and Kim (2020) considered the uncertainty of reser-
voir inflows by using the non-dominated sorting genetic algorithm II (NSGA-II) in their 
proposed reservoir operation rules and applied to the monthly operations of the Lake 
Tana multi-reservoir system in Ethiopia. Multiple performance measures demonstrated 
that their proposed model reached 84% of the perfect performance. Optimal operation 
of reservoirs needs multi-dimensional and integrated decision making, which involves 
many meteorological, hydrological, and socioeconomical variables such as rainfall, 
inflow, evaporation, and downstream water demands. Therefore, for future operation 
(e.g., water release) planning of reservoirs to meet different water demands and also 
effectively control floods, decision makers have to deal with various uncertainties asso-
ciated with such variables (Seifollahi-Aghmiuni et al., 2016).

The uncertainties of evaporation and inflow of reservoirs have been evaluated in many 
studies. However, few efforts have been made to evaluate the uncertainties of water release 
and storage of reservoirs under the influence of joint uncertainties of the reservoir inflow 
and evaporation. The main objective of this study is to assess the uncertainties of the res-
ervoir-related variables (e.g., water release and storage) by the Monte Carlo method, which 
is then applied to 47-year evaporation and inflow datasets of the Durudzan reservoir in 
Iran. Furthermore, by using the artificial neural network approach, probabilistic distribu-
tion functions are fitted for the evaporation and inflow data. Eventually, the uncertainties of 
water release and storage of the reservoir influenced by the uncertainties of its inflow and 
evaporation and different performance indices are evaluated. In this paper, the reservoir 
simulation model and Monte Carlo method are described in Sect. 2; the site information 
and the specifications of the Durudzan reservoir are presented in Sect. 3; the results of the 
evaluations are discussed in Sect. 4; and the conclusions are summarized in Sect. 5.

2 � Methods

For the ultimate aim of this study to assess the effects of the joint uncertainty of reservoir 
inflow and evaporation on its operation, a set of methods are used, which are described as 
follows.

2.1 � Reservoir operation policy

For the operation of a reservoir, it is necessary to know when and how the available water 
is released to meet the downstream water needs. Since the future inflows and the storage 
volumes are uncertain, the main goal is to determine the best release from the reservoir for 
a range of possible inflows and storage conditions. The water mass balance equation for a 
reservoir can be expressed as (Bozorg-Haddad, 2018; Delpasand et al., 2021; Xu & Singh, 
1998):
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in which t = time period; St+1 = volume of reservoir storage at the beginning of period t + 1 
(106 m3 or million cubic meter (MCM)); Q̂t = volume of the inflow of the reservoir dur-
ing period t (variable with uncertainty) (106 m3); Ret = volume of water release from the 
reservoir in period t (decision variable) (106 m3); Spt = volume of water spill from the res-
ervoir during period t (106 m3); Êvt = net evaporation from the reservoir during period t 
(variable with uncertainty) (m); Pt = precipitation on the reservoir during period t (m); and 
At = water surface area of the reservoir at the beginning of period t (km2).

The standard operating policies (SOP) are used to operate the reservoir. According to 
the SOP, for example, if the volume of usable reservoir storage ( St + Q̂t − Losst − Smin ) 
in any time period (e.g., month) is greater than or equal to the volume of total water 
demand, the amount of water released from the reservoir is equal to the total water 
demand. Otherwise, only the usable water will be released. As shown in Eqs. (2) and 
(3), if the storage volume of the reservoir in period t is greater than the minimum oper-
ating volume of the reservoir, water release will be performed. If the storage of the res-
ervoir in period t is less than the required minimum volume, no water will be released 
(Xu et al., 1998; Bozorg-Haddad et al., 2020).

In which Smin = minimum operating reservoir volume (106 m3); and Losst = net loss in 
period t (106 m3) as defined below (Bozorg-Haddad et al., 2019; Xu & Singh, 1998):

For the condition of Eq. (2), the water release can be controlled based on the water demand 
as follows (Fallah-Mehdipour et al., 2015):

In which Det = total volume of downstream water demand in period t (106 m3).
If the reservoir storage exceeds the maximum operating storage, the excess water 

spills out of the reservoir. Otherwise, no water spill occurs, as expressed in Eqs.  (7) 
and (8) (Fallah-Mehdipour et al., 2015).

in which Smax = maximum operating storage of the reservoir (106 m3).

(1)St+1 = St + Q̂t − Ret − Spt − (Êvt − Pt) ⋅

(

At + At+1

2

)

(2)Ret ≠ 0 St + Q̂t − Losst − Smin > 0

(3)St + Qt − Losst − Smin < 0 Ret = 0

(4)Losst = (Êvt − Pt) ⋅

(

At + At+1

2

)

(5)St + Q̂t − Losst − Smin ≥ Det Ret = Det

(6)St + Q̂t − Losst − Smin < Det Ret = St + Q̂t − Losst − Smin

(7)St + Q̂t − Losst − Ret > Smax Spt = St + Q̂t − Losst − Ret − Smax

(8)St + Q̂t − Losst − Ret ≤ Smax Spt = 0
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2.2 � Artificial neural networks

ANNs are based on the structure of the biological neural networks for various issues such 
as pattern recognition, clustering classification, and regression. The ability of neural net-
works to map a set of data with negligible error rates makes them a powerful tool for mod-
eling natural processes. An artificial neural network follows the same biological process as 
the neuron as a single unit that plays two roles: (1) combining inputs in (X) and (2) com-
bining these inputs with a specific threshold value (θ) to calculate the appropriate output 
(Araghinejad, 2013; Bozorg-Haddad et al., 2018; Okon et al., 2020). This process is shown 
in Fig. 1.

Mathematically, a neuron alone is not enough to solve practical problems. Therefore, a 
network of perceptron is used in parallel and series, called the neural network. The multi-
layered perceptron or feedforward network is the most prominent type of artificial neu-
ral network. In the feedforward network, each node (neuron) is only allowed to connect 
to another node in the next layer, forcing it forward. These networks are summarized in 
sequence numbers, each of which shows the number of nodes in each layer. The layers 

Start Collecting data 
and information

Investigating the 
correlation between 
monthly inflow and 

evaporation data

Generating inflow and 
evaporation time series by 

using ANN

Separating evaporation and inflow 
data from generated series for each 

month

Goodness of fit test

Fit probability distributions for 
reservoir inflow and evaporation data

Operation of the reservoir using 
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Operation of the reservoir 
using generated inflow data

Operation of the reservoir 
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parameters and distribution of 

performance indices

End
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Fig. 1   Methodology flowchart
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between the input and output are called hidden layers (Bozorg-Haddad et al., 2016; Ehsani 
et al., 2015; Fallah-Mehdipour et al., 2015; Jain et al., 1999).

For training the algorithm, the weights and biases of a neural network must be deter-
mined prior to the use of the network. Training is a phrase that usually refers to a super-
vised approach for determining weights and biases. One of the most commonly used 
methods for training in neural networks is the error propagation algorithm. To ensure high 
training accuracy and also prevent overfitting, a criterion is needed to stop the training pro-
cess (e.g., control the number of repetitions (epoch)). After the training process, the net-
work is ready to simulate the outputs associated with particular input vectors by using the 
resulting weights and biases.

In this study, a three-layer perceptron network with four neurons in the hidden layer 
was used. The Levenberg–Marquardt algorithm (Du & Stephanus, 2018; Iyer & Rhine-
hart, 1999) was used for network training. In the production process of the evaporation and 
inflow time series using the neural network, the 47-year evaporation and inflow data with 
time lags of one to six months, as well as 12, 24, 36 and 48 months were used as inputs and 
the time series of evaporation and inflow were produced as outputs. Note that the largest 
time lag was 48 months and the input and output data of the network were equal. So, 100 
43-year time series were produced. The number of the inputs for the training process was 
20 (10 pairs of the evaporation and inflow data) and the number of the outputs was two, 
which was the same as the generated evaporation and inflow. It should be noted that 70%, 
15%, and 15% of the data were used for the training process, the validation process, and the 
test, respectively.

2.3 � Goodness‑of‑fit test

The goodness-of-fit test is used to check how well sample data fit a particular statistical 
distribution from a population. The following steps are generally performed for such a test 
(González-Manteiga & Crujeiras, 2013):

(1)	 Specify the Null hypothesis ( H0 ) (Assume that the time series follows a particular 
statistical distribution)

(2)	 Select the test method and statistic
(3)	 Select the acceptance error and the level of trust for decision making
(4)	 Calculate the test statistic for the sample data
(5)	 Compare the series and make decisions based on the analysis

The Chi-square goodness-of-fit test was implemented in this study (Rolke & Gongora, 
2020). This test was used to compare the theoretical distribution of the actual data. The test 
statistic is given by (Karamouz & Araghinejad, 2011):

in which f  = frequency of actual data; f̂  = expected frequency based on the theoretical dis-
tribution tested; i = data point number; and NC = total number of data points.

According to this test, at least 5 samples are recommended for each category (Kar-
amouz & Araghinejad, 2011). The Chi-square distribution has (NC-NP-1) degrees 
of freedom, in which NP is the number of the estimated parameters for the desired 

(9)𝜒2 =

NC
∑

i=1

(fi − f̂i)
2

f̂i
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theoretical distribution. If the value calculated from Eq. (9) is less than the value of the 
Chi-square distribution (table values with the degree of freedom), the assumption of 
the admissibility of the information is accepted for the assumed distribution at a given 
acceptance level. In this study, after evaluating various distributions, the lognormal 
and normal distributions were, respectively, selected for the inflow and evaporation 
datasets because of their better performances.

2.4 � Uncertainty analysis

No events or phenomena can be precisely predicted. The term of risk is used to 
describe the probability of failure. In order to increase the reliability of water sup-
ply from reservoir systems, various types of uncertainty associated with the variables 
should be considered in the design and operation of these systems. The main purpose 
of uncertainty analysis is to determine the statistical characteristics of the output of a 
model as a function of probability of input parameters (Lee et  al., 2018). An uncer-
tainty analysis provides a framework for identifying the uncertainty associated with 
the output of a model. In addition, uncertainty analysis specifies the designers’ insight 
into the contribution of each of the probabilistic input parameters to the overall uncer-
tainty of the model output. This knowledge is essential for identifying, evaluating, 
and analyzing the uncertainty of important parameters that require more attention in 
the analysis, design, and operation of water resources systems (Duckstein and Plate, 
1987). Also, it should be noted that an additional source of uncertainty is associated 
with the model. This occurs as a result of unknown boundary conditions, simplifying 
assumptions, and the unknown effects and interactions of other variables that are not 
included. These uncertainties can be evaluated by comparing the results with other 
refined methods (Bai & Jin, 2016).

MCS was used for uncertainty assessment in this study. The model with random 
inputs generated random outputs. After many simulations, the probabilistic distribu-
tions of the output variables were determined. These distributions were used to esti-
mate the reliability and other statistical properties (such as dispersion and skewness) 
of the distributions of the output variables. The MCS facilitated such multiple simula-
tions to examine the system behaviors based on the changes in inputs (Maity, 2018). In 
this method, after identifying the indeterminate variables in the system’s performance, 
a probabilistic distribution was considered for each variable and a series of random 
numbers were generated and used for simulations.

In this research, the MCS method was used to evaluate the impacts of evaporation 
and inflow of the reservoir on its performance. For this purpose, 100 time series of 
47-year reservoir inflow data and the corresponding evaporation values were produced. 
Then, the statistics were generated for the reservoir operation. After operating the res-
ervoir, its physical parameters and performance indices were extracted. To determine 
the effect of evaporation uncertainty on the output variables of the system, their proba-
bilistic distributions were analyzed. Specifically, the evaporation uncertainty of each 
time series was evaluated based on the corresponding historical discharge data (i.e., 
inflow of the reservoir). Similarly, given the historical evaporation data, the effect of 
inflow uncertainty was assessed. In addition, the evaporation and inflow data were also 
used to investigate their joint uncertainty and the effects.
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2.5 � Performance indices for the reservoir system

Typically, the efficiency of a reservoir system is used to evaluate the performance of the 
model. The most important and useful criteria include reliability, resiliency, and vulner-
ability (; Delpasand et al., 2021).

The reliability of a reservoir system is quantified by the number of data in a satisfactory 
state divided by the total number of the data in the time series, indicating the likelihood 
that the reservoir is able to meet the downstream water demand.

	(A).	 The time-based reliability can be expressed as (Hashimoto et al., 1982):

in which RT  = time-based reliability; Nw = number of satisfactory periods; and N = total 
periods.

	(B).	 Similarly, the volumetric reliability can be written as (Ashofteh et al., 2019):

in which RV = volumetric reliability; 
∑T

t=1
Ret = total released water throughout the entire 

period; and 
∑T

t=1
Det = total water demand in the entire period.

It should be noted that the reliability criterion alone cannot determine the superiority of 
one system because this criterion does not specify the severity of the failure and the rate of 
return to success after each failure. Thus, the following criteria must also be defined.

The resiliency of a reservoir system represents its ability to recover from a failure state 
(unsatisfactory condition) and return to a satisfactory condition. The resiliency index can 
be expressed as (Bozorg-Haddad, 2018):

in which � = resiliency; fr = number of the states, in which a reservoir is unsatisfactory 
(failure), but its next state is satisfactory; and ft = total number of failures occurring during 
the entire operation period.

According to the definition, resiliency is equal to the probability of a success period 
after a failure period. It should be noted that during the reservoir operation period, if the 
system fails at all time steps or no failure occurs, the resiliency is not defined.

In the operation of water resource systems, the failure of a system usually does not have 
the same level of importance and impact. Vulnerability refers to the extent of possible sys-
tem failures and can be expressed as (Hashimoto et al., 1982):

in which, Mf  = largest failure observed in a continuous series of failures and OP = opera-
tion period. Equation 13 indicates that (Det−Ret)

Det
 should be calculated for each failure period 

(10)RT =
Nw

N

(11)RV =

∑T

t=1
Ret

∑T

t=1
Det

(12)� =
fr

ft

(13)Mf = MaxOP
(Det − Ret)

Det
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t, which is defined as lack of supply. The maximum lack of supply over the entire operation 
period is defined as the system vulnerability.

The methodology details of this study are shown in Fig.  1. The main aim of this 
study is to evaluate the effect of the joint uncertainties of evaporation and inflow of 
a reservoir on its release and storage. As shown in Fig. 1, for this purpose, after col-
lecting the historical inflow and evaporation data, the correlation between these two 
variables is analyzed to assess their joint uncertainty possibility (refer to Jothiven-
katachalam et  al. (2010) for more information about correlation evaluation). If there 
is a 100% correlation between the two variables, the uncertainty assessment for one 
variable can be performed by assessing the uncertainty of the other variable. But if 
the correlation between the two variables is lower than 100%, their joint uncertainty 
should be assessed. The lower correlation, the lower accuracy of the single uncertainty 
analysis. Then, the ANN and Chi-square methods are, respectively, used for generating 
the related time series and performing the goodness-of-fit test. Probability distribu-
tions are then fitted on the evaporation and inflow data, individually and jointly. For 
the purpose of uncertainty assessment, the Monte Carlo simulation is implemented. 
The histograms of the physical parameters of the reservoir and the distributions of the 
performance indices are created.

3 � Case study

The Kor River is the largest one in Southern Iran. The river basin is located in the 
northwest of Fars Province with geographical coordinates of [41˚51’:26˚52’ E] and 
[8˚30’:48˚30’ N] (Fig. 2). The drinking, agriculture, and industry sectors have priori-
ties of water supply for the downstream water demands. Due to the droughts in recent 
years, the annual inflow of the reservoir and its water release for meeting the agri-
cultural demand have been reduced, which caused extensive socioeconomic dam-
ages to the area. Also, the evaporation has increased due to the climatic impacts (e.g., 
temperature). Thus, it is necessary to assess the uncertainty of inflow and evapora-
tion and improve the prediction of the reservoir storage. So, the ultimate goal of this 
study is to estimate the probability distribution of the reservoir output influenced by 
the uncertainties of inflow and evaporation to meet the water demands of the region, 
which would further help identify proper operation policies of the Durudzan reservoir. 
Table 1 shows the characteristics of the reservoir. It should be mentioned that the data 
of the Durudzan reservoir (such as the water demand and its inflow) were obtained 
from the Iran’s Ministry of Energy.

As aforementioned, statistical analyses of the monthly reservoir inflow and evapora-
tion time series over a 47-year period from 1964 to 2011 were performed. A water year 
used in the analyses ranged from October 1 to September 30. Figure 3 shows the maxi-
mum, mean, and minimum values of the reservoir inflow and evaporation in different 
months from October to September for the entire 47-year period. As shown in Fig. 3, 
there are a wide range of changes in the inflow and evaporation of the reservoir in 
the study period, implying that the uncertainties of these variables are inevitable. For 
uncertainty assessment, Monte Carlo simulation was used in this study. Note that this 
method has been widely used for this purpose in many studies (e.g., King & Simon-
ovic, 2020; Marton & Paseka, 2017; Willis et al., 1984).
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4 � Results and discussion

This study focused on assessing the influences of the joint uncertainty of evaporation 
and inflow on the release and storage of the Durudzan reservoir. For this purpose, the 
correlation between evaporation and inflow was first analyzed. Under the circumstance 
of lacking an acceptable correlation, the joint uncertainty assessment was performed. 
The results of this assessment are detailed below.

Fig. 2   Location of Durudzan dam in Southern Iran
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4.1 � Neural network training for data generation

To determine the uncertainties of the evaporation and inflow of the reservoir, synthetic 
time series of these two variables were produced by using an artificial neural network. It 
should be noted that 70%, 15%, and 15% of the data were used for the training process, the 
validation process, and the test, respectively. Figure 4 shows the output values generated 
by the neural network versus the target values, as well as the correlation coefficient values 
for the training, validation, and test. It can be observed from Table  2 that October and 
March, respectively, had the lowest and highest inflows. April showed the highest standard 
deviation and the largest dispersion, whereas September had the least dispersion. Also, the 
values of the coefficient of variation obtained for the monthly historical and generated data 
showed that the dispersion of the generated data was lower than that of the historical data. 
It should be noted that when the inflow of the reservoir decreased, the evaporation was 
expected to increase since there was an inverse weak correlation between evaporation and 
discharge (or reservoir inflow), which varied from -0.60 to -0.045.

4.2 � Probability distribution of reservoir inflow

The Chi-square fitting test was used to measure the goodness of fit of the generated 
inflow data. The lognormal distribution was considered for the reservoir inflow data. 
Table 3 shows the results of the Chi-square test for the inflow data of all months. Since 
the inflows for all months obtained from the Chi-square test are smaller than the corre-
sponding table values with the degree of freedom, it can be concluded that the desired 
assumption is valid, which confirms the probability distribution of the inflow data. Fig-
ure 5 shows the histograms of the generated inflow data for all months and their fitted 
lognormal distributions. As shown in Fig. 5, the largest dispersion occurred in April, 
while September had the smallest dispersion with a sharper peak.

4.3 � Probability distribution of reservoir evaporation

Table 3 shows the results of the Chi-square test for the evaporation data of all months. 
For all months, the evaporation values obtained from the Chi-square test are smaller 

Table 1   Physical characteristics of Durudzan reservoir

Physical characteristics Values

Normal water elevation (meters above sea level) 1676.5
Storage at the normal water elevation (106 m3) 960.85
Dead storage (106 m3) 170
Equivalent water elevation to the dead storage (meters above sea level) 1650
Minimum experienced water elevation during operation (meters above sea level) 1658.77
Equivalent storage at the minimum experienced water elevation (106 m3) 275.48
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than the corresponding table values with the degree of freedom. Thus, the assump-
tion of the normal distribution of the evaporation data is accepted. Figure 6 shows the 
histograms of the evaporation data generated for all months, and their fitted normal 
distributions.

The evaporation histograms in Fig. 6 indicate that July and January, respectively, had 
the highest and lowest mean evaporation values. The highest and lowest standard deviation 
values of the generated and historical data occurred in July and December, respectively. 
The dispersion of the evaporation data was higher in the months with higher evaporation, 

Fig. 3   Maximum, mean, and minimum values in different months a inflow b evaporation
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and vice versa. Accordingly, the minimum dispersion of the evaporation data distribution 
was related to the months of December and January, while the distribution of the evapora-
tion data in the months of July and August showed the largest dispersion.

4.4 � Effects of the uncertainties of evaporation and inflow on reservoir performance

To evaluate the effects of the uncertainties of evaporation and inflow on the reservoir per-
formance, three reservoir performance indices (i.e., reliability, resiliency, and vulnerabil-
ity) were used and the results are summarized as follows:

(1)	 Effect of evaporation uncertainty on reservoir release

Table 4 shows the results of the effect of the evaporation uncertainty on the reser-
voir release in April–October. According to Table  4, the highest uncertainty of water 

Fig. 4   Simulated vs. target values for the training, validation, test, and total datasets
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release was caused by the uncertainty of evaporation in September, while the lowest 
uncertainty occurred in May. The difference between the uncertainties in the months 
of April and May can be attributed to a failure in April. In April, the higher inflow 
to the reservoir and the lower water demand resulted in greater evaporation due to the 
larger storage and water surface area, which led to more uncertainty (higher standard 

Table 2   Mean, standard deviation, and coefficient of variation of reservoir inflows for the historical and 
generated time series

Month Historical time series Generated time series

Average
(106 m3)

Standard devia-
tion (106 m3)

Coefficient of 
Variation

Average
(106 m3)

Standard devia-
tion (106 m3)

Coefficient 
of variation

October 25.2 11.1 0.44 26.6 9.9 0.37
November 32.2 14.5 0.45 33.7 12.8 0.37
December 59.7 41.1 0.69 60.8 38.4 0.63
January 83.4 81.9 0.98 86.9 73.8 0.85
February 108.1 74.8 0.69 110.7 68.8 0.62
March 143.2 83.5 0.58 146.7 74.4 0.51
April 143.1 86.3 0.6 144.8 77.2 0.53
May 76.9 49 0.64 79 47.4 0.6
June 39.7 26.3 0.66 37.7 25.1 0.67
July 31.5 13.4 0.43 29 12.1 0.42
August 27.5 11.5 0.42 25.7 9.7 0.38
September 25.9 11.1 0.43 26.7 9.5 0.36

Table 3   Results of the Chi-square goodness-of-fit test for the inflow and evaporation data for all months

Month Evaporation Inflow

Test value
(106 m3)

Degrees of 
freedom

Table value at 
5% error area

Test value
(106 m3)

Degrees of 
freedom

Table value at 
5% error area

October 52.45 49 66.34 56.29 44 60.48
November 49.61 42 58.12 52.33 41 56.94
December 50.8 50 67.51 49.94 43 59.3
January 45.64 49 66.34 41.31 40 55.76
February 55.04 44 60.48 46.02 41 56.94
March 42.12 50 67.51 62.11 50 67.51
April 58.93 48 65.17 56.04 45 61.66
May 43.92 43 59.3 46.32 48 65.17
June 54.88 48 65.17 42 45 61.66
July 56.89 46 62.83 54.1 43 59.3
August 51.68 49 66.34 46.69 51 68.67
September 57.81 48 65.17 31.92 39 54.57
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deviation) in April than May. In the months of July and September, as the uncertainty of 
the evaporation variable was high, the uncertainty of water release increased. It should 
be noted that for the months that are not listed in Table 4, their release values are equal 
to the water demand values. Figure 7 shows the histograms of the reservoir releases in 
October, April, May, and September under the influence of the evaporation uncertainty. 
The least dispersion and uncertainty were observed in April. In contrast, the histogram 
of September exhibited the most dispersion, and the frequency distribution of the water 
releases was affected by the higher uncertainty of evaporation.

(2)	 Effect of inflow uncertainty on reservoir release

Table 4 shows the mean and standard deviation values of the reservoir releases under 
the influence of inflow uncertainty. According to Table 4, May has the least uncertainty 
of release and July has the highest release uncertainty. In other months that are not 
included in the table, the release values are fixed (i.e., no uncertainty). In October and 

Fig. 5   Distributions of the reservoir inflows in different months with the fitted lognormal distributions
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May of the lowest uncertainties, the release values are close to the water demands in 
most periods. That is, the number of the periods in which the reservoir failed to satisfy 
its downstream demands is limited. This can be attributed to the low water demand in 
October and the maximum storage of the reservoir in May, which also resulted in the 
successful operation of the reservoir in these two months. Thus, the output uncertainties 
for these two months are lower than those in other months. For the months from June to 
September with the higher water demands, their uncertainties are also higher. In these 
months, the number of failure periods is greater and hence the uncertainties in the water 
release are higher. The number of failures in July and the induced output uncertain-
ties are higher than those in other months. Figure 8 shows the histograms of the reser-
voir water releases in the months of October, May, July, and September. The histograms 
indicate that July has the highest uncertainty, and May has the lowest uncertainty. The 
high-frequency values in October and May are close to the downstream water demands 
for the corresponding months.

Fig. 6   Distributions of the reservoir evaporation in different months with the fitted normal distributions
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(3)	 Effect of evaporation uncertainty on reservoir storage

Table 5 shows the mean and standard deviation values of the reservoir storage vol-
umes resulting from the uncertainty of evaporation. According to Table  5, May and 
October, respectively, had the largest and smallest average storage volumes of the res-
ervoir. In the months of October, November, and December, due to the lower inflows 

Table 4   Mean and standard deviation of reservoir release values in different months under the influences of 
the uncertainties of evaporation and inflow

Month Water release influenced by evaporation Water release influenced by inflow

Mean (106 m3) Standard deviation 
(106 m3)

Mean (106 m3) Standard 
deviation (106 
m3)

October 16.5 0.05 18.98 0.97
April 113.2 0.11 – –
May 139.31 0.04 148.34 0.87
June 106.54 0.13 119.57 3.92
July 72.54 0.15 81.35 4.49
August 81.43 0.13 85.41 3.92
September 60.42 0.15 64.1 2.8

Fig. 7   Histograms of reservoir releases influenced by the evaporation uncertainty for different months
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of the reservoir, the storage was low and then gradually increased with the increase in 
the inflow into the reservoir. In May, the reservoir storage reached its maximum and 
then decreased with the increase in the output and the decrease in the input until Sep-
tember. The evaporation from the water surface of the reservoir was similar for differ-
ent months. However, May had the smallest standard deviation of the storage volumes, 
while August and September showed the largest standard deviation values of the stor-
age volumes. Because of the higher uncertainties of water release and evaporation, the 
months of August and September had the largest uncertainty of the reservoir storage. In 
May, because the average reservoir storage was at its highest level, the storage had the 
least uncertainty. Figure 9 shows the histograms of reservoir storage volumes under the 
influence of the uncertainty of evaporation for November, March, May, and August. It 
can be observed that the distributions of storage volumes in different months are closely 
related in terms of dispersion. But smaller and greater dispersions can be observed in 
May and August, respectively.

(4)	 Effect of inflow uncertainty on reservoir storage

Table  5 shows the mean and standard deviation values of the reservoir storage vol-
umes under the influence of the inflow uncertainties in different months. Table  5 indi-
cates that the reservoir storage was the lowest in October, gradually increased in the fol-
lowing months, reached the highest in May, and eventually decreased with the decreased 
inputs and increased releases from June to September. Depending on the uncertainty of the 

Fig. 8   Histograms of reservoir releases influenced by the inflow uncertainty for different months
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inflows of the reservoir in different months, the storage volumes of the reservoir were also 
most uncertain in the months when the inflow uncertainties were higher. This is especially 
true for March, which had the highest uncertainty in the reservoir storage. The uncertainty 
of the reservoir inflow in April was greater than that of March. Also, the uncertainty of the 
storage in April was higher than that in March. It should be noted that in April, the number 
of periods in which the reservoir storage reached its highest level was greater than that 
in March, which led to the lower uncertainty in April. In October, the uncertainty of the 
storage volume of the reservoir was also the lowest. Due to the higher uncertainties of the 
inflows of the reservoir in August and September, the uncertainties of the storage volumes 
of the reservoir in these two months were lower than that in October. However, due to the 
lower uncertainty of the reservoir water release in October, the uncertainty of the reservoir 
storage in October was lower than those in August and September. Figure 10 shows the 
histograms of the reservoir storage volumes for October, March, May, and August under 
the influence of the uncertainty of the inflows into the reservoir. It can be found that the 
uncertainties of the reservoir storage volumes in May and March were greater than those in 
October and August.

In summary, in the months of August and September, there was a high uncertainty 
of water release and storage caused by the uncertainties of the reservoir evaporation and 
inflow. Note that the lowest inflow and the highest evaporation occurred in these two 
months. In contrast, May had the lowest uncertainties of reservoir storage and water release 
due to its highest storage level. Therefore, with the increase in the reservoir inflow mainly 
induced by heavy rainfall and snowmelt, the uncertainty of water release and reservoir stor-
age tended to be lower.

Table 5   Mean and standard deviation of reservoir storage in different months under the influence of the 
uncertainties of evaporation and inflow

Month Evaporation Inflow

Mean (106 m3) Standard deviation 
(106 m3)

Mean (106 m3) Standard 
deviation (106 
m3)

October 445.73 0.46 432.73 21.53
November 448.25 0.47 435.42 22
December 472.35 0.48 460.56 23.29
January 529.18 0.48 516.93 32.5
February 608.07 0.48 603.59 35.59
March 692 0.47 699.34 36.22
April 753.42 0.47 776.2 32.21
May 753.8 0.39 783.46 30.83
June 683.07 0.44 705.72 31.87
July 605.6 0.48 612.62 29.46
August 553.01 0.5 548.61 26.21
September 488.94 0.5 478.74 23.42
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4.5 � Reservoir performance indices and uncertainty assessment

The three performance indices were used, in addition to the physical parameters of the res-
ervoir, to evaluate the effects of the reservoir evaporation and inflow on the performances 
of the reservoir. For this purpose, the time-based and volumetric values of the reliability, 
resiliency, and vulnerability indices were calculated. It should be noted that higher reli-
ability, lower vulnerability, and higher resiliency can make the reservoir operation more 
successful since higher reliability means higher water supply, lower vulnerability means 
a lower extent of failure, and higher resiliency implies a higher ability for the system to 
quickly recover from a failure. Note that the uncertainty of evaporation did not affect the 
time-based reliability and resiliency indices. In other words, the uncertainty of evapora-
tion did not induce the change in the stage of the reservoir from failure to a successful 
state or vice versa. Also, the uncertainty of evaporation was not great enough to affect 
the uncertainty of resiliency. Table 6 lists the mean and standard deviation values of the 
volumetric reliability and vulnerability indices under the influence of evaporation uncer-
tainty. According to Table  6, the magnitude of the failures in the vulnerability criterion 
was greater than the release volume changes in the volumetric reliability. Therefore, the 
uncertainty of vulnerability was higher than the uncertainty of the volumetric vulnerability. 
Figure  11 displays the histograms of the volumetric reliability and vulnerability indices 
under the influence of evaporation uncertainty. The histograms indicate that the vulnerabil-
ity index exhibited greater dispersion than the volumetric reliability under the influence of 

Fig. 9   Histograms of reservoir storage volumes influenced by the evaporation uncertainty in different 
months
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the uncertainty of evaporation. Table 7 shows the details on the uncertainties of the three 
performance indices under the influence of the inflow uncertainty. Higher reliability values 
can be observed in Table 7 because when the inflows to the reservoir were high, the water 
demands were low and the reservoir operation was successful in most months of the year.

Considering the high values obtained for the reliability criterion, the reservoir seemed 
to be successful in meeting the water requirements. However, considering the obtained val-
ues for the resiliency and vulnerability criteria, it is obvious that this reservoir was not so 
successful. The operation of the reservoir resulted in low resiliency and high vulnerability 
values because in the standard operation policy the water supply demand was considered 
only in the current period. Failing to consider the supply demand in the following periods 
led to severe failures. It seems that adopting a better way to operate the reservoir (such as 
optimization) would reduce the level of vulnerability and increase resiliency. According 
to Table 7, the highest and lowest values of the coefficient of variation are related to the 
resiliency and the volumetric reliability, respectively. The histograms in Fig. 12 show the 
distributions of the performance indices under the influence of inflow uncertainty, indicat-
ing that the vulnerability has more dispersion than other indices and the least dispersion is 
related to the volumetric reliability.

Fig. 10   Histograms of reservoir storage volumes influenced by the inflow uncertainty in different months
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5 � Conclusion

Uncertainty analysis of reservoir inflow and evaporation is crucial for efficient reservoir 
operation in order to decide the optimal water release for various purposes. For the varia-
bles that do not have 100% correlation, a joint uncertainty analysis should be implemented 
because a single uncertainty analysis has low accuracy. In other words, the lower correla-
tion, the lower accuracy for a single uncertainty analysis. Due to the decrease in the annual 
inflow of Durudzan reservoir and the increase in its evaporation induced by the droughts 
in recent years, its water release has been reduced, which caused extensive socioeconomic 
damages. Therefore, uncertainty assessment of these variables is inevitable. In this study, 
the effects of the joint uncertainties of the evaporation and inflow of this reservoir on its 
performance variables (storage and release) were investigated. For this purpose, 100 time 
series of 47-year reservoir evaporation and inflow data were generated by using the Monte 
Carlo simulation and utilized to operate the reservoir using an artificial neural network and 
following the standard operation policy method.

The results showed that the lowest and highest reservoir inflows occurred in the dri-
est months (September and October) and the wettest months (March and April), respec-
tively, and hence April and September had the highest and lowest inflow uncertainties, 
respectively. Also, for the reservoir evaporation, July and January had the highest and low-
est evaporation values, which resulted in the highest and lowest uncertainties of evapo-
ration, respectively. Regarding the reservoir release and storage, the highest and lowest 
uncertainties of the reservoir release occurred, respectively, in July and May with standard 
deviation values of 4.49 and 0.87 (MCM) under the influence of the inflow uncertainty 
and, respectively, in September and May with standard deviation values of 0.15 and 0.04 
(MCM) under the influence of the evaporation uncertainty. Therefore, May had the lowest 
uncertainty in water release under the influences of inflow and evaporation. The highest 
and lowest uncertainties of the reservoir storage occurred, respectively, in August and Sep-
tember and in May with standard deviation values of 0.50, 0.50, and 0.39 (MCM) under 
the influence of the evaporation uncertainty and, respectively, in March and October with 
standard deviation values of 36.22 and 21.53 (MCM) under the influence of the inflow 
uncertainty. It can be concluded that in months of July to September, there were higher 
uncertainties in both water release and storage of the reservoir under the influence of its 
inflow and evaporation.

According to the coefficient of variation, the highest uncertainty was related to the resil-
iency and the lowest uncertainty was associated with the volumetric reliability. Consider-
ing the values obtained for vulnerability and resiliency indices, it is recommended that res-
ervoir operation policies with lower vulnerability and higher resiliency be adopted. Also, 
it is recommended that the uncertainties associated with the model and water demands be 
considered in future studies.

Table 6   Mean and standard 
deviation of volumetric reliability 
and vulnerability under the 
influence of the uncertainty of 
evaporation

Performance index Mean (%) Standard 
deviation 
(%)

Volumetric Reliability 87.50 0.05
Vulnerability 80.02 0.50
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Fig. 11   Distributions of volumetric reliability and vulnerability indices under the influence of the evapora-
tion uncertainty

Table 7   Uncertainty assessment 
of performance indices under the 
influence of inflow uncertainty

Performance index Mean (%) Standard 
deviation (%)

Coefficient 
of variation

Time-based Reliability 92.13 92.13 0.024
Volumetric Reliability 93.11 93.11 0.020
Vulnerability 76.27 76.27 0.073
Resiliency 32.20 32.20 0.158
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