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Abstract
Groundwater ecosystems have unparalleled environmental value. Accurate modeling 
of groundwater level (GWL) fluctuations is a vital requirement for the protection of the 
groundwater ecosystems. The GWL modeling is a challenge due to complexities of the 
underground geological structure. Among the various modeling methods, artificial intel-
ligence (AI)-based approaches serve as desirable alternatives due to their distinctive and 
potent properties. One of the most practical AI-based approaches is an artificial neural 
network (ANN) model. The purpose of the current study was to apply time delay neural 
networks (TDNN) with different network structures and input delays to model the GWL 
fluctuations. The variables used in the construction and validation of the models were aver-
age weekly GWL from January 2002 to January 2013 in two monitoring sites in Semnan/
Sorkheh plain, Iran. The study area is an arid region, where overutilization of groundwater 
threatens the water security in this area. The computational results of the current research 
demonstrated that the TDNN model is a practical tool in modeling time-series GWL com-
pared to the other state-of-the-art AI-based approaches. Future studies are recommended 
to explore application of proposed model for more sustainable and effective Groundwater 
Resources Management (GWRM).

Keywords  Groundwater level (GWL) · Forecasting · Modeling · Time delay neural 
networks (TDNN)

1  Introduction

Groundwater is considered a vital source of drinking water in the world (Diodato 
& Ceccarelli, 2006). Also, the groundwater ecosystem has been a valuable inherent 
because of the delivery of several massive services such as water treatment, biodeg-
radation and elimination of different types of contaminants, nutrient storage and recy-
cling, and droughts and flood mitigation (Griebler & Avramov, 2014; Torres-Perez 
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et al. 2010). Any change in physical (such as groundwater level (GWL) fluctuations) 
and chemical nature of aquifers can significantly affect the groundwater ecosystems 
(Khoshand et al. 2018). The sustainable protection of groundwater ecosystem through 
an effective Groundwater Resources Management (GWRM) is essential to reduce the 
associated risks of GWL extremes in addition to ensuring access to drinking water 
(Kamalan et  al. 2009). Long-term evaluation of GWL in aquifers is important in the 
GWRM, which enables quantifying the groundwater availability and also provides 
more comprehensive knowledge to identify the causes of GWL fluctuations (Chang 
et al., 2015).

The GWL fluctuations can have natural causes (such as aquifer deformation and cli-
mate change) or anthropogenic reasons (such as excessive groundwater pumping and 
extractions) (Mohanty et al., 2015). Precise and consistent assessments of GWL play a 
central role, as mentioned evaluations can deliver pivotal data on the quantitative and 
dynamics groundwater conditions of any aquifer (Tutmez, 2009). In addition to reduc-
ing impacts such as aquifer compaction and land surface subsidence, accurate GWL 
forecasts also allow for the development of appropriate GWRM (Banerjee et al., 2009).

However, physical-, statistical- and conceptual-based approaches have been widely 
used to predict the GWL fluctuations, faced several practical limitations such as mod-
eling time and insufficiency of input parameter and data (Daliakopoulos et al., 2005). 
So, an accurate model capable of tackling the precise behavior besides time-variant 
trend of GWL is required for the sustainable GWRM. Under these circumstances, arti-
ficial intelligence (AI)-based models serve as desirable alternatives because of the 
simplicity in addition to their consistent results (Sahoo & Jha, 2013; Wang, 2019). 
It should be noted that the main advantages of AI models are the ability to model 
complicated phenomena without accurately representing the prevailing physical laws 
and explicitly describing physical properties (Nayak et  al., 2006). Several AI-based 
approaches have been developed to predict and simulate the value according to the 
evolutionary algorithms such as ant colony optimization (ACO), genetic algorithm 
(GA), and artificial neural network (ANN), as optimization methods (Salehnia et  al., 
2019).

One of the most practical AI-based models is the ANN model (Sahoo & Jha, 2013). 
The ANNs are computing models stimulated by biological neural networks. Typically, 
each ANN is a set of processing units called artificial neurons, as edge-to-edge inter-
connection. Each artificial neuron may have several inputs and only a single output. 
All inputs are multiplied by the weight of the edge. The weighted data are processed 
through a summation function and then fed into transfer function (or activation func-
tion) that scale or compare the output of summation function with a specific threshold 
to get the output. Generally, any ANN is composed of separate layers, which are input, 
(in most cases) hidden, and output layers. It can be said that the ANN should be trained, 
meaning the adjustment of edge weights and thresholds for optimizing the ANN model 
performance. The training process can be carried out through different training algo-
rithms including LM (Levenberg-Marquardt), BP (backpropagation), and BR (Bayesian 
regularization) algorithms. Moreover, there are a variety of ANNs, such as FNNs (feed-
forward neural networks), RNN (recurrent neural networks), MLP (multi-layer percep-
tron), RBF (radial basis function), and SOM (self-organizing map). The objective of 
this study is developing a novel time delay neural network (TDNN) model for the pre-
diction of GWL in Semnan/Sorkheh plain, Iran, in two sites, by considering time series 
data. Moreover, the performance of developing model was evaluated through different 
performance criteria.
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2 � Literature reviews

Several new types of research proposed a promising ANN model in the prediction of GWL 
fluctuations. Chang et al. (2015) proposed two ANN-based models for predicting the GWL in 
the Qinghai-Tibet plateau, China. The inputs of the first ANN model included GWL, tempera-
ture, and precipitation, while the inputs of the second one included only precipitation and tem-
perature. Both models were trained through the LM algorithm. Attained results implied that 
the first model is more accurate to predict the GWL in the studied area. Gholami et al. (2015) 
proposed a MLP-based model (which is trained by LM algorithm) to predict annual GWL 
fluctuations (in two wells) in southern coasts of Caspian Sea, Iran. The inputs of this model 
were precipitation and tree-ring diameter. The results revealed that the annual fluctuations of 
GWL are predictable with a combination of dendrochronology and ANN models. Mohanty 
et  al. (2015) investigated the accuracy of several dissimilar training algorithms, including 
GDX, BR, and LM, in a FNN model to predict weekly fluctuations of GWL in 18 tube wells 
in Kathajodi River, India; the inputs were rainfall, water level, and evaporation, river stage, 
and pumping rates. Their results showed that the FNN model with GDX training algorithms, 
encompassing 40 hidden layers, was the most suitable model with RMSE of 0.2397. The 
MLP model was employed for estimation the GWL in Singapore (Sun et al., 2016); the inputs 
included surrounding reservoir levels and rainfall, and the LM algorithms were applied for 
training. The results showed the ability of developed model to provide a precise prediction 
with one-day delay, while the accuracy of the model decreases significantly by increasing the 
delay to three and seven days. Ghose et al. (2018) examined the impacts of temperature, rain-
fall, evapotranspiration, runoff, and humidity on the monthly flocculation of GWL in Odisha, 
India, using the RNN model. The findings exhibited that the runoff and evapotranspiration 
could significantly influence the GWL, and thus the inclusion of these inputs in any ANN 
model to predict the GWL enhances the accuracy of model. Lee et al. (2019) examined the 
applicably of ANN model to predict the hourly fluctuations of GWL in different 13 wells in 
Yangpyeong, South Korea. The effects of Groundwater Heat Pump (GWHP) and Water Cur-
tain Cultivation (WCC) on the GWL were examined in addition to natural inputs. It was found 
that the precipitation has a limited impact on the GWL and thus can be ignored from input 
variables. Zhang et al. (2019) have been studied the application of different ANN models for 
prediction of the GWL in Zhoushan Island, China. It was found that wavelet analysis is able 
for enhancement of the performance of the studied models. Furthermore, data pre-processing 
can significantly influence the performance of model through capturing/enhancing valuable 
information. The obtained results have been also demonstrated that wavelet-NARX (WA-
NARX) has the best performance for prediction of GWL flocculation among studied models, 
especially for short-term periods. In another study carried out by Roshni et al. (2020), perfor-
mance of emotional artificial neural network combined to genetic algorithm (EANN-GA) for 
monthly simulation of GWL in Konan groundwater basin (Japan) was investigated. Results 
have shown that EANN-GA models are more precise in comparison with the rest of stud-
ied AI-based models (including EANN and FFNN). Also, the performance of studied EANN 
models have had the better performance than that of FFNN and GRNN models. A FNN (with 
different architectures) is examined for prediction of GWL flocculation in West Delhi, India 
(Malik & Bhagwat, 2021). The recharge rate, population growth, and paved area were consid-
ered as input variables. The results demonstrated that the model with architecture of 3–15-1 
(with activation function of log-sigmoid) can predict GWL flocculation more accurate in 
comparison with the rest of studied architectures. Derbela and Nouiri (2020) have been also 
studied prediction GWL (in Nebhana, Tunisia) by ANNs. The evapotranspiration rainfall and 
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water table level during the period 2000–2018 were taken as input parameters. The obtained 
results revealed that the studied ANN model is a capable tool such that RE and RMSE values 
were less than 19.00 and 2.00%, respectively, and also all R2 values were close to 1.

It should be noted that the application of ANN is not limited to the area of the current 
research. Several previous studies applied successfully this technique in various fields of 
research such as chemical engineering (Bhowmik et al., 2019; Debnath et al., 2016), water 
management (Sang et al., 2015), and biology (Debnath et al., 2016).

Previous researches mainly have mainly focused on the impact of different time-independ-
ent inputs on the prediction of GWL flocculation using different ANN models, but mostly 
ignored the impacts of time-dependent inputs. Moreover, the majority of GWL forecasting 
researches have been investigated the long-time GWL flocculation forecasting (mainly due to 
the computational burden) and thereby short-time GWL flocculation forecasting is relatively 
new.

3 � Material and methods

In the following sections a concise description of used material and methods in the current 
research is provided.

3.1 � Study area

The Semnan/Sorkheh plain is located in the north and northwest of Semnan province in the 
central north of Iran. The study area is positioned between longitudes 53° 3′ E and 53° 35′ 
E and latitudes 35° 22′ N and 35° 39′ N. The total area of Semnan/Sorkheh plain is approxi-
mately 703 km2 (which is under the authority of Semnan province) and is limited to Peygham-
broon and Chaghandaroon mountains from north, Sebaradaran mountain from east, Siahtape 
and Lasjerd heights from west, and Hajiabad heights and Biabanak plain from South (Fig. 1).

The main climate of Semnan/Sorkheh plain is a hot desert climate that is very hot and 
rainless in summers and relatively warm in winters. The precipitation (the average annual 
value) is 139.5  mm (Iranian Meteorological Organization, 2016). The temperature may 
reach to 44 °C in summer and may drop less than − 11 °C in winter (Iranian Meteorologi-
cal Organization, 2016). The altitude (average value) is 1152 m from sea in the study area. 
The plain is surrounded by salt crust (which is called Namak Lake), sand fields, and allu-
vial plains in the southeast and east, and fluvial plains and highlands in the northwest and 
west. It should be noted that no distinct permanent river in the study area was identified, 
and water discharge from seasonal streams is very limited. Therefore, it can be concluded 
that a major resource of freshwater supports industrial, domestic, and agricultural activities 
in the study area. Recently, the GWL has a sharp drop in the plain, which can be due to a 
decrease in stream flows and heavy pumping of groundwater.

3.2 � Data collection and monitoring

The GWL data were collected by weekly monitoring GWL in two monitoring sites (Fig. 1) 
from January 2002 to January 2013. The measurements were taken manually. The charac-
teristics of mentioned sites are presented in Fig. 1.

The first 522-week data (from January 2002 to January 2012) were used to develop 
the model, which randomly divided into three subsets of 366 weeks (70%) for training, 
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78 weeks (15%) for validation, and 78 weeks (15%) for testing the developed model. 
Training, validation, and testing processes were implemented to enhance the perfor-
mance of model. Practically, the training data include the number of input values and 
the corresponding output values (generally defined as the target). The model is firstly 
fitted on a training dataset in order to determine the initial parameters of the model 
(such as bias and weights), and then the results are compared with the target, for each 
set of training dataset. Different values of model parameters are tried to adjust val-
ues of parameters that the computed output values most closely match to the target 
values. After completing the training stage, the fitted model is applied for the second 
dataset, which is known as the validation dataset. This set of dataset delivers an unbi-
ased assessment of a model fit on the training dataset while adjusting the hyperparam-
eters of model (such as number of hidden layer). The validation datasets are also used 
for regularizing by early stop, which will stop the training process by increasing the 
error in the validation dataset. Finally, the model parameters are applied just once to 
the testing dataset. It should be noted that the testing dataset is not used at all during 
training and validation processes. The testing process can estimate that the developed 
model will be presented exactly when using unseen data.

Fig. 1   Study area and details of monitoring sites
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3.3 � Artificial neural networks

The ANNs can be categorized into dynamic and static neural network models. The main 
difference between mentioned categories is that the order of inputs does not affect the 
output in the static ANNs, but significantly influence the output in the dynamic ANNs 
(Beale et al., 1992). One of the dynamic ANNs used in the current study is time delay 
neural network (TDNN). The TDNN can be considered as an extended MLP that com-
bines the robustness and discriminative power of neural network with a time-delayed 
architecture. The TDNN can deal with the problems of time variant that are scaled and 
translated over time. In comparison with the conventional ANN methods, the neurons 
can store the history of their input in the TDNN and accordingly the network as a whole 
is able to adapt not only to a set of patterns, but also to a set of pattern sequences (Kai-
ser, 1994). On the other word, the TDNN links and compares current input to history 
of inputs (Waibel et al., 1989). In addition, the TDNN architecture reduces invariance 
under shifts in time as well as the number of independent connection parameters (Sugi-
yama et al., 1991).

The ANN-based models can have several hyperparameters and parameters, while bias 
can be considered as one of the fundamental one. The bias acts as a specific type of neuron, 
called as bias neuron. Each ANN consists of neurons that are elements which take input 
and apply an activation function to it. The bias neuron is a distinct one added to each layer 
that is able to store a certain value.

In the TDNN, the input to each node consists of the outputs of the previous nodes in 
the current time step (t) as well as the previous time steps (t, t − 1,… t − d + 1) , ( d is the 
desired time delay). The general expression for TDNN is given by:

In the above expression,  xt+1 pertains to the observation at time step t + 1, f is defined a 
transfer function, xi(i = t, t − 1… t − d + 1) is the input time series, et+1 is error that should 
be minimized. The typical TDNN structure and related artificial neuron are illustrated in 
Fig. 2.

In the current research, the LM algorithm was applied for training developed TDNN 
models. Previous studies demonstrated that the mentioned algorithm is the most appropri-
ate one for the GWL prediction (Banerjee et al., 2009; Kouziokas et al., 2018; Sahoo & 
Jha, 2013; Sreekanth et al., 2011; Sun et al., 2016). The LM algorithm can be considered 
as modified classic Newton algorithm, which has been applied to minimize the problems in 
optimum solutions (Rajaee et al., 2019). Furthermore, tangent-sigmoid and liner activation 
functions were applied in the hidden and output layers, respectively. The sigmoid func-
tion is a continuous and differentiable function which is increasing in the defined domain 
monotonically (Ravansalar & Rajaee, 2015). The properties of developed TDNN model 
are summarized in Table 1. It should be noted that the use of raw data can directly cause a 
reduction in the accuracy of TDNN model (Wagh et al., 2018), and therefore, all input data 
were pre-processed in this study.

The data pre-processing results in higher accuracy and lower computational per-
formance. The data pre-processing is generally conducted to modify the size of input 
dataset, remove any noisy dataset, and provide smoother relationships (Mohd Nawi 
et al., 2013). Several techniques have been developed in the literature for the data pre-
processing, such as z-score normalization, min–max normalization, and scaling nor-
malization (Mohd Nawi et  al., 2013). According to the literature review (Bhowmik 

(1)xt+1 = f
(
xt.xt−1.xt−2 … xt−d+1

)
+ et+1
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et  al., 2018), the min–max normalization technique was applied in the current study 
and all the datasets were normalized in the range of zero to one through:

where X is variable, and Xmax and Xmin are the maximum and the minimum values of vari-
ables, respectively. It should be mentioned that the framework of current research is illus-
trated in Fig. 3.

(2)Xnorm =
X − Xmin

Xmax − Xmin

Fig.2   a Typical TDNN with one hidden layer; b typical artificial neuron

Table 1   Properties of developed 
TDNN model

Name Number of hidden 
layers

Number of delays 
(week)

Bias

TDNN1 2 1 0.53
TDNN2 3 − 0.25
TDNN3 8 0.29
TDNN4 4 1 0.67
TDNN5 3 0.41
TDNN6 8 0.77
TDNN7 8 1 0.84
TDNN8 3 0.31
TDNN9 8 0.15
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3.4 � Model performance criteria

Coefficient of determination (R2), root-mean-square error (RMSE), mean absolute error 
(MAE), absolute average deviation (AAD) were employed for assessment of the per-
formance of proposed models (Bhowmik et al., 2018). The RMSE determines the dis-
crepancy between the predicted and real values, and thereby, the most accurate model 
has the lowest RMSE. The R2 is a statistical measure to express the proportion of the 
initial uncertainty of the model. The R2 = 1 (which is unlikely to occur) means exact fit 
between predicted and observed values. The mentioned statistical criteria can be calcu-
lated as:

where N is the number of observations, xi and xi are the observed and predicted data val-
ues, respectively.

(3)
RMSE =
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4 � Results and discussion

In the current study, several TDNN architectures with different numbers of time delay (1, 
3, and 8 weeks) and hidden layers (2, 4, and 8 hidden layers) were used to simulate the 
GWL. The initial numbers of tapped delay and hidden layers were selected according to 
the recommendations in the literature.

The TDNN architecture with the best performance criteria (the lowest RMSE, AAD 
and MAE, as well as the highest R2 value) within three training, validation, and test-
ing stages was considered to have ideal number of hidden layers. The derived perfor-
mance criteria in all stages (including the training, validation, and testing) are pre-
sented in Tables  2, 3, and 4. As seen in Tables  2, 3, and 4, the RMSE AAD, MAE 
values were decreased in both monitoring sites (while the R2 value was increased) in 
each of specific delay times when number of hidden layers increases from 2 to 8, such 
that TDNN7, 8, and 9 have higher values of R2

(training), R2
(validation), and R2

(testing) in com-
parison with TDNN1, 2, and 3, respectively. Moreover, in each of specified number of 
hidden layers, where the delay times increase from 1 to 8 weeks, the R2 value increases 

Table 2   Model performance criteria of developed TDNN model (training stage)

Name Site #1 Site #2

R2 RMSE AAD (%) MAE R2 RMSE AAD (%) MAE

TDNN1 0.792 0.311 0.076 0.009 0.636 0.336 0.297 0.022
TDNN2 0.771 0.334 0.119 0.014 0.596 0.399 0.318 0.026
TDNN3 0.793 0.341 0.099 0.014 0.683 0.387 0.238 0.016
TDNN4 0.781 0.346 0.127 0.015 0.644 0.372 0.266 0.023
TDNN5 0.836 0.304 0.101 0.012 0.720 0.333 0.208 0.020
TDNN6 0.838 0.304 0.087 0.010 0.789 0.295 0.120 0.011
TDNN7 0.845 0.289 0.077 0.007 0.756 0.326 0.148 0.012
TDNN8 0.866 0.278 0.056 0.005 0.565 0.384 0.292 0.023
TDNN9 0.991 0.162 0.019 0.001 0.965 0.156 0.061 0.002

Table 3   Model performance criteria of developed TDNN model (validation stage)

Name Site #1 Site #2

R2 RMSE AAD (%) MAE R2 RMSE AAD (%) MAE

TDNN1 0.747 0.360 0.135 0.019 0.584 0.379 0.312 0.032
TDNN2 0.727 0.377 0.167 0.024 0.548 0.440 0.332 0.036
TDNN3 0.757 0.374 0.146 0.025 0.634 0.417 0.254 0.028
TDNN4 0.744 0.378 0.162 0.024 0.607 0.401 0.279 0.033
TDNN5 0.798 0.339 0.129 0.018 0.687 0.363 0.218 0.026
TDNN6 0.808 0.325 0.115 0.018 0.770 0.321 0.132 0.019
TDNN7 0.818 0.309 0.102 0.014 0.738 0.349 0.157 0.019
TDNN8 0.838 0.282 0.076 0.010 0.554 0.406 0.298 0.027
TDNN9 0.989 0.162 0.041 0.008 0.960 0.168 0.069 0.008
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in the both monitoring sites, while the values of RMSE AAD, MAE decrease. There-
fore, it can be concluded that the TDNN9 has the best performance among all devel-
oped models with R2

(training), R2
(validation), and R2

(testing) of 0.991, 0.998, and 0.981 (in 
the Site 1) and 0.965, 0.960, and 0.952 (in the Site 2), respectively. However, some 
models yielded smaller RMSEs, AADs, and MAEs (and higher R2 values) for training 
but relatively high errors for validation and testing, and so that were not selected as the 
best model.

Figures 4 and 5 compare the predicted (according to the optimum number of hid-
den layers which is 8) and the observed GWL fluctuations in the studied wells. The 
variable values of RMSE (0.17–0.34 in the Site 1 and 0.19–0.43 in the Site 2) and R2 
(0.78–0.98 in the Site 1 and 0.55–0.95 in the Site 2) can be seen during testing mod-
els. In comparison with the previous relevant researches (Daliakopoulos et al., 2005; 
Ebrahimi & Rajaee, 2017; Mohanty et al., 2010; Nayak et al., 2006; Taormina et al., 
2012; Yoon et al., 2011), which employed ANN models for the GWL estimation, the 
obtained results are satisfactory that implies the application of TDNN models to pre-
dict the GWL is a suitable approach, even if there are limited data on the physical 
characteristics and condition of the aquifer (Mohanty et  al., 2015). As illustrated in 
Figs.  4 and 5, the estimated values in the Site 2 have more flocculation/error when 
comparing with the Site 1. Considering the location and features of the studied area, it 
can be found that the anthropogenic reasons (especially excessive groundwater pump-
ing and extractions) are more highlighted in the Site 2, thereby causing higher predic-
tion error. Mohanty et al. (2015) also reported that efficient prediction of GWL in high 
groundwater-consuming sites is challenging through AI-based models because of the 
presence of several uncertainty factors.

The performance of the developed models was examined in the three time delays of 
1, 3, and 8 weeks. It can be seen that the values of RMSE increase and R2 decrease by 
prolonging the time delay such that the time delay of 8 weeks provides the best match 
between predicted and observed GWL fluctuations at all the sites, probably due to 
the effects of some anthropogenic and natural causes, including runoff from seasonal 
rivers and seasonal precipitations, as well as the emergence of GWL pumping with a 
delay of several weeks.

Table 4   Model performance criteria of developed TDNN model (testing stage)

Name Site #1 Site #2

R2 RMSE AAD (%) MAE R2 RMSE AAD (%) MAE

TDNN1 0.691 0.420 0.182 0.019 0.543 0.432 0.317 0.032
TDNN2 0.673 0.431 0.205 0.024 0.510 0.491 0.336 0.035
TDNN3 0.704 0.423 0.177 0.021 0.602 0.463 0.255 0.024
TDNN4 0.694 0.424 0.184 0.020 0.584 0.444 0.278 0.029
TDNN5 0.751 0.382 0.148 0.016 0.663 0.402 0.219 0.024
TDNN6 0.764 0.360 0.129 0.014 0.764 0.361 0.131 0.015
TDNN7 0.780 0.341 0.115 0.010 0.731 0.384 0.154 0.014
TDNN8 0.804 0.293 0.090 0.008 0.550 0.434 0.298 0.025
TDNN9 0.981 0.173 0.051 0.002 0.952 0.193 0.065 0.003
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5 � Conclusion

In the present study, several TDNN models with various structures and time delays have 
been developed for forecasting GWL fluctuation in Semnan/Sorkheh plain, Iran, in two 
different monitoring sites. The LM algorithm was used for training all developed TDNN 
models. The derived results were compared through two different performance criteria 
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(including R2 and RMSE). In almost all of studied TDNN structures, the models with 
longer time delays showed the most accurate performance in comparison with the mod-
els with shorter time delays, so that the models with the time delay of 8 weeks have the 
highest accuracy for prediction the GWL. Furthermore, the performance of TDNN with 
different structures was examined through varying the number of hidden layers to 2, 4, 
and 8. The results revealed that the TDNN models with 8 hidden layers have the highest 
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Fig. 5   Comparison of simulated versus observed GWL at site 2 (TDNN model with 8 hidden layers)
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R2 value and the lowest RMSE value. Generally, the developed TDNN models exhibited 
appropriate performance under uncertain conditions according to the derived R2 and 
RMSE values, indicating that the TDNN models are able to minimize the uncertainties. 
The results obtained from this study also support these findings and show the superior-
ity of the developed ANN to predict the GWL fluctuations. This model can be beneficial 
for similar research to model the GWL fluctuations. The well-developed TDNN models 
by local decision makers can facilitate more effective GWRM.
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