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Abstract

The management of large-scale water resources systems requires including of different
stakeholders and users from municipal, agricultural, industrial and environmental sectors.
This has baffled the process of decision making for integrated water resource systems. In
such systems, the interactions between various stakeholders must be carefully taken into
account with the goal of aggregating interests around the sustainability concept. In this
study, first, the integrated water resources systems of Big Karun Watershed, Iran, have
been modeled using the system dynamics approach. The system dynamics model repre-
sents the interactions between different components of the system, including water transfer
projects, dams, urban, industry, agriculture and fish farming, and environmental demands.
Vensim software has been used for the system dynamics modeling. Vensim simulates the
dynamics behavior of the sub-systems and overall performance of the system by compar-
ing the current operation policies with the future management scenarios. A wide range of
performance indices, such as quantitative and qualitative water stress, income, cost, and
productivity, have been used here to represent different aspects of sustainability goals.
Finally, the performance of the systems has been evaluated by developing a sustainability
index using distributed zoning model in order to identify proper management policies for
this watershed. The results indicate that downstream users demand cannot be fully met
by solely considering inter-basin water transfer and agricultural development projects. The
sustainable and integrated management of the whole system ties into enhancement in both
infrastructure systems and the operation of the whole system. It is expected that the sus-
tainability of the basin improves if a water market schema exists and the gained money
would be used to enhance the efficiency of existing irrigation networks.
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1 Introduction

Water resources are scarce in Iran. This country has been listed among countries with
potential water scarcity in the future. The hydroclimatic condition and geographic loca-
tion of Iran, as well as uneven spatial and temporal distribution of precipitation, resulted
in water scarcity in numerous parts of the country. Population growth, urbanization, indus-
trial development, and agricultural expansion have increased water consumption, and in
turn exacerbated the situation (Madani, 2014). The combined urban and industrial sewer
systems further caused degradation of water quality in this country. Thus, implementation
of appropriate and sustainable water resources management, especially for the large-scale
systems, is essential for this country (Akbari-Alashti et al., 2014). Existence of multiple
stakeholders and users, including municipal, agricultural, industrial and environmental
sectors, has baffled the process of water resource planning and allocation of adequate to
meet conflicting stakeholders’ demands (Bozorg-Haddad et al., 2009). In such a system,
the interactions between various stakeholders must be carefully taken into consideration
by aggregating interests around the sustainability goals (Loucks, 2000). In conflict objec-
tives and multi-criteria decision-making would affect the behavior of players in a complex
water resources system (Lai et al., 2008). Integrated water resources management becomes
a complex task, but necessary due to multidisciplinary essence of decision making which
involves socio-economic and political aspects (Sivapalan et al., 2014; Goharian et al., 2016
and 2017). Even at a sub-basin level, there might be many users with conflicting inter-
ests involved in decision making, such as local farmers, farming companies, and NGOs.
In addition to the complexity associated with the decision makers’ behavior, the inherent
uncertainty of water consumption pattern for different purposes, drinking, hydropower,
agriculture, and environmental, should be foreseen and considered. Thus, water resources
management and planning are a multi-sectoral and complex matter and requires precise
development and implementation of shared and acceptable plans in order to achieve a sta-
ble strategy for sustainable management (Zhou et al., 2015a, 2015b).

Considering the impact of water resources management on regional strategic plan-
ning and development, it is necessary to simulate large-scale system models to support
the formation of a systematic integrated framework. System dynamics (SD) is a valuable
tool to provide better understanding of nonlinear behavior of complex systems. The SD
is a renowned approach for providing a theoretical concept and framework for dynam-
ics modeling of water resource systems and explore hidden interrelationships and causal
effects among system’s components (Forrester, 1958). There are many studies which evalu-
ate the effectiveness of this method in simulating water resources systems with various
underlying problems. Examples of these efforts are: urban water management (Zarghami
& Akbariyeh, 2012), flood and short-term and long-term irrigation effects (Winz et al.,
2009), hydro-economics (Yang et al., 2009), water allocation and management (Zhang
et al., 2008; Karmaouz et al., 2013), water supply and demand (Ahmad & Prashar, 2010),
agronomic (Gastelum et al., 2010), climate change impact on water resources (Wang et al.,
2014 (water reservoir operation (Karamouz et al., 2012), uncertainty analysis (Goharian,
Burian, et al., 2018; Goharian, Zahmatkesh, et al., 2018), and urban water distribution net-
works (Rehan et al., 2013).

Despite system’s thinking, which focuses on whole, agent-based models have been
used to evaluate the role of individual and institutional behavior for adaptive manage-
ment of complex water systems (Berger et al., 2007), urban water management (Gallan
et al., 2009), basin management considering three off-stream human factors, one in-stream
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human factors and two environmental factors (Yang et al., 2009), evaluation of the com-
plex characteristics of residential water consumption (Chu et al., 2009), long-term opera-
tion and management of a river-reservoir system (Ricker and Labadie 2012), modeling and
analyzing different levels of coordination and information exchange among decision mak-
ers in a basin (Giuliani & Castelletti, 2013), integrated water resource management through
temporal and spatial analysis of water resource systems dynamics (Nikolic et al., 2013) and
forecasting urban water demand (Yuan et al., 2014).

Another useful method in water resources planning process is the conflict resolution
theory. This method can provide an optimal solution considering conflicts among different
sectors and their utility. There are many studies which applied this method in water alloca-
tion in drinking, agricultural and industrial sectors (Mahjouri & Ardestani, 2011; Salazar
et al., 2010; Shirangi et al., 2008), groundwater resources management (Kerachian et al.,
2010) and water resources management in complex systems (Nouiri, 2014; Zhou et al.,
2015a, 2015b).

Conflict resolution methods are not applicable for the formulation of the mentioned case
study. Using these methods in this case study is time-consuming and also complicated as
there are a large number of different interactions and complexities in the system. On the
other hand, if the performance of all factors must be evaluated one by one and in a dynamic
framework, the agent-based models are the most applicable models for system simulation.
As the whole system in this case study is evaluated for each rule, SD is the most applicable
method for simulation of the mentioned case study.

As mentioned before, it is necessary to fully consider the interactions within and among
the large-scale systems’ components. Further, using the system-of-systems approach, the
interactions between systems should be assessed. The previous studies showed that SD is a
suitable method for modeling of complex systems by considering quantitative, qualitative,
structural, non-structural factors. In this study, considering the importance of integrated
and sustainable water management, water quantity and quality allocation framework has
been developed using the SD approach for the Karun River basin. Therefore, due to the
complexity of system, several management scenarios are investigated and the impacts of
them are evaluated on social and economic systems.

2 Material and methods

This section is divided into 3 subsections including development of sub-systems simulation
based on SD approach, performance assessment and methodology.

2.1 Development of sub-systems simulation based on SD approach
The most important subsection is causal loop diagrams (CLDs) in SD approach, so CLDs

for different sub-systems are illustrated in Figs. 1, 2, 3. These sub-systems are supply and
demand management, hydropower generation and system performance assessment.

2.2 Performance assessment
The performance of large-scale system should be evaluated using a framework which

considers for quantitative water stress (Eqgs. 1 and 2), qualitative water stress (Eq. 3),
environmental water stress (Eq. 4), income from each node agriculture and industry
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nodes (Eq. 5), water productivity in each agricultural node compared to other agricul-
tural nodes, water productivity in each agricultural node compared to industry nodes
(Eq. 6), cost of pressurized irrigation systems in the agricultural nodes (Eq. 7), and
income from water transfer to central and eastern basins (Eq. 8). After calculating
indexes for each system’s nodes, the performance results are classified, based on their
relative performance, into excellent to poor classes. Table 1 shows range of classifica-
tion of HWSI;, and Q’WSI, .

Sup
HWSI;, = . ()

where HWSI ;, is the human quantitative water stress index for ith drinking user at time ¢
(MCM/person), Sup, , is the amount of supplied water for the drinking user of i at time ¢
(MCM), and Pop ;, is drinking user population of i at time 7 (person). Estimated values are
assigned to the performance classes based on Falkenmark Indicator (Falkenmark, 1989).
This index will be just calculated for drinking user nodes.

Table 1 Range of classification of HWSI;, and Q’WSI,

Class Ranking HWSI,;, Q' WSl ,,

EC (mmhos/cm)

Domestic and industry Agricultural
Excellent 1 > =9.15¢-6 < =312 100-250
Good 2 7.63e-6-9.15e-6 312-1560 250-750
Fair 3 6.10e-6-7.63e-6 1560-3120 750-1500
Bad 4 4.56e-6—6.10e-6 3120-4680 1500-2250
Poor 5 < =4.56e-6 > 4680 >2250
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WSI Supiy
0 “ Dem it @)

where QWSI;, is the quantitative water stress index in ith agricultural, industry and fish
farming nodes at time ¢, Sup;, is the amount of supplied water for the ith user at time ¢
(MCM), and Dem; , is the amount of water demand for ith user at time 1 (MCM).

o'WsI,, = Vi
o Inf, it
where Q' WSI ..+ 1s the flow quality based on total dissolved solids (TDS) in ith user at time ¢
(mgr/L), .V, is salt volume in ith user at time ¢ (Ton) and Inf;, is flow in ith user at time ¢
(MCM) (Asheghmoala, 2015). After calculating Electrical Conductivity (EC) (based on its
relationship with total dissolved solids (TDS)) of flow at each of nodes, EC value is classi-
fied for agricultural and drinking, industry and fish farming users according to Wilcox and
Schuler diagrams (Alizadeh, 2010). Qualitative water stress index can be calculated for all
users.

3

OED;,
EWSLii = GEp. @
it

where EWSI,; , is the environmental water stress index in ith user node at time 7, OED;, is
amount of supplied water to meet environmental demand in ith user node at time t (MCM),
and CED;, is amount of environmental demand calculated based on the Montana method
in ith user node at time t (MCM)(Orth & Maughan, 1981).

OEB,;

EcWSI;, = CEB l.’[ 5)
it

where EcWSI;, is income index in ith agriculture user node at time ¢, OEB;, is income
from ith agriculture user at time ¢ (currency), and CEB, is expected income from ith agri-
culture user at time ¢ (currency). This index should be calculated for agricultural users.

it

0
PWSI, = 5
it

(6)

where PWSI, , is water productivity in ith agriculture or industry nodes at time z. After cal-

culating the productivity of each agriculture and industry users at different nodes, relative

water productivity index for agriculture nodes and industry nodes is obtained and com-
pared with the maximum water productivity of agriculture and industry nodes.

cwst,, = — 7

“  OEB,, @

where CWSI, , is irrigation system changing cost index for the ith agriculture node at time
t and C;, is cost for structural and non-structural measures to increase efficiency of ith
agriculture node at time ¢ (currency). To calculate this index for an upgraded irrigation
network, construction and maintenance costs of the new irrigation system, interest rates,
and costs associated with non-structural measures, such as advertising and training, should
be taken into the account. Then, present value of uniform series of annual payments is
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determined, and finally, they should be compared to the annual income of the improved
networks.
BWSI,, = 2 8
“=c, ®
where BWSI;, is index of income from inter-basin water transfer to ith agriculture at time
t and B.;, is income from inter-basin water transfer for the ith agriculture at time ¢ (cur-
rency). It is assumed that income from water transfer is allocated only for the new irriga-
tion systems.

2.3 Methodology

After describing CLDs in SD approach and performance assessment, it is necessary to
explain the flowchart of study that shows different steps of work. So, this flowchart is
shown in Fig. 4.
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3 The case study and data set

This section is divided into 2 different subsections: (1) introducing the case study and (2)
data set of case study.

3.1 Case study

Karun River basin is located in Southwestern Iran with an area of about 67,000 km?, of
which 69% of this area consists of mountains and the rest are plains. Karun, as one of
important rivers in Iran, plays a key role in growth and development of the southwest
region. Big Karun basin, located in the middle of Zagros Mountains, consists of the Dez
and Karun Rivers (Karun River is divided to two branches including Gargar and Shotayt).
Average long-term yield of Karun River to Karun-4 Reservoir and average long-term
inflow to Dez Reservoir (statistical period of 1957-2012) are 5,140 million cubic meters
(MCM) per year and 7,537 MCM per year, respectively. The undeniable role of the Basin
in Iran’s economic growth resulted in deploying the water resources of the basin and exten-
sive agricultural and industrial development.

Schematic of Big Karun basin is represented in Fig. 5, and schematic of existing dams,
inter-basin water transfer plans and type of users in each branch of river in Big Karun basin
is shown in Fig. 6. Dez Dam was built on Dez River, and Karun-4, Karun-3, Karun-1 (Sha-
hid Abbaspour), Godarland (Masjed Soleiman) dams were constructed on Karun River.
Furthermore, Rudbar Lorestan and Bakhtiari dams in Dez basin and Bazoft, Khersan-1,
Khersan-2 and Khersan-3 dams in Karun River basin are under construction or feasibility
study for the future placement. These dams are mainly operated for hydropower generation
purpose. They also provide water supply to meet Khuzestan Province agricultural, munici-
pal, and industrial demands. Characteristics of hydropower dams in Karun and Dez basins
are presented in Table 2. It should be noted that under current situation, optimal operation
of power plants plays an important role in supplying required electricity for the peak hours.
It is expected that, in the near future, the system’s value will be increased considering its
unique electricity generation capacity, and future plans for the construction of new dams
and power plants (Badiei, 2015).

3.2 Dataset

The time series of average annual inflows to the Karun-4 and Dez reservoirs and intermedi-
ate basin flow between Karun-4 and Karun-3 reservoirs, Karun-1 and Karun-3 reservoirs,
Karun-1 and Godarland reservoirs, Godarland and Gotvand reservoirs, Big Shurdasht
River, Dez Dam and Bande-Ghir are illustrated in Fig. 7.

The monthly water demand for different users in Dez, Karun North, and South Karun
sub-basins is presented in Tables 3, 4, 5 (Iran Water and Power Resources Development
Company 2010). In addition, inter-basin water transfer projects are another important
component of Big Karun basin. These projects transfer a significant portion of water from
Karun and Dez Rivers to meet demands of Central basin. The monthly water demand for
inter-basin water transfer from Dez and Karun basins is presented in Tables 6 and 7 (Iran
Water and Power Resources Development Company 2010).

In this study, SD approach is used to model the Karun River basin water resources sys-
tem. The model is constructed using information related to the dams, reservoirs, inter-basin
water transfer projects, nodes of water withdrawal for drinking, agriculture, industry and
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Fig.5 Schematic of Big Karun basin

fish farming uses and the location of return flows and wastewater. Modeling of the Big
Karun basin system was coded with Vensim DSS (5.9b). Then, the results of SD model
are explained and discussed using a systematic performance assessment framework which
reports and analyzes quantitative water stress, qualitative water stress, environmental water
stress indexes, income from agriculture and industry nodes, relative water productivity of
agricultural nodes, pressurized irrigation system cost, and water transfer income. To begin
with, current governing conditions of system are evaluated; then, the best combination of
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Fig.6 Schematic of existing dams, inter-basin water transfer plans and type of users in each branch of river
in Big Karun basin

decision variables are selected by considering different decision variables (different inputs)
and determination of indexes’ values for each set of decision variables (Table 8).

4 Results and discussion

In this study, Big Karun basin system has been simulated using SD approach. Modeling
of the Big Karun basin system was coded with Vensim DSS (5.9b). This system involves
7 dams, 12 drinking and industrial users, 7 fish farming, 34 agricultural users, 5 existing
inter-basin water transfer projects, and 7 under study/construction inter-basin water trans-
fer projects. The Big Karun basin system operation has been simulated for the period of
1957-2013. This period is simulated as the status quo scenario. In addition to the current
condition scenario, other scenarios are formed in which different under study/construction
inter-basin water transfer projects, under study/construction agricultural expansion pro-
jects, and efficiency improvement in modern irrigation systems are tested. Different sce-
nario modes are presented in Table 9.

The results of the simulation model under different scenarios are analyzed for the drink-
ing, industry, agriculture, and fish farming user nodes. These results are then fed into the
performance assessment framework to estimate different indexes, including quantita-
tive water stress, qualitative water stress, environmental water stress, income from each
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Fig. 7 Average annual inflow at the entrance to the dams and basins

agriculture and industry nodes, relative water productivity of agricultural nodes, relative
water productivity of agricultural and industry nodes, cost of pressurized irrigation systems
in irrigation network nodes, and income from inter-basin water transfer. Clearly, the pres-
surized cost index and income from water transfer cannot be calculated for the status quo
scenario. These two indexes are designed to analyze the future potential and under study/
construction inter-basin water transfer and implementation of modern irrigation systems
projects.

Among numerous users and stakeholders in North Karun, Dez and South Karun River
basins, results of performance indexes are shown for the outlet node (Darkhoin to Persian
Gulf water rights) of Big Karun River (Figs. 8,9,10,11,12 and 13).

4.1 QWSI analysis results

Figure 8 indicates that, under the status quo scenario and based on historical water rights
of Darkhoin to Persian Gulf, agricultural demand was not fully provided most of the time.
The amount of shortage is higher at the end of the operation period, which overlaps with
the drought period. According to Fig. 8-S1-b, water stress index of Scenario 1 is ranked
excellent only for 22 years and the ranking for the rest of period varies between good and
fair. Under the full inter-basin transfer condition, water supply is ranked fair and for 1 year
the ranking is bad. For Scenario 2, agricultural water rights of Darkhoin to Persian Gulf
are met completely just for 2 years. Results indicate that implementation of under study/
construction agricultural development projects will have minimal effect on water stress
index compared to the full transfer inter-basin water transfer projects. Accordingly, based
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Table 8 Evaluated modes in each simulated scenarios of Big Karun basin

No. of Mode or modes to be considered

sce-

nario

1 Present condition

2 Considering full transfer of under study/operation IBWT

3 Considering agricultural development projects under study/construction

4 Considering full transfer of under study/construction IBWT and agricultural development projects
study/construction

5 Considering hedging transfer of study/construction IBWT

6 Considering hedging transfer of study/construction IBWT and agricultural development plans
study/construction

7 Considering hedging transfer of study/construction IBWT and various practices to improve the
efficiency of modern irrigation networks

8 Considering hedging transfer of study/construction IBWT and various practices to improve the
efficiency of modern irrigation networks and agricultural development projects study/construc-
tion

Table 9 Range of classification of different index in Karun basin

Class  Ranking HWSI,, oWSsI,,  Q'wsI,, EWSI;, EcWSI,, PWSI,,

EC (mmbhos/cm)

Domestic and Agricultural

industry

Excellent 1 >=9.15¢-6 1 < =312 100-250 1 1 1

Good 2 7.63e-6— 0.9-1 312-1560 250-750 09-1 09-1 0.8-1
9.15e-6

Fair 3 6.10e-6— 0.75-0.9  1560-3120 750-1500  0.8-0.9 0.7-0.9 0.6-0.8
7.63e-6

Bad 4 4.56e-6— 0.55-0.75 3120-4680 1500-2250 0.7-0.8 0.5-0.7 0.4-0.6
6.10e-6

Poor 5 <=456e-6 <0.55 > 4680 >2250 <0.7 <05 <04

on Fig. 8-S4, Big Karun basin does not have enough capacity for implementation of new
development projects in the framework of water transfer and agricultural development pro-
jects. It is important to consider that operation of these projects, regardless of basin man-
agement aspects such as efficiency improvement, selling water to destination basin, causes
severe shortage in meeting of Big Karun River end users’ demand. Although water supply
for this node can be increased by implementing hedging rules for under study/construction
inter-basin water transfer, water stress index is ranked fair in 46 years. In Scenario 5, condi-
tion is better compared to operation of under study/construction agricultural development
projects (Scenario 3). If the inter-basin water transfer project (considering hedging rules)
and agricultural development project (Scenario 6) are operated simultaneously, water stress
index would be ranked worse (Fig. 8-S6). In Scenario 6, supplied demand will rank bad for
less time steps (3 years) compared to the full transfer and agricultural development pro-
jects. As shown in Fig. 8-S7, implementing management alternatives to improve efficiency
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Fig.8 a QWSI and b ranking of QWSI in Darkhoin to Persian Gulf agricultural node in Scenarios 1 to 8
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Fig.8 (continued)

of upstream agricultural nodes causes not only transfer of hedging inter-basin water trans-
fer but also getting in rank first (excellent) for meeting demand in water right nodes of
Darkhoin to Persian Gulf. In Scenario 7, the reliability of demand meeting for this node is
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Fig.9 (continued)

7
z ¢
2 3
=]
ofn
g 2
S 1
0
0 20 40 60
Time (year)
(S5-b)
5
3
<
of)
= bl
g 2
S 1
0
0 20 40 60
Time (year)
(S6-b)
5
; 4
g 3
=}
on
= 2
S 1
0
0 20 40 60
Time (vear)
(S7-b)
VWM
; 4
Z 3
<
on
= 2
3
S 1
0
0 20 40 60
Time (year)
(S8-b)

acceptable even with inter-basin water transfer operation. In this situation, system has this
capacity to meet this node demand quantitatively even if agricultural upstream develop-

ment projects are operated (Scenario 8).
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Fig. 10 a EWSI and b ranking of EWSI in Darkhoin to Persian Gulf agricultural node in Scenarios 1 to 8
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Fig. 10 (continued)
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4.2 Q'WSI analysis results

Figure 9-S1 shows that the quality of withdrawal flow in Darkhoin to Persian Gulf water
rights had poor quality and is always ranked fourth (bad) or fifth (poor) according to Wil-
cox diagrams. It is obvious that such a poor-quality will result in lower crop yield and
increase of social dissatisfaction. The quality of withdrawal flow from Big Karun River
Darkhoin to Persian Gulf water rights agricultural node will be decreased dramatically, if
under study/construction inter-basin water transfer project is considered, which decreases
crop yield and economic development (Scenario 2). On the other hand, rising trend of EC
values is an important issue at the end of the operational period. Based on Fig. 9-S2-b,
qualitative water stress index is ranked poor in 25 time-steps which emphasize on EC value
greater than 2,250 micromho/cm. This condition is exacerbated under Scenario 3, which is
under study/construction agricultural development projects scenario. As mentioned before,
Big Karun basin does not offer adequate capacity of new inter-basin water transfer and
agricultural development projects. In fact, development will not be possible neither based
on quantitative analysis, nor by qualitative investigations (Fig. 9-S4). In Scenario 4, EC
value of withdrawal flow is in a range of 1,843-13,300 micromho/cm, which is not proper
for the crop production. Even hedging of inter-basin water transfer projects demands does
not show dramatic impact on basin’s quality improvement at the end nodes. This trend will
be worsening by adding agricultural development projects. As shown in Fig. 9-S7, imple-
menting structural and non-structural practices in order to improve irrigation efficiency at
the irrigation networks nodes causes drop in ranking of the withdrawal flow for this node.
In Scenario 7, frequency of poor ranking is reduced compared to the previous modes. The
rank fifth has been observed only at the end of the operation period. In this scenario, EC
value of withdrawal flow for the Darkhoin to Persian Gulf water rights node is ranging
between 1,339 and 3,316 micromho/cm and the frequency of bad ranking is more than
other rank. It should be noted that Scenario 7 part of pressurizing cost has been paid by
water transfer profit. So, both Karun and Central basins have profited from water alloca-
tion revenue. Also, operation of agricultural development projects increases the system’s
vulnerability (Scenario 8).

4.3 EWSI analysis results

Figure 10-S1 shows that in 22 years during the operational period, environmental water
stress index is ranked second (good), which indicates that water required for environmen-
tal needs has been used alternatively used to meet drinking, industry, and fish farming
demands of upstream users. Rank 2 represents the situation when at least 90% of envi-
ronmental demand is supplied (based on Montana method). Figure 10-S2 shows that the
downstream environmental demand has never been fully met and the environmental stress
index is ranked third (Fair) 41 times under full transfer of inter-basin water transfer. In
Scenario 2, the system is also ranked fourth (bad) in 4 years when 80% of environmental
demand has been met. The second rank (good) also belongs to the agricultural development
scenario (Scenario 3). If both full transfer of inter-basin water transfer and agricultural
development (Scenario 4) are implemented at the same time, water provided for down-
stream environmental requirement would be decreased to meet demands of upstream users;
consequently, incidents of ranking 4 (bad) will be increased under this scenario. Hedging
of inter-basin water transfer projects results in improvement of environmental stress index
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and improve its ranking from third (fair) to second (good). In Scenario 6, adding agricul-
tural development causes increase in frequency of its ranking (fair). Hedging of inter-basin
water transfer projects and improved irrigation system efficiency (Scenario 7) results in
better ranking, ranked second (good) and first (excellent) for environmental stress index.

4.4 PWSI analysis results

Figures 11 and 12 show the water productivity index of Darkhoin to Persian Gulf water
rights agricultural node, which is compared to the value of other agricultural nodes. Fig-
ures 11, 12 introduce current irrigation system (Scenarios 1-6) and improved irrigation
system (Scenarios 7 and 8), respectively. Results indicate that the water productivity index
value is estimated 0.6 and it is ranked as third, while there is no improvement in efficiency
of upstream agricultural nodes. This index value and rank are 0.4 and 5, respectively, for
efficiency improvement mode due to the increase in income under efficiency improvement
modes in modern irrigation network. Improvement in modern irrigation network causes
the increase in income. While the income from old water rights is fixed, water productivity
index for these nodes will be ranked lower compared to the other agricultural nodes.

Based on Tables 2, 3 and 4, the agricultural users (demand nodes) are split into two sec-
tors, namely “historical water rights nodes” and “modern irrigation network”. The modern
agricultural network is able to adjust the amounts of water to plants at needed intervals.
Among the study nodes, the outlet of the system, which is part of the historical water rights
nodes, is called Darkhoin to Persian Gulf agricultural node. Ahvaz to Darkhoin agricultural
node is another example of nodes with historical water right.

In Fig. 13, water productivity of Darkhoin to Persian Gulf agricultural node is compared
to the water productivity of industry nodes. Results indicate that water productivity of agri-
cultural nodes is less than industry nodes. In fact, it shows less income for agricultural
nodes compared to the industry nodes for a unit of water use.

It should be noticed that since, in Iran, the income from consuming of one cubic meter
of water in the agricultural sector is approximately 30 cents, it is assumed that 5 cents of
each cubic meter transferred water will be allocated to the receiving basin. This procedure
allocates evenly the water between the Karun basin as source basin and central basin as
the destination basin. After calculating total income, receiving money for each irrigation
network has been estimated based on their shares from total consumption of agricultural
nodes.

4.5 Performance criteria analysis results

In addition to mentioned indexes, system performance criteria, including reliability, resil-
ience and vulnerability, have been calculated and evaluated for North Karun, Dez and
South Karun basins. Results are presented in Tables 10,11 and 12 (Bozorg-Haddad, 2014).

The results in Table 9 indicate that drinking, industry, and fish farming users are
affected by none of the evaluated scenarios in North Karun. The same results are observed
for Dez and South Karun. It can be due to the priorities in water demand. Because higher
priority is given in order to the supply of drinking, industry, fish farming, environmental
and agricultural demands. So, agricultural nodes are affected by different scenarios more
than other nodes.

The presented results in Table 10 show that performance criteria of agricultural nodes
are approximately constant among different scenarios in North Karun. So, different
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scenarios have approximately similar quantity outcomes in agricultural nodes. The results
also indicate that although the impact of different scenarios on Dez basin is more com-
pared to North Karun basin, the most variation and impacts can be seen in South Karun
basin. This basin faces the most negative and positive impacts from Scenarios 4 and 7,
respectively.

4.6 Performance indexes zoning maps results

In order to provide a better picture of Big Karun basin, under different management
options, zoning maps are formed for each scenario. Among the scenario maps, three maps
are selected to be shown for Scenarios 1, 4 and 7.

In Fig. 14, the zoning map of water stress index is shown for different user nodes of
Karun basin. It can be seen that in North Karun basin only Gargar water right agricultural
node is faced water shortage. The system cannot also meet the whole required demand in
Dez basin before the convolution with the middle basin flow. But water shortages are not
severe in North Karun and Dez basins. After forming Big Karun River by joining Gargar,
Shotayt and Dez Rivers, there is sufficient water resources for meeting users’ demand at
the mouth of the South Karun basin (Bande-Ghir). But shortage is observed in Jafir agri-
cultural node (modern irrigation network) to downstream and severe shortage is observed
in Ahvaz to Darkhoin agricultural node. Figure 14-b shows the aggregation of shortages
in future development projects (Scenario 4). Based on Fig. 14-c, the reliability of meeting
demand is acceptable for the Karun basin under integrated management scenario and by
considering water is transferred to central basin. Figure 15-a shows that the water qual-
ity of Karun River is in average range in tributaries of Gargar and Shotayt Rivers and end
sections of Dez River. It is obvious that the river has poor water quality in South Karun.
Operation of all the future development projects would result in lower water quality. In
Scenario 4, the withdrawal flow from all nodes, from Bande-Ghir to downstream, is ranked
in poor class.

As mentioned before, in Scenario 7 Big Karun basin can be considered as a system
where integrated water management plan is implemented. In order to establish a water
allocation balance between numerous stakeholders, part of efficiency improvement costs
is paid by income from water transfer. Zoning map of income distribution gained from
hedging under study/construction inter-basin water transfer projects demand is illus-
trated in Fig. 16 for different modern irrigation network nodes. Results indicate that
23%, 28%, and 37% of efficiency improvement cost for the irrigation network nodes in
North Karun, Dez and South Karun basins, respectively, are paid from income gained
by inter-basin water transfer.

In Fig. 17, zoning of cost distribution for the changes irrigation system is illustrated
for modern irrigation networks in Big Karun basin. The comparison of required costs
for irrigation systems and incomes from changing irrigation is shown in this Fig. 18,
which indicates an increase and reduction in costs for starting nodes of Dez River and
end nodes of Big Karun, respectively.

Finally, Fig. 16, which is a picture of zoning environmental water stress in different
nodes of Big Karun basin, shows 20% of shortage in environmental demands in North
and South Karun is expected, if the development continues based on current manage-
ment policies.
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4.7 TOPSIS analysis results

Table 11 presents the results of the TOPSIS decision-making technique for selection of the
best scenario in Big Karun basin. We assumed an equal weight for all indexes. Table 10
shows that for all modern agricultural nodes (irrigation network), Scenarios 7 and 8§ are
selected as the superior scenarios. The reason can be found in the income increase from
each network in terms of efficiency improvement. On the other hand, the results of TOPSIS
method show the same results for the Scenarios 7 and 8 in North Karun basin, while in
Scenario 8 the agricultural development projects have been added to the system, located
in Dez and South Karun. It should be noted that results of Scenarios 1 to 6 are similar,
and Scenario 4 has been selected as the worst option among modern irrigation network
of North Karun. The same situation is observed for Dez River basin nodes. At the nodes,
which are located before the nodes of first agricultural development project, Scenarios 7
and 8 have been selected as the best options. But Scenario 7 will be the best option in
Ajirub irrigation network to downstream and by adding Balarud and Shavur irrigation
network projects. In Dez basin, the difference between rankings of different scenarios is
negligible; this reflects the low impact of inter-basin water transfer and agricultural devel-
opment projects in North Karun and Dez basins. Scenarios 7 and 8 have equal ranks in
South Karun’s North-East Ahvaz irrigation network, which is not affected by agricultural
development projects. In downstream of North-East Ahvaz irrigation network, the situa-
tion is different because of adding South-East and South-West Ahvaz irrigation networks.
It should be noted that in none of these nodes, system can meet the additional demand of
inter-basin water transfer and agricultural development projects. Scenarios 1 and 3 are the
best scenarios in terms of water right users in North Karun River. As mentioned before, no
agricultural development project has been predicted for North Karun basin; so, Scenarios 1
and 3 show the same results. The relative productivity index to agricultural nodes indicate
that scenarios with efficiency improvement plans are not appropriate in water right agri-
cultural nodes (Figs. 9, 10). Income from modern irrigation networks is increased during
system simulation and efficiency improvement, while the income from old water rights is
fixed. So, lower values have allocated to water productivity in old water right compared to
water productivity of other agricultural node index. The same situation is observed for the
industry users because the water productivity index in each node is decreased compered

() (b) (©)

Fig. 14 Zoning shortage of different user nodes in Big Karun basin in a Scenario 1, b Scenario 4, and ¢
Scenario 7
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(b) (0)

Fig. 15 Zoning the flow quality of different user nodes in Big Karun basin in a Scenario 1, b Scenario 4,
and ¢ Scenario 7

Fig. 16 Zoning of income distri-
bution from hedging inter-basin
water transfer in modern irriga-
tion networks in Big Karun basin
for Scenario 7

to agricultural nodes (in efficiency improvements and increase water productivity in mod-
ern agricultural nodes situations); so, for the industry nodes under efficiency improvement
mode are selected as the worst-case scenario because of higher values of this index com-
pared to other indexes. In water right agricultural nodes of South Karun basin, Scenario
4 is the worst option unlike water right agricultural nodes of North and Dez basins, in
which Scenario 7 or 8 is the worst option (because of water productivity index). Because
in water right agricultural nodes of South Karun, the quantitative water stress, qualitative
water stress, environmental water stress indexes improve significantly that the impact of the
water productivity index reduction will be negligible.
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Fig. 17 Zoning of changing irri-
gation system cost distribution
in modern irrigation networks in
Big Karun basin for Scenario 7

- 055 0o

- 016 -018
-018-020

(a) (b) (0

Fig. 18 Zoning of environmental demand stress in different user nodes in Big Karun basin in a Scenario 1,
b Scenario 4, and ¢ Scenario 7

5 Concluding remarks

In the present study, the concept of integrated and sustainable management has been evalu-
ated for a large-scale system. In this regard, Big Karun basin was considered and evalu-
ated based on the SD approach. The SD model includes 6 dams, 5 inter-basin water trans-
fer, 7 under study/construction inter-basin water transfer, 12 drinking and industry users,
7 fish farming users and 34 agriculture users. The environmental demand is also deter-
mined for each river based on Montana method. The SD model is able to simulate not
only the flow quantity but also water quality at different nodes. The results are analyzed
based on a multi-criteria performance assessment framework, including quantitative water
stress index, qualitative water stress index, environmental water stress, income from each
agriculture and industry nodes, water productivity in each agriculture node compared to
other agriculture nodes, water productivity in each agriculture node compared to industry
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nodes, cost of irrigation systems pressurizing in agriculture nodes (irrigation network) and
income from water transfer to destination basins. Existing policies are simulated as status
quo scenario, and future management alternatives formed seven more scenarios. To better
understand the performance of different scenarios, each performance index was classified
in the range of excellent (1) to poor (5) condition. In addition to the mentioned indexes,
behavior of each scenario is analyzed based on statistical performance criteria, reliability,
resiliency and vulnerability, and the best scenario was selected using TOPSIS method. The
results indicate that in a large-scale system with many involved stakeholders and users, it
is necessary to consider various internal and external factors such as the quality of water
resources, downstream environmental demand, income and costs of changing irrigation
systems in order to struck balance among different stakeholders in a basin and other basins.
It is also suggested that these metrics should be join statistically using the joint-probability
functions to address the simultaneous existence of these metrices into water system perfor-
mance index (Goharian, Burian, et al., 2018; Goharian, Zahmatkesh, et al., 2018). Accord-
ing to the results, although the impact of future development projects operation is negligi-
ble on upstream stakeholders and users, sustainability of system especially in downstream
requires implementation of integrated and sustainable management actions in all sectors.
If current policies continue, system cannot meet the future demand of developing projects.
Even full capacity inter-basin water transfer will result in reduction hydropower generation
and reliability of water supply in the basin. The results also indicated that there will be a
water allocation balance among source basin stakeholders and stakeholders at the source
and destination basins through selling a portion of upstream inflow to destination basins,
institution water tariffs and paying part of changing irrigation systems costs in destination
basin.
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