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Abstract
The presence of contaminants of emerging concern (CECs) in wastewater treatment plant 
effluents is a significant underlying health risk and environmental concern. CECs consist 
of a wide variety of contaminants, including pharmaceuticals and personal care products, 
hormones, steroids, alkyl-phenols, flame retardants and pesticides. Their impact is of par-
ticular relevance to agricultural settings due to CEC uptake and accumulation in food crops 
and consequent diffusion into the food-chain. Meanwhile, marijuana reform is accelerat-
ing in the US, based on the scope and pace of legalization efforts and on wider accept-
ance in polls of voters. In this review, the effectiveness of industrial hemp (Cannabis sativa 
L.) in phytoremediation and hyperaccumulation of organic contaminants (e.g., benzo(a)
pyrene, Naphthalene, and Chrysene) and heavy metal (e.g., Selenium and Cobalt) from 
either aqueous solutions or contaminated soils has been reviewed. The potential of indus-
trial hemp as a renewable resource to biodegrade and/or decontaminate CECs is explored. 
Disposal strategies of this new phytoremediation crop that promote circular economy are 
also discussed. According to this current review, we believe the use of industrial hemp 
for phytoremediation is promising to have a sustainable, environmentally friendly and eco-
nomically viable future.
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1 Introduction

Considerable attention has been attributed to contaminants of emerging concern (CECs) 
due to their dramatic blossom in wastewater treatment plants (WWTPs) in recent years. 
CECs are those synthetic or naturally occurring pollutants detected in water bodies which 
typically fall outside current environmental regulations (Sauve and Desrosiers 2014). The 
CECs include, but are not limited to pharmaceuticals and personal care products (PPCPs), 
hormones, flame retardants, pesticide and disinfection byproducts. CECs along with their 
precursor compounds and metabolites, are discharged into the WWTPs during manufac-
turing processes and/or through disposal of used and unwanted products. Due to their 
continuous input and lack of appropriate removal equipment, they maintain pseudo-per-
sistence during wastewater treatment (Gulkowska et al. 2008). The occurrences of CECs 
in WWTPs effluent and biosolid/sludge have been repeatedly reported with the detected 
concentrations at ng  L−1 to µg  L−1 and at ng  g−1 to µg  g−1 (Alvarez et  al. 2014). How-
ever, because of the low concentrations of CECs, related regulations in the US have not 
been well established until there is more firm scientific data (Barbosa et al. 2016). A previ-
ous study demonstrated that CECs can cause an extremely wide range of adverse effects 
to human-beings and various organisms (e.g., chronic, reproductive damage, behavio-
ral changes and accumulation in tissues) even at very low-level exposures (Phillips et al. 
2010). For example, veterinary antibiotics exhibited oxidative damage to liver cells of rain-
bow trout (Oncorhynchus mykiss) (Gagné et al. 2006). The exposure of fish and benthic 
invertebrates to psychoactive drugs altered their behavioral responses (Rosi-Marshall et al. 
2015). Therefore, it is urgent to study the fate and transport of CECs and correspondingly, 
the removal protocols of CECs.

CECs from the WWTPs effluents have been reported to contaminate surrounding agri-
cultural land via different ways. Reuse of wastewater for irrigation purposes contribute 
significant amounts of CECs to agricultural systems (Becerra-Castro et al. 2015). Sewage 
sludge, which was recycled as the soil amendment, also brought a portion of hydrophilic 
CECs to agricultural soil (Kirchmann et al. 2017). In the agricultural subsoil system, the 
likelihood of CECs transport was affected by several factors. Among them the most impor-
tant are: its physicochemical properties (e.g., half-life and polarity), the soil properties and 
climate conditions (e.g., precipitation, seasons). A study showed that the specific surface 
area and cation exchange capacity of the soil correlated with the adsorption affinities of 
a reproductive hormone, 17β-estradiol (Casey et  al. 2003). A high correlation between 
specific surface area and sorption was found (r2 = 0.92) in the experiment. While cationic 
exchange capacity only partially affect the adsorption affinity because of soil organic mat-
ters and clay mineral. Nonylphenol polyethoxylates had fast and complete degradation (ini-
tial half time 0.3–5 days). But nonylphenol, the degraded byproduct of nonylphenol poly-
ethoxylates, depredated rapidly in the beginning. 26–35% of them remained in the soil till 
the end (Sjöström et al. 2008). Those hydrophobic residues were found to be accumulated 
in the contaminated environments and unable to be further consumed by any plants (Soares 
et  al. 2008). Because of higher precipitation and larger herbicide/pesticide applications, 
CECs’ concentrations in agricultural catchments were found to be significantly higher in 
summer seasons (Fairbairn et al. 2016). These factors altered the transport of CECs in the 
subsoil system, which makes the detection and removal even more difficult to conduct.

Among different CECs’ decontamination strategies, phytoremediation has received 
great attention because of its efficiency and cost-effectiveness. It employs plants, crops, 
and grasses to extract, sequester and eradicate those potentially toxic chemicals in 
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the soil, water and other environments (Kumar et  al. 2017; Jiang et  al. 2015). Rather 
than chasing the limited number of CECs, plants effect and control chemical activi-
ties including contaminant transport and metabolisms in soil biota, since its intense 
root systems and continuous exudes. Industrial hemp (Cannabis sativa L.) is one of the 
widely investigated plants for phytoremediation. The feasibility of in-situ contaminants’ 
removal is mainly credited due to its porous and hydrophilic surface structure, as well as 
the strong recalcitrance on levels of toxicity. For example, hemp fibers were chosen as 
the remediator of heavy metal ions (i.e., lead (II), zinc (II) and cadmium (II)). The metal 
removal efficiencies of hemp that were persuasive ranging from 17.5 to 39% in single/
ternary ion metal(s) solutions (Pejic et al. 2011). Campbell et al. (2002) observed large 
reductions of benzo(a)pyrene (~ 33.5%), but inconsistent results on chrysene from -50% 
to 64% in the contaminated soil. It was also estimated that contaminant accumulation 
was highly selective on hemp parts. For example, the accumulation of nickel, lead and 
cadmium in hemp leaves were 4–12 times larger than the metal in other parts like fibers, 
seeds and herbs (Linger et al. 2002). It makes the potential remanufacture/reuse of less 
contaminated hemp parts possible, which aligns with the circular economy. In addition, 
the short maturation period and high biomass yield of industrial hemp also extended the 
utilization to other non-food manufacturing in the rest of a year (Kumar et al. 2017).

However, these benefits were not fully realized until the recent marijuana reform 
policies. According to search results returned by keywords of “industrial hemp” or " 
Cannabis sativa L." plus “phytoremediation” using the Web of Science database, coun-
tries that have most prominently addressed these topics over the last 20 years include 
Italy, USA, Canada, China and Germany (Fig. 1). The historical importance of hemp in 
Europe and China leads to the continuous research input in these areas (Salentijn et al. 
2015). While in North America, published studies on phytoremediation of industrial 
hemp evidently exploded until gradual legalization of hemp production in 1990s (Fike 
2016). Therefore, industrial hemp is expected to be applied to wider scaled applications 
with this trend, in which phytoremediation is believed to be a promising answer for 
CECs removal. 

Fig. 1  The global publications of research on industrial hemp phytoremediation from 2000 to 2020
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With increasing concerns of CEC contamination, the realization of a low-cost and effi-
cient in-situ CECs removal via hemp is a feasible solution. But it is often not lucrative 
enough to make it appealing for groups of people because of limited data and large uncer-
tainty. Therefore, it is essential to shed light on the viability and great economic benefit of 
this strategy before action. This review aims to provide more information about the effica-
cies of CECs remediation by industrial hemp. The detoxification performance of plants 
reported in previous studies are collected, estimated, compared and the underlying mecha-
nisms of phytoremediation are revealed in the following sections. Major factors such as 
soil properties and physicochemical properties of contaminants are investigated in order 
to optimize the decontamination process. Nonetheless, the application of industrial hemp 
cannot achieve ambitious goals without addressing the issue of residue management after 
implantation. Therefore, the potential disposal strategies of phytoremediation via industrial 
hemp under the framework of the circular economy are rigorously advised in this review.

2  Mechanism of CEC decontamination

Numerous CEC phytoremediation studies interpreted its mechanism under the guide of the 
’green liver model’ theory (Burken 2003). This theory successfully brought the concept 
of mammalian liver function into plants. Plants and mammals have very similar responses 
to the xenobiotic molecules, except excretion stages only appear in mammals. Under this 
theory, the functionality of plants’ phytoremediation has been considered as the effort of 
the whole-plant system instead of sole compartment of plants. The overall detoxification 
can be divided into three stages: translocation, transformation and/or conjugation and 
sequestration (Fig.  2). However, this theory seems to only envisage the overall trend of 
organic pollutant decontaminations. In recent experimental and field studies, the observa-
tions do not always follow such theoretical steps, sometimes they only partially align with 
the theory. Therefore, the theory was updated with new findings collected in recent studies 

Fig. 2  Schematic phytoremediation pathways of CEC pollutants from contaminated environments (i.e., 
water, soil and air)
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(2005 ~ 2020) in order to have a clearer idea of the phytoremediation process, specifically 
the external CEC-plant-soil interaction.

2.1  Stage I—translocation and ex planta biodegradation

Theoretically, contaminants enter plant tissues by active transport, namely translocation, 
in the direction opposite of the chemical potential gradient. Such translocation utilizes soil 
water with a transpiration stream to reach the aerial plant tissues. Besides active transport, 
passive diffusion was also largely observed in studies which utilized the macrophytes vege-
tation and/or which were conducted in a hydroponic environment (Tai et al. 2019). In addi-
tion, those CECs with semi-volatile characteristics and low molecular weights (MW) were 
partitioned or adsorbed from the atmospheric air (Gawrońska and Bakera 2015). Volatile 
organic matter are reported to have two major transports solely or combinedly: partition 
into waxy cuticle and convey through the surface stomata, followed by the translocation 
through the phloem (Ferro et al. 2013). A significant portion of CECs has high vapor pres-
sures such as benzene, toluene, ethylbenzene, xylene and methyl tert-butyl ether, which 
indicates such translocation is very possible. However, the translocation of volatile organic 
matters is reported less because of current technological difficulties to capture and quantify 
the contaminants and their metabolites in the air. After plants-CEC interaction, CECs can 
either be further translocated/transformed or simply adsorbed on plants’ waxy cuticles, it is 
largely dependent on the plants’ adsorption capacity and existing enzymatic system.

In recent years, plants were found to be functional externally, namely ex planta phy-
toremediation. Plant exudes of organic acid are helpful to mobilize those highly hydro-
phobic contaminants by competing binding sites in a soil matrix. At the same time, plants 
exude acts as carbon-rich source for the rhizobacteria, which could further detoxify the 
CECs retained in the soil. Huesemann et al. estimated that highly hydrophobic polynuclear 
aromatic hydrocarbons were effectively removed (73% decrease) by the eelgrass (Zostera 
marina) phytoremediation, but only 25% removed in unplanted controls (Huesemann et al. 
2009). Since only 0.35% of contaminants were detected in the roots and shoots in the initial 
60 weeks, the results suggested that plant-enhanced biodegradation in rhizosphere was the 
major contributor within the plant-amendment environments. Besides the acceleration of 
in-situ phytoremediation, this ’defense’ system of plants was also reported to prevent fur-
ther phytotoxicity. To protect plants, plant exudes could further inhibit translocation into 
aerial tissues and increase defense enzymes activity in affected regions. Such uptake inhibi-
tion was documented to relate to specific enzymes and metabolite inhibitor, such as proto-
porphyrinogen oxidase, 2,4-dinitrophenol (2,4-DNP), and iodo-acetate. It was reported that 
these inhibitors targeted protoporphyrinogen in cytoplasm (Madalão et al. 2012), proton-
couple fluxes through the plasma membrane or endomembrane system (Kong et al. 2007). 
Specifically, hemp was found to produce a significant amount of salicylic acid, which effi-
ciently induced polycyclic aromatic hydrocarbon (PAH) bacteria and increased PAH min-
eralization (Liste and Prutz 2006).

2.2  Stage II—internal transformation and conjugation

Plants’ internal phytodegradation is similar to xenophobic metabolism of mammalian 
living organisms. The initial metabolic step is transformation, which includes a series of 
contaminants’ mobilization, such as oxidations, reductions, methylation, dehalogenation, 
hydroxylation and photolysis (Boonsaner and Hawker 2010). Both mammal and plants rely 
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largely on cytochrome P450 monooxygenases to metabolize exotic chemicals (Nebert et al. 
2013). This step increases the hydrophilicity, which serves as the pre-treatment for the fol-
lowing conjugation. Transformation also allows contaminants to be hydrophilic enough to 
diffuse into the cytoplasm through apoplast pathway (Tanoue et al. 2012). Conjugation is 
the predominant step in the detoxification, which also serves as a protection system against 
high oxidative stress caused by xenobiotics. It utilizes enzymes like glycosyltransferase, 
glutathione S-transferases, peroxidases, and hydrolases to combine the transformed metab-
olites with natural molecules like sugar, amino acid and malonate. The detected metabo-
lites and conjugates showed the same order with theoretical metabolisms. Since the rapid 
metabolism and associated conjugation normally happen in a relatively short-time period, 
these two steps sometimes are investigated together in previous studies (Huber et  al. 
2009). For example, diclofenac metabolism has been extensively studied, which includes 
a rapid hydroxylation, followed by the conjugation with glucuronide and/or sulfate. Bartha 
et  al. (2014) found that 4′–OH diclofenac, the product of transformation, were detected 
only after one day in even higher concentration than diclofenac itself. 4′–O–glucopyrano-
syl–oxydiclofenac, product of conjugation, was found to have increase concentration after 
3 days. However, the frequency and concentration of the detected conjugates are still very 
limited compared to the transformed metabolites. In the previous example, only 20% of the 
metabolites have been conjugated in the first 3 days and remained unchanged afterward.

So far, there is still limited information on the contaminant’s metabolism. Most of 
metabolism investigations refer to the similar detoxification conducted in mammalian 
liver more or less. The difficulty falls in the technological detection of low-concentration, 
unknown and complexed metabolites as well as resulted conjugates. Additionally, the lack 
of halogen on these polar contaminants make it even more difficult to detect due to the 
lack of isotope in mass spectra (Fu et al. 2018). As stated in the green liver model theory, 
the metabolism is a whole-plant activity. But degrees of metabolisms, involved enzymes, 
and products can vary. For example, metabolic pathways of carbamazepine (CB) are well-
documented, which constitutes epoxidation by cytochrome P450 enzyme, hydroxylation by 
epoxide hydrolase enzyme, and conjugates with glucuronide (Dordio et al. 2011). Dordio 
et al. (2011) found that only one of the metabolites, epoxide–CB, was detected in the leaf 
of Typha spp. after 21 days. Mordechay et al. (2018) demonstrated epoxide-CB, which sub-
stituted ~ 60% of parent molecule, was detected in wheat ear after 155  days without the 
detected dihydroxy-CB. In tomato fruit, dihydroxy–CB replaced ~ 50% of parent molecule 
without detected epoxide-CB after 98  days. Only lettuce leaf showed a comprehensive 
metabolites’ distribution which includes epoxide–CB (20%), dihydroxy-CB (20%), and 
CB itself (60%) after 42 days. None of them have detected the CB-conjugates. Even the 
same plant would carry out several metabolisms at the same time. For example, Macherius 
et al. (2012) found that triclosan was rapidly adsorbed up to 95% into the carrots tissue in 
the first 2 h, and subsequently, followed by a quick metabolism with a 9-h half-life. Eight 
different metabolites were detected during the triclosan detoxification, which continuously 
conjugated with saccharides, disaccharides, malonic acid, amino acid and sulfate. Tai et al. 
(2019) detected a total of 15 metabolites in the root of Iris pseudacorus., 9 of them in 
shoot, and a confirmed acetyl-conjugate in exposure of sulfonamides. These results proved 
the metabolisms are largely plant specific. It also revealed the importance of selecting an 
appropriate plant for phytoremediation.

Xenophobic metabolisms have some similarities among plants. Besides the similarity 
of involved enzymes (e.g., cytochrome P450 enzyme, glutathione S-transferases and gly-
cosyltransferase), some studies indicated that those contaminants bearing polar functional 
groups are easier to be detoxified, such as phenolic group, amines and carboxylic acids 



14411Phytoremediation of contaminants of emerging concern from…

1 3

(Macherius et al. 2012). Contaminants with lower molecular weight contaminants are eas-
ily detoxified than higher molecular weight. But moieties such as chloride, nitro and methyl 
groups, which have stronger steric hindrance than others, are harder to be transformed (Fu 
et al. 2017). Amino acid conjugates are consistently detected in quantities contaminants, 
but sometimes as a side reaction (He et al. 2017).

2.3  Stage III—CECs sequestrations and/or accumulation

The major difference between mammalian and plant metabolism is in the ultimate fate-
storage, which is opposite to excretion in mammals. Due to the lack of excretion pathway, 
most of the metabolites and conjugates are sequenced in the plant tissues, which is also 
termed as ’excretion storage’. There are at least three terminal fates within the plant tissues 
for sequestration: storage in cell vacuole, storage in the apoplast, or covalent binding to 
cell walls (Bartha et al. 2014). And few compounds are reported to be volatized through 
stomatal pores on the leaves (Dordio et al. 2009). It was also found that released conju-
gates and plant natural exudes could be further re-uptaken to enhance the bioavailability of 
residual contaminants in soil environment (Tai et al. 2019). Some contaminants that are not 
metabolized or sequestered are released to the atmosphere through stoma on leaves surface 
(Barbour et al. 2005). Some are partitioned into plant lipids during the translocation with-
out further metabolism (Tai et al. 2019).

3  Phytoremediation potential of industrial hemp

3.1  Performance of industrial hemp for the decontamination of CECs

So far, the fiber production and medical value of industrial hemp have been dominantly 
recognized. However, because of the long-term illegalization for planting industrial hemp 
in the North America, its phytoremediation potential has been largely unknown. In the lim-
ited industrial hemp phytoremediation studies available, the effectiveness of hemp’s ability 
to remove heavy metals has been repeatedly proven (Tofan et al. 2013; Stonehouse et al. 
2020; Praspaliauskas et  al. 2020). Compared to other popular phytoremediation species, 
such as mustard and sunflower, hemp exhibited excellent removal efficiency with heavy 
metals (Meers et al. 2005). Industrial hemp is ideal for heavy metal removal owing to its 
large and porous surface structure, low nutrient requirements and high contaminants tol-
erance. Studies demonstrated that hemp can survive in highly contaminated sites such as 
landfill leachate, mine area, where very few crop plants could survive (Mihoc et al. 2012). 
Accumulated heavy metal can be further digested, metabolized and even be exuded as 
dietary form of heavy metal (Stonehouse et  al. 2020). Industrial hemp also performed 
good clean-up of CECs. CECs with a wide range of molecular weights and solubilities 
were remediated with hemp (Table 1). Several studies reported that the soil remediation 
and microbial activity were also enhanced by the hemp cultivation. During the growth of 
hemp, powerful allelopathic chemicals through its root has been secreted, accelerating the 
soil remediation (Linger et  al. 2002). Similarly, a study conducted on Zea mays proved 
the biogenetic, rather than anthropogenic sources of hydrocarbon contents in soil (Grifoni 
et  al. 2020). Bacteria including Achromobacter sp., Pseudomonas sp., and Alcaligenes 
sp., which were isolated from hemp, completely degraded the phenol and benzene, indi-
cating great phytoremediation potential of hemp (Iqbal et  al. 2018). Co-contaminations 
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of heavy metal and CECs are even more challenging. The phytoremediation results are 
debatable because of the different functions of heavy metals and the interactions between 
heavy metal and organic contaminants. Pyrene was reported to facilitate copper penetration 
into the plant cell, increasing copper accumulation (Chigbo et al. 2013). The competition 
between heavy metal and organic contaminants, on the other hand, resulted in the limited 
phytoextraction of residual contaminants. For example, the accumulation of norfloxacin in 
rice roots was inhibited with the increasing dosage of Fe (II) (0–50 mg Kg−1) (Yan et al. 
2017). However, a handful of studies have investigated the contaminants with halogenated 
functional groups or with larger molecular weights (> 400), which are commonly found 
as CECs. Studies investigating the phytoremediation potential of these CECs are urgently 
needed as the increasing contamination is found globally (Marsik et al. 2017; Mattes et al. 
2018).

3.2  Factors influencing the performance

3.2.1  Physicochemical properties of contaminants

Physicochemical properties (i.e., log Kow, molecular weight and numbers of carbon) of the 
contaminants are dominant factors to consider during the uptake of xenobiotics. As dis-
cussed in Sect. 2, plant uptake of contaminants occurs by passive and/or active transport. 
Compounds characterized as semi-volatile or volatile can be partitioned or adsorbed from 
the atmospheric air. These quite different decontamination approaches are resulted from 
the physicochemical properties, collectively described as octanol-water partitioning coef-
ficient (Kow or Dow) and octanol-air partitioning coefficient (Koa) (Lin et al. 2007). Predic-
tions have been made that nonionic compounds, which log Kow in a range of 0.5–3.5 are 
lipophilic enough to move through the lipid bilayer of membrane, yet water-soluble enough 
to transfer into the cell fluid. For passive transport of poorly water-soluble organic com-
pounds, it has been noted that the single and most important plant characteristic is the plant 
lipid content (Barbour et al. 2005). This might indicate that multiple uptake mechanisms 
occurred. It has also found that log Kow smaller than 2 exhibited a more diverse bioaccumu-
lation factor (BCF), which represents the uptake efficiency of contaminants from the stud-
ied medium (Fig. 3). Plants exhibited complex preferences on remediation of compounds 
with different molecular weights (MW), especially when MW > 300. In some cases, con-
taminants with higher molecular weights have more resistance to biodegradation, resulting 
in decreased accumulations to plants (Liste and Prutz 2006). Some studies showed high 
BCF (> 3) of compounds with large molecular weight. This result, however, was contrib-
uted by multiple factors including optimal growth medium (e.g., commercial potting soil 
and Hoagland nutrient solution), smaller logKow and longer study duration (Cui et al. 2017; 
Boonsaner and Hawker 2010; Yan et al. 2017). And the lower transformation efficiencies 
ranging from 0 to 0.06 (from root to shoot) were found with these compounds (Cui et al. 
2016; Yan et al. 2017). As for weak electrolytes, parameters have different reflections on 
the plant uptake. Dow is the normalized parameter to Kow considering the effect of ionized 
functional groups. Dow is largely dependent on the factors such as the acid–base coeffi-
cient (pKa) of the compound and the medium pH. It can be estimated with the following 
equation: DOW = Kow(1 + 10pH−pKa )

−1(Halling-Sørensen et al. 1998). Contaminants trans-
ported in phloem was found to be optimal for compounds of intermediate hydrophobicity 
(Log Kow 1–3) and weak acidity (pKa 3–6) (Trapp 2004). This indicates the contaminants 
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with these properties have larger chances to be further metabolized. However, in general, 
there are still very limited studies investigating the weak electrolyte’s phytoremediation.

3.2.2  Plant type and growing medium

Selection of plants as phytoremediators depends on the phytoremediation efficiency. 
Higher efficiency and more attention have been found with herbs (e.g., mustard and indus-
trial hemp) and grains (e.g., soybean and corn) (Fig. 3). Common characteristics they share 
are high tolerance to on-site pollution, short life cycles and handling ease. Fibrous root 
systems are also preferred because of the large rhizoplane surface area, which enriches the 
microbial population (Escalante-Espinosa et al. 2005). For example, Alfalfa increased the 

Fig. 3  Influences of Soil pH, plant species, physicochemical properties of contaminants (i.e., number of 
carbons, molecular weight and  LogKow) on Bioaccumulation Factors (BCF)
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number of both culturable, aerobic heterotrophic and PAH degrading bacteria in the rhizo-
sphere after 7 weeks compared to bulk soil (Kirk et al. 2005). Uncontaminated soil also 
showed the increasing amount of large molecular hydrocarbon (C > 12) with the growth of 
maize (Zea mays), indicating the biogenic sources of the compounds (Grifoni et al. 2020). 
Yellow medick (Medicago falcata L.) and alfalfa were both effective at on-site remedia-
tion of petroleum contaminants, but the number of hydrocarbon-oxidizing microorganisms 
were larger in the rhizosphere zone of alfalfa (Panchenko et  al. 2017). Soil pH and  pKa 
values of contaminants combinedly decided the neutral or ionic form in the study medium, 
determining the availability to plants. However, uptake efficiencies and forms of contami-
nants are not always closely related in studies. For example, in soil (pH = 6.5–6.7) forti-
fied with pharmaceuticals, uptake efficiencies were reported the greatest of carbamazepine 
(neutral) and sulfamethoxazole (ionic) in plant tissue, suggesting that factors other than soil 
pH affect the uptake (Holling et al. 2012). Similarly, Herklotz et al. (2010) found the larg-
est accumulation in cabbage tissue was correlated to the compound with lowest pKa, sul-
famethoxazole (ionic form in studied medium). Some studies found the metabolism could 
be independent from environmental factors, such as soil type, carrier medium and solely 
controlled by the total amount taken up by the plant (Mordechay et al. 2018). Therefore, 
comparing to medium properties, characteristics of target compounds seem to play larger 
roles in uptake efficiencies.

4  Circular economy of industrial hemp applications and management

4.1  Hemp potential disposal strategies

It is essential to discuss the disposal strategies of industrial hemp when considering the 
economic benefits. Industrial hemp is a particularly vigorous annual crop, which can be 
seeded from late spring when the soil just starts to warm. It has a remarkable growth rate, 
which has been recorded with heights from 1 to 5 m by August (Ip and Miller 2012). High 
tolerance of contaminants make hemp valuable in terms of its further application after phy-
toremediation (Kumar et  al. 2017). Estimating from previous studies, contaminants only 
showed limited effect on hemp quality. For example, Linger et  al. (2002) indicated that 
heavy metal contamination did not show negative effect on the hemp fiber quality (i.e., 
fineness or strength) or quantity. Revealed by greenhouse experiments, dry biomass of 
hemp cultivated in a moderately contaminanted area decreased up to 40% compared to 
those in uncontaminated soil (Pietrini et al. 2019). While chronolyII content and other pho-
tochemistry parameter only slightly reduced, indicating the good physiological status of 
plants. Husain et al. (2019) also demonstrated that the height of hemp in contaminated soil 
and commercial soil exhibited no significant difference when heavy metal accumulation 
were detected in all parts of hemp.

So far, industrial hemp, serving as an economical crop, has been extensively applied 
to the fields including bioenergy, paper, construction etc. (Table 2). Hemp can either be 
utilized as the whole plant or each individual part, such as hemp fibers, seeds and inflores-
cences (Table 2). These non-food applications can also be applied to the disposal strategies 
with appropriate pretreatments and investigations. In order to optimize socioeconomic ben-
efits and limited environmental impact of hemp disposal after phytoremediation, strategies 
that target each individual part instead of whole plant are suggested.
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4.1.1  Hemp fibers

Hemp fibers have been largely employed in bioenergy, paper construction sectors (Bow-
yer 2001). In terms of bioenergy production, it has been recognized as an economic 
option with low environmental impacts. High cellulose content (~ 44%) as well as high 
biomass yield ensure hemp a suitable crop for bioenergy production (Kumar et  al. 
2017). Nowadays, 36% of the global energy consumption is in the form of conventional 
liquid fuels including petrol and diesel (Staples et al. 2017). Therefore, the utilization of 
bioenergy (e.g., bioethanol, biodiesel, biobutanol, and biogas) instead of conventional 
energy resources exhibits environmental, energy-saving and socioeconomic advan-
tages (González-García et  al. 2012). Bioethanol, as recorded, can be produced from 
the cellulose and lignocellulosic biomass, such as agricultural residues, herbaceous 
crops or forestry residues (Hou et  al. 2020). These materials are abundant and inex-
pensive, as promising bioenergy production resources. Hemp fiber can also be utilized 
for paper production. However, there is no record of 100% hemp-based paper produc-
tion (Naithani et al. 2020). It was also not economically or environmentally competitive 
comparing to conventional tree plantation (Bowyer 2001).

4.1.2  Hemp hurds

During hemp fiber separation, hemp crops also produce large amount of byproducts: 
hemp and dust (González-García et al. 2012). Hurds are non-fiber components obtained 
by retting hemp stem (Scrucca et al. 2020). The chemical contents of hemp hurds are 
very close to that of wood species, with a high portion of cellulose and hemicellulose. 
Therefore, it has mainly contributed to the animal bedding production and construc-
tion sector. Several studies also estimated the feasibility of converting hemp hurds into 
bioethanol (Barta et  al. 2010; González-García et  al. 2012). But hemp hurds-related 
technologies are relatively new and still under development.

4.1.3  Hemp shiv

Hemp bales are shopped and decertified. The bales are then separated to hemp shiv, 
hemp fiber and hemp dust. Hemp shiv have been implemented in hemp-lime wall con-
struction. At the same time, hemp fiber and hemp dust are recycled in use of other prod-
ucts. The dust can be utilized as filler in plastics, lime render or compressed for use as 
fuel logs (Ip and Miller 2012). Hemp-lime wall has been used in Europe early from 
1990s, but not commonly accepted (Evrard and De Herde 2010). Nowadays, due to 
increasing efforts being made on environmental protection and greenhouse gas (GHG) 
emission reduction, hemp-lime construction is striking globally. Hemp, serving a part of 
construction material, significantly enhances construction status from different aspects, 
such as high levels of airtightness, improved air quality and lower energy consumption 
because of latent thermal capacities of hemp-lime wall (Shea et al. 2012). It was esti-
mated that hemp-lime wall would be able to last over 100 years, or at least as durable as 
traditional wall (Cripps and Fovargue 2004).
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4.1.4  Hemp seeds

Biodiesel is clean production as an alternative to petroleum-based diesel fuel. Biodiesel 
production has already been commercialized by utilizing crop oils such as sunflower, palm 
tree and soybean (Meher et  al. 2006). Although not largely commercialized, industrial 
hemp is one of the most promising sources. It has a high yield of oil and biomass, indicat-
ing potential production of both biodiesel and bioethanol simultaneously (Li et al. 2010). 
Li et al. successfully convert the oil of hemp seed to biodiesel through the base-catalyzed 
transesterification with the conversion yield of 97% (Li et al. 2010). Yang et al. (2010) used 
a one-pot process, which combined transesterification and selective hydrogenation, con-
verted hemp seed oil to biodiesel with a yield of 96%.

4.1.5  Hemp inflorescences

Industrial hemp has the potential to be employed as insecticides because of its inflores-
cences. Glandular hair, which exuded oleoresin (a barrier entrapping plant enemies), are 
accumulated on its inflorescences (G. Benelli et al. 2018b, a). Benelli et al. estimated that 
the essential oil extracted from hemp inflorescences via hydrodistillation is efficient as nat-
ural insecticides for the control and management of mosquito vectors, houseflies and moth 
pests (Giovanni Benelli et al. 2018a, b). Additionally, the essential oil exhibited protection 
for earthworms, which are major contributor to the consumption of biodegradable materi-
als and organic waste, which could be converted to vermicast, unlike synthetic insecticides 
that kill almost all earthworms instantly (Pavela 2018).

4.2  Outlook: implications for industrial hemp based on circular management

In the last few years, the circular economy (CE) has emerged as an initiative facing 
resource depletion and global climate change (Manriquez-Altamirano et al. 2020). Proto-
cols (e.g., alternatives, technologies and practices) that allow substituting non-renewable 
natural resources to resources recovered from ’waste’ thereby achieve socioeconomic and 
environmental goals of the CE concept (Lieder and Rashid 2016). In addition, CE system 
would also positively affect local by-product demand if managed properly. For example, 
using locally produced and homogenous feedstock can alleviate the economic and envi-
ronmental concerns caused by long-range transportation and complicated materials supply, 
subsequently assisting local businesses and employment (Bolognesi et al. 2019). Therefore, 
industrial hemp after phytoremediation should be re-considered as a ’resource’ instead of 
’waste’ by implanting a more holistic circular economy model (Fig. 4). Before the conduc-
tion of such system, pot trial and field trial are required in order to examine the toxicity of 
hemp/hemp parts and feasibility of the proposed strategy. According to the characteriza-
tion of contaminants and meso/macro level tests, appropriate amounts of industrial hemp 
would be applied for the phytoremediation purpose. After 120  days of growth, mature 
hemp would be qualified by the amount of biomass, volume, height and level of phytoxic-
ity. Hemp, with higher quality will be continuously processed for further recycling/reman-
ufacturing/reusing processes. While hemp with lower quality would be pyrolysis/digested 
on-site depending on the treatment efficiency and local conditions. It can also serve as an 
energy supply to local industries. Nonetheless, the CE system cannot achieve its ambitious 
goals without addressing residue management after all the steps (Peng and Pivato 2019). 
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Those residues (e.g., ashes and dust) and contaminant-concentrated hemp could be sent 
back to the domestic boilers for heating purposes with the goal of reducing treatment costs 
as well as energy consumption.

4.3  Challenges

Recent studies discussed previously shed light on the potential disposal strategies of hemp 
crops after phytoremediation. But the challenges of industrial hemp utilization remain 
unsolved. Studies investigating disposal strategies of industrial hemp achieved different 
results on aspects of the economic and environmental performance mainly due to the lack 
of a commercial production line. Most of the study methods are limited to the literature 
review, life-cycle analysis (LCA) and lab-scaled experiments. In addition, the estimations 
such as LCA are largely based on the literature instead of experimental data, reasonable 
assumptions, and results of similar crops, making the estimates less accurate.

The application of industrial hemp might negatively affect the environment during crop 
growth. It was demonstrated that bioenergy production significantly increases greenhouse 
gas emissions, acidification, and eutrophication because of the feedstock cultivation (Mar-
tin et al. 2014). González-García et al. (2012) indicated that 85% blending of ethanol with 
fossil fuels contributed more than 2 times of GHG to global warming than conventional 
fuel energy. The study, which investigated the environmental impacts of hemp and flax for 
non-wood pulp mills showed 80% of greenhouse gas emissions are contributed by fertilizer 
usage during hemp cultivation (Gonzalez-Garcia et al. 2010).

Not all the hemp parts are feasible for recycling. For example, the recycling strategy 
of hemp ashes as mineral fertilizer is still under discussion because ash can only replace a 
minor portion of fertilizer and requires a similar amount of energy. However, ash recycling 
is an important tool for closing nutrient cycles considering phosphorus deposit depletion 
(Prade et al. 2012). In addition, it is uncertain whether the ashes are non-toxic serving as 
mineral fertilizer. In fact, some studies have determined that the heavy metal contaminated 

Fig. 4  Proposed local-dominated industrial hemp production line under the framework of the circular econ-
omy
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biomass are not only reduced in weight, but also concentrate the heavy metals in ash/char 
fraction. Nevertheless, their individual pyrolysis fraction, i.e., bio-oil/tar and gas, are both 
heavy metal free (Liu et al. 2012). Therefore, the utilization of ashes are doubtable, but the 
volorization of metal might be feasible.

Last but not least, some strategies are commercially uncompetitive. For example, bio-
fuels are less acceptable worldwide because the technology is still being developed. Even 
though the biomass is relatively abundant and inexpensive, not all of them can be utilized 
for biofuel production, mainly due to the difficulty of effective hydrolysis in terms of cost 
and energy consumption (González-García et al. 2012).

5  Conclusions

With increasing attention and legalization policies on industrial hemp, comprehensive uti-
lizations of this precious crop have been studied in recent years. This review estimated 
the phytoremediation potential of CECs and the underlying mechanism of industrial hemp. 
The Green Liver Model precisely described CECs uptake and detoxification with several 
steps: transformation, translocation, conjugations and final storage. Studies in recent years 
(2005–2020) were found to further complete this theory by adding several transformation 
pathways, final storage terminals and ex planta biodegradation. Contaminants physico-
chemical properties were found to play a more significant role than soil or plant properties 
in regards of the phytoremediation performances. However, there are still limited studies 
available that employ industrial hemp for organic compound decontamination. The circu-
lar economy system has been applied in the disposal strategies, in order to optimize the 
socioeconomic as well as environmental benefits of industrial hemp. In addition, circular 
economy protocol can also promote local business development and employment if well 
managed. Future research is urgently required on performance aspects of hemp on phytore-
mediation and realization of its circular disposal/recycling managements.
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