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Abstract
Landslide poses severe threats to the natural landscape of the Lesser Himalayas and the

lives and economy of the communities residing in that mountainous topography. This study

aims to investigate whether the landscape change has any impact on landslide occurrences

in the Kalsi-Chakrata road corridor by detailed investigation through correlation of the

landslide susceptibility zones and the landscape change, and finally to demarcate the

hotspot villages where influence of landscape on landslide occurrence may be more in

future. The rational of this work is to delineate the areas with higher landslide suscepti-

bility using the ensemble model of GIS-based multi-criteria decision making through fuzzy

landslide numerical risk factor model along the Kalsi-Chakrata road corridor of Uttarak-

hand where no previous detailed investigation was carried out applying any contemporary

statistical techniques. The approach includes the correlation of the landslide conditioning

factors in the study area with the changes in land use and land cover (LULC) over the past

decade to understand whether frequent landslides have any link with the physical and

hydro-meteorological or, infrastructure, and socioeconomic activities. It was performed

through LULC change detection and landslide susceptibility mapping (LSM), and spatial

overlay analysis to establish statistical correlation between the said parameters. The LULC

change detection was performed using the object-oriented classification of satellite images

acquired in 2010 and 2019. The inventory of the past landslides was formed by visual

interpretation of high-resolution satellite images supported by an intensive field survey of

each landslide area. To assess the landslide susceptibility zones for 2010 and 2019 sce-

narios, the geo-environmental or conditioning factors such as slope, rainfall, lithology,

normalized differential vegetation index (NDVI), proximity to road and land use and land

cover (LULC) were considered, and the fuzzy LNRF technique was applied. The results

indicated that the LULC in the study area was primarily transformed from forest cover and

sparse vegetation to open areas and arable land, which is increased by 6.7% in a decade.

The increase in built-up areas and agricultural land by 2.3% indicates increasing human

interference that is continuously transforming the natural landscape. The landslide sus-

ceptibility map of 2019 shows that about 25% of the total area falls under high and very

high susceptibility classes. The result shows that 80% of the high landslide susceptible

class is contained by LULC classes of open areas, scrubland, and sparse vegetation, which

point out the profound impact of landscape change that aggravate landslide occurrence in
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that area. The result acclaims that specific LULC classes, such as open areas, barren-rocky

lands, are more prone to landslides in this Lesser Himalayan road corridor, and the LULC-

LSM correlation can be instrumental for landslide probability assessment concerning the

changing landscape. The fuzzy LNRF model applied has 89.6% prediction accuracy at

95% confidence level which is highly satisfactory. The present study of the connection of

LULC change with the landslide probability and identification of the most fragile land-

scape at the village level has been instrumental in delineation of landslide susceptible

areas, and such studies may help the decision-makers adopt appropriate mitigation mea-

sures in those villages where the landscape changes have mainly resulted in increased

landslide occurrences and formulate strategic plans to promote ecologically sustainable

development of the mountainous communities in India’s Lesser Himalayas.

Keywords Landslide susceptibility mapping (LSM) � Landscape � Fuzzy landslide

numerical risk factor (FLNRF) � GIS � Land use land cover (LULC) change � Village
hot spot

1 Introduction

Development of landscape is a long-term process affected by several factors, both natural

and anthropogenic, at a local scale to a regional scale. The natural factors that influence the

primary and secondary natural landscape are mainly governed by the geomorphological

processes of weathering and erosion (Geertsema et al. 2009). Conversely, among the

anthropogenic factors, the construction of roads, extraction of minerals, growing habita-

tion, and deforestation are some prevailing activities that are often found to alter the

landscape within a short period. To understand the changing behavior of a landscape, it is

imperative to investigate the changing nature of land use and land cover (LULC) in an

area.

Landslides in the Himalayas are among the most dangerous natural hazards that threaten

human lives and livelihood and adversely affect the environmental condition and

socioeconomic status of the people living there. Many landslides are activated every year

in the Himalayan ranges during the monsoon season (June–August) due to its unique

geotectonic setup (Pachauri 2010; Pandey and Sharma 2017; Sur and Singh 2019). The

steeper slopes, profound weathering of bedrocks, and intense southwest monsoon rainfall

in the Middle and the Lesser Himalayas are aggravated with growing development,

increasing economic activities, and investments in landslide-prone areas (Gabet et al. 2004;

Ambrosi et al. 2018; Sharma et al. 2020). According to the Geological Survey of India

(GSI), about 0.14 million sq. Km area in Uttarakhand, Himachal Pradesh, and Jammu and

Kashmir (North West Himalayas) are prone to landslide hazard (GSI Bhukosh 2020). The

Lesser Himalayas of India’s Uttarakhand state has observed a considerable rise in devel-

opmental activities in the past decade. Such anthropological influence resulted in

increasing number of natural hazards together with extreme climate conditions (Allen et al.

2015). Most often the landslides are triggered by torrential heavy rainfall, seismic activ-

ities, or, anthropological reasons such as heavy vehicles’ movement or, usually, human

activities on unstable slopes (Kwan et al. 2014; Li et al. 2014). Many of the past literature

reviews suggest that the complex hydro-geological settings and increasing anthropogenic

activities are among the key factors that often influence the landslide occurrences in India’s

Himalayan region (Rai et al. 2014; Singh and Sharma 2020).

123

Landslide probability mapping by considering fuzzy numerical risk… 13527



The Kalsi-Chakrata road corridor in the Dehradun district of India’s Uttarakhand state,

experiences a substantial amount of damages to roads, buildings, and other infrastructure

elements and, sometimes, loss of lives due to rain-induced landslides during the monsoon

period (June–August). This hazard incurs significant economic losses that affect the

livelihood of the village communities residing in those rugged mountainous regions of

Garhwal Himalayas. The incidents of roadblocks and damages during the monsoon months

have been reported by national and local news agencies almost every year (Sur et al. 2020).

The Amraha landslide between Kalsi and Sahiya town is recurring every year for more

than a decade, disrupting the road connectivity and often bringing life to a complete

standstill. A thorough literature review reveals that no in-depth and holistic scientific

research has been conducted on landslide hazard mapping in the Kalsi-Chakrata road

corridor. Hence, it is imperative to perform a comprehensive landslide hazard assessment

concerning the landscape regarding environmental and social parameters applying

advanced geospatial techniques. This paper’s primary purpose is to investigate whether the

landscape change has any impact on landslide occurrences in the Kalsi-Chakrata road

corridor by detailed investigation through correlation of the landslide susceptibility zones

and the landscape change and finally demarcate the hotspot villages where influence of

landscape on landslide occurrence may be more in future.

The variations in land use and land cover (LULC) in mountainous terrain can increase

or decrease a landscape’s probabilities. In several studies, it has been noted that a positive

relationship exists between the alterations in the landscape and the incidence of landslides

(Chen et al. 2019). The correlation of the changes in LULC in the past may help to

understand whether frequent landslides have any link with the physical and hydro-mete-

orological causes or due to the increasing economic activities in an area. Landslides

primarily occur by dislocation of soils on steep slopes by heavy rains, aggravated by

several hydro-geomorphological processes and anthropogenic activities. The areas with

added forest and vegetation cover have soil more stabilized than the regions that experi-

ence many developmental activities through deforestation, construction on hill slopes, etc.

(Sartohadi et al. 2018). The hilly terrain of the tropical belt, such as the Lesser Himalayas,

often faces the pronounced impact of climate change. Such implications may result in

volatile precipitation that increases the risk of landslide occurrence many folds, thus

threatening people’s lives and infrastructural damages and left a profound impact on an

area’s environment and ecology (NASA/Goddard Space Flight Center 2020; Dikshit et al.

2020).

It is evident from the literature survey that human activities often lead to reforms and

alterations in the natural landscape, which may lead to the activation of complex hydro-

geomorphological processes resulting in landslides (Sur and Singh 2019). All over the

world, more emphasis has been put on the impact of landslides on human lives and

infrastructure; however, little attention has been paid to its impact on the natural envi-

ronment and ecology (Schuster and Highland 2007; De Sy et al. 2013). In some of the

significant past studies, environmental degradation and socioeconomic indicators that

play a crucial role in landscape change has been emphasized as possible reason behind

the increased landslide occurrences (Abbas et al. 2019). It is also evident from studies

that the fragile Himalayan landscape are highly susceptible to natural hazards, leading to

increasing concern among the scientists on current and future climate change scenarios

(World Bank 2013). The latest studies also emphasized the impact of physiography and

climate change as significant parameters that aggravate the landscape changes in the

mountainous areas (Abbas et al. 2020). In this context, the manmade process such as

road/railway construction, dumping, undercutting of slopes, querying and mining,
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excavation for building and structure construction, etc., on slopes often modifies the

landscape and sometimes aggravates the factors responsible for landslides in hilly terrain

(Kumar and Gorai 2018; Nseka et al. 2019). As a result, in some cases, landslides in

various forms may be experienced in a newer, previously non-existent anthropogenic

landscape where the direct and indirect impacts of landslides may sometimes persist in

the long term. The direct impact of a landslide is damages and losses attributable to the

areas of occurrence due to the landslide (Heping et al. 2019; Chen et al. 2019). In

contrast, indirect costs include environmental impacts, livelihood changes, changes in

agricultural practices, transport disruption, economic restrictions, etc. In a highly

dynamic environment like the Himalayas, landslides change the landscape and often

substantially influence human lives and activities. In the mountainous rural areas, sig-

nificantly the changes in the landscape and economic losses due to landslide sometimes

inflict a substantial threat to the societies (Fu et al. 2020).

As depicted above, the Himalayas in the tropics is a comparatively recent formation that

is seismically active rugged and hilly terrain is highly fractured and weathered due to

intense folding and faulting (Pachauris 2010). Caused by a higher degree of human

interference in the form of continuous construction activities, deforestation, improper

cultivation practices, increased vehicular movements, mining, more and more areas of the

Lesser Himalayas are becoming focal points for increased economic activities. All these

factors, coupled with hydro-geological and climatological parameters, induce more fre-

quent landslide events in the Himalayas (Khanduri 2017). Therefore, it is imperative to

investigate the occurrences of landslides concerning the landscape in such areas so that

necessary fortification and mitigation methods may be adopted to reduce the landslide

hazards and reduce the landscape’s fragility.

There are several advanced approaches and techniques for predicting landslides applied

in different parts of the globe that try to address other aspects of landslide prediction (Singh

et al. 2015). Those techniques’ accuracy and prediction capability often vary widely (Chen

et al. 2016; Meena et al. 2019). In the past decade, there has been quite a few proper

research works carried out based on a contemporary approach to prepare landslide sus-

ceptibility assessment based on qualitative and quantitative methods (Guzzetti et al. 1999;

Pradhan and Lee 2010; Tien Bui et al. 2015, 2019; Haoyuan et al. 2016; Pham et al. 2017;

Gao et al. 2019; Dikshit et al. 2020; Sharma et al. 2020). One general and essential

procedure for spatially predicting the landslide hazard is developing landslide suscepti-

bility index (LSI) mapping. The statistical models, in particular, are based on the data-

driven methodology that is well capable of predicting the landslide susceptible areas

spatially. Such techniques provide a useful prediction for the decision-makers and

authorities in adopting appropriate approaches in minimizing the potential damages and

losses from existing and future landslides (Pourghasemi and Rahmati 2018; Sur and Singh

2019; Singh et al. 2020).

The present study has followed the GIS-based multi-criteria decision making (MCDM)

approach like fuzzy landslide numerical risk factor (FLNRF) model for mapping the

landslide susceptibility. The FLNRF or fuzzy LNRF is a contemporary statistical model

based on the data-driven methodology that spatially predicts the landslide susceptible

zones. The fuzzy set theory has been implemented to allow greater flexibility to resolve the

uncertainty and imprecision and provides more accurate results using fuzzy membership

functions to address this issue. Several other researchers have applied the FLNRF model

considering important landslide conditioning factors such as slope, rainfall, altitude,

aspect, geology, soil, distances from road, fault, and river in their work and generated the
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landslide susceptibility maps having considerably higher accuracy (Torkashvand et al.

2014; Roy and Saha 2019).

The rational of this work is to delineate the areas with higher landslide susceptibility

using the ensemble model of FLNRF along the Kalsi-Chakrata road corridor of Uttarak-

hand where no previous detailed investigation was carried out previously applying any

contemporary statistical techniques. In the present study, the remote sensing technique was

used to spatially delineate the past landslide locations followed by detailed field investi-

gation. To assess the landslide susceptibility zones, the geo-environmental or conditioning

factors such as slope, rainfall, lithology, normalized differential vegetation index (NDVI),

proximity to road and land use and land cover (LULC) were considered, and the fuzzy

LNRF technique was applied. In order to do this, the fuzzy membership function (MF)

value was estimated for each factors and afterward, the MF value of parameters using the

fuzzy gamma operator has been assembled with the LNRF model for producing the LSM.

The output LSM was then validated using landslide test locations based on receiver

operating characteristic (ROC) curve. The novelty of this research is that though many of

the researchers have applied LNRF method for LSM; however, this is the first instance

when the knowledge-driven technique (fuzzy logic) assembled with LNRF model has been

applied in a Lesser Himalayan road corridor in Uttarakhand. Likewise, the present study

was the first instance when a detailed geospatial investigation has been carried out to

correlate the landscape change with the landslide probability. This has been done by

considering the LULC map of 2010 and 2019 in the FLNRF model considering all the

remaining conditioning factors as constant. The landslide susceptibility map of 2010 and

2019 generated has been analyzed in the light of landscape change at village level so that

inferences can be drawn to find out the village priorities where more attention is required

for appropriate mitigation measures.

2 Study area

The study area includes 34 villages located in the Dehradun district of Uttarakhand state in

India through which the 42-km long Chakrata-Kalsi road corridor passes. Chakrata is a

popular hill station and a famous tourist destination at the height of 2118 m above sea level

in the Lesser Himalayan ranges. Kalsi, on the other hand, is a small cantonment town

located at the bank of the Yamuna River. According to the Census of India (2011) village

boundary data, the study area spreads over 83 sq. Km area with a population of more than

16,600 residing in 2700 households. As per the Bureau of Indian Standards (BIS), the

entire study area falls in seismic zone V, and the Main Boundary Fault (MBT) passes

through the road corridor. The study area has a very rugged topography with altitude

ranging between 433 m (near Yamuna River) and 2456 m (near Chakrata). The mean

altitude of the area is 1445 m above mean sea level. The temperature ranges from 1.4 �C in

winter to 34 �C in summer, with an average annual rainfall varying between 1339 and

1479 cm. The road corridor is situated in the Siwalik and Middle Himalayas, one of the

most seismically active regions. The geology, structures, and lithology of the area have

been mapped using geological maps acquired from GSI. In the study area, the outer

sedimentary belt consists of the Krol belt, while the inner belts constitute thick sequences

of unmetamorphosed sediments. There are seven geological formations observed in the

study area, of which the Jaunsar group is the predominant formation that covers more than

90% of the geographical area. During the field investigation, the Mandhali-Chakrata

Formation (Proterozoic II) and Chandpur Formation (Proterozoic III lower), where most of
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the landslides occurred, were studied concerning other landslide conditioning factors. The

Main Boundary Thrust (MBT) can be easily distinguished near the Kalsi town. The study

area typically experiences three seasons. Agriculture, social forestry, and mining activities

are among the villagers’ essential means of livelihood (Fig. 1).

The common types of rain-induced landslides in this area include debris slide, debris

flow, rock slide, and rockfall (Fig. 2). A substantial number of landslides occur between

June and August every year when the torrential monsoon rain saturates the surface soil and

rocks, which often leads to slope failure under the influence of the geo-environmental

factors. The most widespread and threatening landslide is the Amraha landslide that has

increased in size by more than ten times in the previous two decades (Fig. 2). This often

causes blockade of the village roads during the monsoon resulting in a disruption in the

vehicular movements and economic loss. Apart from direct damages to assets and damages

to infrastructure, there are often significant indirect losses that significantly impact the

communities residing in the study area. These indirect losses usually occur due to the

interruption of road transport and obstacle in economic activities (rotten fruits and veg-

etables). Overall, the collective influence of the newer geologic formation, rugged terrain,

U�arakhand

Dehradun
District

Uttarakhand
Study Area

INDIA 

Fig. 1 Location of the study area
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high seismicity, higher monsoonal rainfall, deep weathering, and intense anthropogenic

activities on unstable slopes most likely have a substantial influence on periodic landslides.

3 Materials and methods

The first step in any LSI mapping is to organize a detailed landslide inventory by inter-

preting the high-resolution satellite data, which was further validated through intensive

field investigation (Guzetti et al. 1999, 2012; Deng et al. 2017; Ambrosi et al. 2018). Next,

the critical conditioning factors (geo-environmental factors) were identified through

 

Study Area

Kalsi

Chakrata

March 2002 March 2010

October 2017 March 2019

Amraha Landslide
(30.5647°N, 77.8515°E) 

(a)

(b) (c)

(d) (e)

Fig. 2 Expansion of Amraha landslide over the past two decades. a Panoramic view of the study area with
Amraha landslide; b–e advancement of Amraha landslide near Sahiya town over the past two decades
delineated from Google Earth satellite images
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literature review and field data analysis for further consideration in predictive models

(Marinos et al. 2019). These are the factors that might have been responsible for triggering

a landslide in the past. The conditioning factors usually considered are topography, geo-

hydrology, climate, and anthropogenic activities (Wang et al. 2019). More efforts have

been made to generate thematic layers using higher-resolution and the latest vintage data

for selected geo-environmental factors after a thorough literature review and necessary

validation in the present study. The detailed information of the data source is presented in

Table 1. The following sub-sections present the data and materials used in this study and

the methodology adopted for generating LSI maps.

Table 1 Detail of thematic layers and their data sources

Thematic
Layers

Sub-classes Data description Vintage Data source

Land use/land
cover
(LULC)

LULC 2010 Landsat 7 enhanced thematic
mapper plus (ETM?)

10.3.2010 http://earthexplorer.
usgs.gov

LULC 2019 Resourcesat-2/linear imaging
self-scanning system IV (LISS-
IV) (5.8 m)

17.3.2019 National Remote
Sensing Centre
(NRSC), India

Landslide
inventory

Test and
training data
sets

Cartosat (2.5 m) 2017 NRSC, India

Resourcesat-2/LISS4 (5.8 m) 2019 NRSC, India

Google earth, public works
department (PWD), Published
reports, Bhukosh from
Geological Survey of India
(GSI)

2006–2017 https://earth.google.
com;

Geological survey of
India (http://
bhukosh.gsi.gov.in)

Public Works Dept.,
Uttarakhand

DEM/DTM DTM Cartosat (2.5 m), Resourcesat-2/
LISS4 (5.8m)

2017 NRSC, India

Topographical Slope Slope angle (10 m) 2017 NRSC, India;
(processed digital
terrain model
(DTM) by the
researcher)

Geological Lithology Lithological classes (1:25,000) 2015 Geological Survey of
India

Meteorological Rainfall Indian meteorological
department (IMD) rainfall data

1947–2017 https://data.gov.in;
https://mausam.imd.
gov.in

Vegetation Normalized
difference
vegetation
index
(NDVI)

Resourcesat-2/LISS4 (5.8 m) 2017 NRSC, India

Road Road
proximity

Resourcesat-2/LISS4 (5.8 m)
Google Earth

2017 NRSC, India
https://earth.google.
com;
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3.1 Data sources

For carrying out the current investigation, various essential information has been acquired

from various sources, e.g., the Cartosat digital elevation model (DEM) from the National

Remote Sensing Centre (NRSC), Hyderabad, rainfall data from the Indian Meteorological

Department (IMD), lithology data from Geological Survey of India (GSI). The land

use/land cover (LULC) data were generated from Landsat 7 Enhanced Thematic Mapper

Plus (ETM?) and Resourcesat-2/Linear Imaging Self-Scanning System IV (LISS-IV) for

the year 2010 and 2019, respectively. The LISS-IV data of NRSC were used to generate

the normalized differential vegetation index (NDVI) and road network thematic layers. The

overview of the procedure adopted here is shown in the flowchart in Fig. 5.

3.2 Software used

To predict the landslide susceptible areas, the thematic data layers were prepared using

ArcGIS 10.8, ENVI 4.7, and GEOMATICA software for selected landslide conditioning

factors, namely slope, lithology, rainfall, NDVI, road proximity, and LULC. The mathe-

matical calculation has been done in SPSS software. The final aggregation of LSM values

has been carried out in ArcGIS 10.8.

3.3 Landslide inventory mapping

Landslide inventory mapping helps to comprehend the factors or conditions that might

have been accountable for triggering a past landslide or signify the incidence of an active

landslide (Marinos et al. 2019). The landslide inventory, in this study, was prepared using

three primary sources supported by in-depth field surveys and laboratory investigations:

i. The landslide records collected from Uttarakhand public works department (PWD)

ii. Bhukosh: Online data sharing platform of GSI

iii. Identification of possible past landslide scars delineated from higher-resolution

periodic earth observation data (LISS-IV satellite images captured in March 2019

and Google Earth satellite images between 2001 and 2017)

The boundaries of the landslide events were delineated as precisely as possible. The

records collected in this process were examined through extensive field surveys mostly

along the road corridor, including the connecting village roads using the Global Positioning

System (GPS) instrument and geo-tagged camera during the monsoon and post-monsoon

periods (Fig. 3). It was observed that the common types of rain-induced landslides in this

area include debris slide, debris flow, topple failure, rock slide, and rockfall. The landslide

inventory comprises the type of movement, type of material, the slide’s dimension, the

damages/losses caused by past events. There were 56 prominent landslide locations

demarcated as in 2019, along with descriptions of the landslide hazard. For both modeling

and validation purpose, the landslide point locations were used in the model. In the absence

of any defined procedures for selecting the ratio of the training (for model preparation) and

validation dataset (for verification of model’s performance) (Guzzetti et al. 2012), the most

commonly selected sample ratio is 70/30 for training and validation (Tsangaratos and Ilia

2016; Deng et al. 2017; Sur et al. 2020). Following this process, 38 sites (70%) were

selected randomly as training dataset to develop the model and the remaining 17 landslides

(30%) sites were considered to test the prediction accuracy. Similarly, for the year 2010, 35
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landslide locations were delineated for comparative study and expansion of the landslides.

These data were also chosen for correlation between the landscape and the landslides.

3.4 Landslide conditioning factors

The landslide conditioning factors are nominated based on in-depth literature review, and

their numbers selected for LSM may vary from a small number of factors (Pradhan and Lee

2010; Akgun 2012) to a large number of factors (Catani et al. 2013; Tien Bui et al. 2015;

(e) 

(a) (b)

(c) (d)

(f)

Displacement of 
retaining wall 

Terrace cul�va�on

Widening of road 

Fig. 3 Photographs demonstrating overview of the landscape and spatial location of landslides. a The
landscape along the Kalsi-Chakrata road corridor near Chakrata; b view of typical village in near Sahiya;
c cutting of slope for road widening near Sahiya; d lateral displacement of retaining wall near Amraha;
e rockfall and fragmentation near Dhaira village; f debris slide in Amraha area, the prevalent landslide in the
road corridor
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Xu et al. 2016; Zhang et al. 2018; Sharma et al. 2020; Singh et al. 2020; Sur et al. 2020). In

this study, the most influencing conditioning factors in the Himalayan terrain, such as

slope, rainfall, lithology, normalized differential vegetation index (NDVI), proximity to

road and land use and land cover (LULC), were picked up. The thematic layers for these

factors were prepared from authentic sources using remote sensing and GIS software with a

pixel size of 10 m and categorized applying Jenks natural breaks. The digital terrain model

(DTM) was generated from Cartosat digital elevation model (DEM) (10 m resolution) and

LISS-IV satellite images (5 m resolution) in Global Mapper software at a 10 m resolution.

The quality of the DTM was checked through the Survey of India (SOI) spot heights, GPS

reading collected during field visits, and differential global positioning system (DGPS)

points already used in other published reports in the Chakrata-Kalsi area. The thematic

layers for the remaining factors were generated using ArcGIS 10.3 software from sec-

ondary sources selected carefully based on their authenticity, scale, and vintage.

Rainfall is one of the most significant conditioning factors stimulating the landslide’s

occurrence in the Himalayas as rain affects slope stability through runoff and pore water

pressure (Wang et al. 2019). The daily rainfall data for eight sub-districts headquarter

stations surrounding the study area were obtained from the Indian Meteorological

Department (IMD) for the past 70 years (from 1947 to 2017). The mean annual rainfall

data, using the inverse distance weighted (IDW) method, were interpolated to produce the

annual rainfall map. Next, the rainfall map has been categorized into five distinct classes

such as very low (1339–1371 mm), low (1372–1398 mm), moderate (1399–1426 mm),

high (1427–1453 mm), and very high (1454–1479 mm), respectively. About 75% of the

past landslides occurred in the high and very high landslide categories (Fig. 4a).

The slope is another major contributory factor for landslides in the Lesser Himalayas for

landslide initiation. The slope angle directly influences shear strength, and more material

disintegrates for given material strength on the steeper slopes. Such a condition often

produces more massive landslides (Zhang et al. 2018; Wang et al. 2019; Sur and Singh

2019; Sur et al. 2020). In this study, the slope map has been generated from the Cartosat

DTM and classified into five classes (\ 10�, 10�–20�, 20�–35�, 35�–50�,[ 50�) applying
Jenks natural breaks method (Fig. 4b).

In the Himalayan terrain, another significant contributory factor for landslides is

lithology that determines rocks’ strength and permeability (Wang et al. 2019). In this study,

the lithological data were captured from the GSI map available at 1:25,000 scale using

ArcGIS software that comprises eight distinct categories. The literature shows that the rock

stratum having less shear strength and lesser permeability produces more number of

landslides. Another noteworthy finding from the lithological map is that most past land-

slides occurred in the Mandhali-Chakrata Formation and Chandpur Formation. These two

formations cover large areas along the road corridor containing highly weathered and less

amalgamated greywacke rock materials (Fig. 4c).

NDVI strongly influences the likelihood of land sliding. This study’s NDVI map was

generated from LISS-IV satellite imagery and classified into five categories from very low

to very high: - 0.24–0.19, 0.19–0.31, 0.31–0.39, 0.39–0.48, and 0.48–0.77 (Fig. 4d).

NDVI value varies between - 1 and ? 1, and the high positive NDVI value (near to ? 1)

indicates a higher and healthier vegetation cover. In contrast, areas with negative NDVI

values (near - 1) indicate that the bare earth surface is devoid of vegetation. It has been

observed that the areas with a steeper slope, higher rainfall, and less vegetation are more

susceptible to frequent landslides (Singh et al. 2015; Sur et al. 2020).

The road-building activity and movement of heavy vehicles in the Lesser Himalayas

road corridors are among the causes of frequent landslides. A considerable number of
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landslides across the Himalayas occur in the road cuts mainly due to excavation, hydro-

logic load change, and deforestation that disturbs the stability of the slope (Wang et al.

2019). The study area’s road network, extracted from LISS-IV satellite images, was

divided into state highway, main road, and village roads. The proximity to the road map

was carried out in the ArcGIS software at\100 m, 100–200 m, 200–300 m, 300–400 m,

400–500 m, and[ 500 m. In this regard, it may be considered that there is no standard

procedure to determine the proximity to roads as a landslide conditioning factor in the

literature (Sur et al. 2020). By changing the distance to any of these parameters, the output

will be different. Hence, based on expert opinion, past studies, and observations during the

field investigation, the road proximity has been determined in this study too. It was seen

Fig. 4 Landslide conditioning factors (a–f) considered
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that out of 55 cataloged landslides in the study area, as many as 48 are located within a

distance of 100 m from the roads (Fig. 4e). It indicates road proximity as a significant

contributory factor for landslides in the Kalsi-Chakrata road corridor.

The LULC layer was generated from the LISS-IV satellite image applying the pixel-

wise classification technique, further validated with available SOI topographical sheets and

the published LULC data from NRSC. Following the classification scheme adopted by the

National Remote Sensing Centre (NRSC), India, 14 distinct LULC classes were derived for

the study area. It has been noted that 67% of the landslide incidents occurred in LULC

classes of sparse vegetation, scrubland, and barren rocky areas where weathering of rocks

and erosion process influence the land sliding (Fig. 4f).

3.5 Land use/land cover layers for landscape change analysis

An effort has been made to evaluate the interface between landscape and landslides in the

study area by studying the change in land use/land cover patterns in the study area. The

LULC data were generated from Landsat 7 Enhanced Thematic Mapper (ETM) for 2010 at

15 m spatial resolution and from IRS P-6 LISS-IV satellite image for 2019 at 5.8 m spatial

resolution applying the supervised classification technique through maximum likelihood

(Shastri et al. 2020). The selected training sets were collected through an intense field

survey to attain the classified data’s desired accuracy. The thematic LULC layer was

categorized into 14 classes following the NRSC scheme. The landslide areas shown in the

inventory were overlaid on the LULC layer to observe whether the landslides shifted from

one class to another over time.

3.6 Landslide susceptibility modeling approach using fuzzy landslide numerical
risk factor (FLNRF)

Landslide susceptibility may be expressed as the possibility of landslide in an area, and it

represents the degree to which a place can be affected by future slope movements (Guzzetti

et al. 1999). As described in the introduction section of this paper, applying geospatial

techniques, the index weights for the landslide conditioning factors have been assessed

using the fuzzy landslide numerical risk factor (FLNRF) model. The LNRF model is a

contemporary landslide probability model where landslide risk is determined by using the

past landslide slip surface in a unit compared to the mean past occurrence slip in the whole

unit.

LNRF ¼ A=F ð1Þ

where A: landslides in every unit, F: mean area of landslide contained by the whole unit.

The LNRF[ 1 value signifies the higher probability of a conditioning factor in con-

tributing to the landslide occurrence. At the same time, LNRF\1 indicates less likelihood

of a conditioning factor to stimulate a landslide occurrence. Next, the concept of fuzzy

logic was applied in the LNRF model. The FLNRF technique is an advanced statistical

technique for predicting the landslide hazards that embeds the fuzzy theory applied to the

traditional LNRF model using the concept of membership function (MF). The calculation

of FLNRF that was carried out in this study may be expressed as:

A ¼ m; lA ; mð Þf gfor each meM ð2Þ
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where lA is the MF, i.e., the membership of mð Þ in fuzzy set A.
This means

lA= 0 when m does not belong to A.
lA= 1 when m belongs completely to A.
0\lA mð Þ\ 1 when m M belongs in a certain degree to A.
Accordingly, the MF used for the conditioning factors is:

lA mð Þ ¼ f mð Þ ¼
0 m� a
m � a=b � a a[m\b
1 m� b

8
<

:

9
=

;
ð3Þ

where m is the input data and a; b are the limit variables.

For combining the MF, a fuzzy gamma operator value of 0.975 has been considered in a

GIS environment while generating the landslide susceptibility map at 10 m 9 10 m grid

cells.

Finally, to assess the influence of LULC change on landslide spatial probability, the

landslide susceptibility index (LSI) has been computed applying the fuzzy LNRF or

FLNRF model considering the change in LULC classes between 2010 and 2019, while all

the remaining conditioning factors (slope, lithology, rainfall, NDVI, and proximity to the

road) remain unchanged (Fig. 5). The LSI values were further categorized into five distinct

LSM classes (very high, high, moderate, low, very low) using Jenks natural breaks. The

results attained from the fuzzy LNRF model were validated through receiver operating

characteristics (ROC) curve.

4 Results

As discussed in this paper’s introduction and methodology section, landslides can have a

long-term impact on the environment. Even the topographic changes caused by some giant

rock slides may persist for hundreds of years. Therefore, to assess the impact of landslides

in this study, the changes in LULC over about 10 years were studied considering the past

landslide events and the conditioning factors in the FLNRF model. Finally, the landslide

susceptibility was spatially interrelated with the landscape of the area.

4.1 Land use and land cover maps and decadal change detection

It has been observed that significant changes occurred in the natural landscape in a period

of the past 10 years, and the same is reflected from the analysis of LULC maps of 2010 and

2019 (Fig. 6). In 2010, the Kalsi-Chakrata road corridor had more vegetation cover, which

accounts for[59% of the total area in the forest and sparse vegetation classes. Among the

other LULC classes, open areas constitute for about 28%, while agriculture and scrubland

covered about 7.4% and 3.5% of the total study area, respectively. Significantly, the forest

cover of the area has been reduced by more than 6% in 2019 compared to 2010 (Table 2).

Since vegetation cover has a positive impact on lowering the landslides, the rapid

exhaustion of such green belts’ in the study area may aggravate more landslides in future.

Figure 5 shows that the landscape, such as open areas, barren land, and scrubland that have

more potential in producing frequent landslides, has increased by about 6% during the last

decade. It has also been observed that the human settlement in the study areas has been

increased from 0.4% in 2010 to 0.6% in 2019, which indicate more amount of anthro-

pogenic interventions in the form of increased vehicular movement, widening of roads,
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other developmental activities in the study area. Another significant observation is con-

version of forest and sparse vegetative areas into agricultural land. As a result, more than

1% of the latter increased compared to the agricultural area observed in 2010. The forest

cover depletion suggests considerable impact on flora and fauna, and this indicates an

urgent need to investigate the habitat of wildlife residing in the study area.

To better understand the changes and impacts on the landscape in the study area from

landslide points of view, the landslide’s spatial distribution was overlaid on the LULC

map. It has been observed that about 51% of the past landslides occurred in open areas,

followed by 26% and 14% in areas covered by sparse vegetation and scrubland, respec-

tively (Table 3). Out of 55 landslides, two landslides (4%) are formed on the rocky barren

topography, while only one landslide was found in the forest area. Next, the LULC change

detection between 2010 and 2019 was correlated with the landslide inventory in detail

(Table 3). It has been observed that the landslide occurrence in the LULC class of open

area, barren rocky land, and arable land was increased by 10.9% in 2019 compared to

2010. Conversely, there has been a considerable reduction in the LULC class of sparse

vegetation and forest cover in the same way. This observation indicates that the conversion

of LULC from vegetative areas to open lands has positively influenced landslides.

Fig. 5 Fuzzy LNRF methodology adopted in this study
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(a) LULC map of 2010 (b) LULC map of 2019

(c) Land use/ Land cover change detec�on

Change in LULC Area between 2010 & 2019

LULC 2010 LULC 2019
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Fig. 6 Spatial change of LULC in the study area between 2010 and 2019, and change in area by LULC
classes
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4.2 Progression of landslide events and their extent

As presented in the landslide inventory section above, the landslide occurrence in the study

area was increased almost by 57% in past decade, which is quite alarming and invites an

in-depth analysis of the landslide genesis across the road corridor. The extent of the

landslides varied across the road corridor besides their occurrences. It was observed that

the largest landslide, namely the Amraha landslide, has grown exponentially from about

Table 2 Spatial change in land use/land cover between 2010 and 2019

LULC classes 2010 2019 Change

Area (sq. km) Area (%) Area (sq. km) Area (%) Area (sq. km) Area (%)

Urban 0.09 0.11 0.13 0.16 0.04 0.05

Rural 0.22 0.26 0.30 0.36 0.08 0.10

Agriculture 6.15 7.40 7.09 8.53 0.94 1.13

Forest 34.19 41.17 30.44 36.65 - 3.75 - 4.51

Sparse veg 14.58 17.56 13.79 16.61 - 0.79 - 0.95

Plantation 0.24 0.28 0.18 0.22 - 0.05 - 0.07

Sandy area 0.15 0.18 0.17 0.20 0.02 0.02

Barren rocky 0.42 0.50 0.08 0.10 - 0.34 - 0.40

Scrub land 2.91 3.50 2.48 2.99 - 0.43 - 0.51

Open 23.20 27.93 27.72 33.39 4.53 5.45

River/waterbody 0.92 1.11 0.66 0.79 - 0.26 - 0.32

Total area 83.04 100.00 83.04 100.00

Table 3 Comparison of existing landslide event areas covered by LULC classes of 2010 and 2019

LULC classes 2010 2019 Change

AREA sq. m % Area AREA sq. m % Area AREA sq. m % Area

Urban 0 0.0 0 0.0 0 0.0

Rural 0 0.0 0 0.0 0 0.0

Commercial and Industrial 0 0.0 0 0.0 0 0.0

Agriculture 248 5.6 298 6.7 50 1.1

Forest 190 4.3 86 1.9 - 104 - 2.3

Sparse veg 1637 36.9 1255 28.3 - 382 - 8.6

Plantation 0 0.0 0 0.0 0 0.0

Sandy area 2 0.0 0 0.0 - 2 0.0

Barren rocky 378 8.5 564 12.7 186 4.2

Scrub land 100 2.3 120 2.7 20 0.5

Open 1850 41.7 2097 47.2 247 5.6

River/waterbody 36 0.8 21 0.5 - 15 - 0.3

Total area 4441 100.0 4441 100.0
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5200 sq. m. in 2002 to 16,900 sq. m. in 2010, which has been further increased in size to

approximately 52,200 sq. m. in 2019. This indicates about ten times increase in extent of

the Amraha landslide over the past decade. It was also observed that though sparse veg-

etation was the main LULC class in 2010, most of those areas have been transformed into

open areas in and around the Amraha landslide. The spatial analysis suggests more than

70% of the sparsely vegetative areas converted into open areas. Moreover, because of the

expansion of the landslide size, about 2600 sq. m. active landslide areas now contained

agricultural land in 2010. In the absence of appropriate mitigation measures, the Amraha

landslide progression may consume additional areas having LULC class of agricultural

land, village settlements and roads, and areas under sparse vegetation cover. The above

indicates the severity of the landslide hazard in the event of landscape change. The fol-

lowing sections are focused on assessing the correlation of landslides with the landscapes

to a greater extent and finding out the potential impact of landslides on other environmental

and anthropological concerns. This study further recommends a thorough investigation of

such massive recurring landslides for adaptation of appropriate mitigation measures.

4.3 Landslide susceptibility zonation

As illustrated in the methodology, the landslide susceptibility index (LSI) map was gen-

erated using the FLNRF model by integrating LSI values applying GIS techniques for 2010

and 2019 (Fig. 7a and b). LSI’s higher value specifies higher degree of landslide sus-

ceptibility and vice versa. The LSI output was classified into five landslide susceptibility

categories, viz. very low, low, moderate, high, and very high, using the Jenks natural

breaks method. The result depicts that the areas having[ 35� slope, greywacke type of

lithology,[ 1427 mm average annual rainfall, NDVI value\ 0.3, rocky-barren topogra-

phy, sparse vegetation cover and, the proximity of 100 m from the road has more corre-

lation with the occurrence of the landslide. The vegetation on steep slopes binds the soil

and reduces erosion, and thus, the lesser the vegetation cover, the more chances of land-

slide combined with other conditioning factors. This study analyzes the spatial correlation

of the future landslide probabilities through investigation of various landslide conditioning

factors. It pinpoints the sets of conditioning factors that may influence future landslides

over others in the study area. The results indicates that the south and south-central areas,

particularly along the Kalsi-Chakrata road corridor, are more susceptible to landslide

hazards.

Figure 7a and b present the landslide susceptibility maps generated for the year 2010

and 2019 to recognize and quantify the effect of LULC change over the past ten years. It

has been observed that about 6% (5.1 sq. km.) and 18% (14.7 sq. km) of the study area

falls within very high and high landslide hazard zones in 2010, respectively, while in 2019,

it was only about 8% (6.6 sq. km.) and 17% (14.4 sq. km) for the same susceptibility

zones. The moderate landslide susceptibility zone accounted for about 32% (26.7 sq. km.)

in 2010, which was further reduced by 1% in 2019. The above result suggests that con-

sidering all the other landslide conditioning factors except LULC as static, the model

outcome shows an increase of about 2% in very high landslide susceptible areas, which

require being investigated spatially by correlating the LULC change for the study area.

At the village level, the hazard map from the FLNRF model depicts that Sakani village

and Dadhau village, located adjacent to the start of the Lesser Himalayas, are greatly

susceptible to landslide hazard, having 61% and 57% of its areas fall within very high LSI

zones, respectively. The output reveals that among the other villages, Alsi (52%), Chapanu
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Fig. 7 a Landslide susceptibility map using FLNRF model for 2010 and distribution of high susceptibility
area by LULC classes of 2010. b Landslide susceptibility map using FLNRF model for 2019 and distribution
of high susceptibility area by LULC classes of 2019
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Fig. 7 continued
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(47%), Pajiya (41%), and Jhutaya (40%) villages have higher exposure to very high

landslide hazard (Table 4).

The prediction probability of the FLNRF model was validated using the area under the

curve (AUC) approach using the receiver operating characteristics (ROC) method. The

AUC value from the FLNRF model shows an AUC value of 89.60%, which indicates

higher model accuracy in classifying the areas of existing landslides, which signifies the

excellent prediction capability of the FLNRF model (Fig. 8).

Table 4 Spatial distribution of highly susceptible landslide areas by LULC classes in 2019

LULC-2019 Very high susceptibility class High and very high susceptibility class

Area sq. km % Area Area sq km % Area

Rural 0.01 0.19 0.06 0.29

Agriculture 0.11 1.65 0.74 3.54

Forest 0.38 5.67 3.13 14.86

Sparse veg 0.53 8.04 3.21 15.25

Sandy area 0.00 0.00 0.01 0.04

Barren rocky 0.05 0.82 0.08 0.36

Scrub land 0.66 9.90 1.30 6.16

Open 4.87 73.26 12.36 58.74

River/waterbody 0.03 0.48 0.16 0.76

Total area 6.64 100.00 21.03 100.00
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Fig. 8 ROC curve evaluation of success rate of the FLNRF model
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4.4 Connection of LULC and landslide susceptibility

In this section, the authors appraised the landslide susceptibility results by associating the

spatial distribution of the conditioning factors in the high and very high landslide sus-

ceptibility classes across the road corridor. Table 4 shows that most of the very high

landslide susceptible areas are contained by open areas (73%), followed by scrubland,

sparse vegetation, and forest cover, which account for 9.9%, 8%, and 5.7% of the total very

high landslide susceptibility areas, respectively. Likewise, let us consider the combined

areas under very high and high landslide susceptibility classes. About 57% out of the total

landslide hazard areas fall within the open area LULC class, followed by sparse vegetation

(15.2%), forest (14.9%), scrubland (6.2%), and agricultural land (3.5%). This study’s

statistical model also substantiates that the landscape with open areas, sparse vegetation,

scrubland, and rocky barren land classes is more susceptible to landslides.

4.5 Villages priority ranking and future mitigation needs

For this purpose, the study also attempted to detect the most fragile landscape at the

villages by overlaying the LSM classes (very high and high) on the LULC layer. The

combined areas under open areas, sparse vegetation, scrubland, and rocky barren land

LULC classes are also considerably higher than the others (Table 5). From this perspective,

a priority ranking system to identify the hotspot villages has been proposed based on the

percentage of higher landslide susceptible areas and the LULC classes that have been

found responsible for producing frequent landslides. Following this process, the Sakani,

Bantar, Thurau, Pajiya, and Alsi have been marked as the top five villages where the

landscape is fragile enough to produce future landslide. Hence, the requirement is to

further investigate the landscape and landslides to decide the appropriate landslide miti-

gation measures. This provides a strong basis for the decision-makers to interpret the

landscape of the study area in relation to the landslide hazard to minimize the environ-

mental impacts, damages to assets, casualties, and loss of livelihood at the village level in

the future.

5 Discussion

The study outcomes reveal that the GIS-based fuzzy LNRF technique adopted in this study

is a powerful and essential MCDM tool for mapping the landslide susceptibility in the

Kalsi-Chakrata Road corridor in relation to the changing landscape. As presented in the

introduction section of this paper, the knowledge-driven fuzzy logic technique has been

pull together with the LNRF model for predicting the landslide susceptible areas in a

Lesser Himalayan road corridor in Uttarakhand first time. The FLNRF method is a com-

patible technique, and the output LSM has a greater alikeness with the prevalent landslide

sites noted during the field examination. Moreover, the comparison of the LSM map of

2010 and 2019 indicates that the spatial relationship of LULC change on landscape

probability and the village priority ranking has been made for compelling mitigation needs.

In the past, the impact of LULC on landslide has been studied with the geological,

topographical, and drainage conditions. Many of these past studies have advocated for the

influence of hydro-geomorphological settings and environmental conditions, including

terrain, climate, geology, lithology, hydrology, soil, LULC, and human interferences on the

spatial occurrences of landslides. The natural slope’s stability can be improved or
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worsened because of such impacts, which may intensify or pacify the landslide events’

frequency and magnitude (Galve et al. 2015; Schmaltz et al. 2017; Chen et al. 2019). The

lithological and geological structures can be considered static in slope stability analysis.

Simultaneously, the transformation of LULC and change in morphology and climate may

happen seasonally or over a decade (Reichenbach et al. 2014). Specifically, the changes in

LULC and their spatial variations are often induced or controlled by anthropological

activities. Recent studies have supported the fact that in populated areas, the occurrence

and aggravation of landslides are associated with the land use changes by human inter-

ference (Vanacker et al. 2003; Geertsema et. al. 2009; Bruschi et al. 2013). It is well known

Table 5 Village Hotspot ranking through comparison of higher landslide susceptible areas and LULC classes
for detailed investigation of landscape change and landslide mitigation

High + Very High 
Landslide 
Susceptible Areas

Village Hotspot

NAME Sparse 
Veg

Barren 
Rocky

Scrub 
Land

Open
Barren + Sparse 
Veg + Open + 

Scrubland

Hazard Area as % of 
village area

Priority Rank for 
Investigation and 

Mitigation

Sakani 34.8% 3.2% 17.0% 14.8% 69.8% 97.1% 1
Bantar 33.3% 0.0% 0.0% 36.5% 69.8% 95.4% 2
Thurau 29.5% 0.0% 0.0% 63.3% 92.8% 94.2% 3
Pajiya 17.8% 0.5% 17.5% 11.8% 47.7% 91.3% 4
Alsi 19.8% 1.5% 47.2% 8.1% 76.6% 90.7% 5
Jhutaya 44.0% 2.0% 0.0% 43.8% 89.8% 87.5% 6
Dadhau 19.1% 0.0% 1.1% 60.3% 80.4% 86.3% 7
Malaitha 18.4% 0.3% 0.0% 29.6% 48.3% 76.7% 8
Chapanu 33.0% 6.2% 0.0% 40.3% 79.5% 76.3% 9
Bhugtari 3.6% 0.0% 0.7% 14.2% 18.5% 73.9% 10
Dhaira 28.2% 0.0% 0.0% 55.4% 83.6% 73.9% 11
Kanbua 19.3% 0.0% 1.0% 15.4% 35.7% 70.4% 12
Sairi 36.4% 0.0% 0.0% 29.4% 65.8% 61.6% 13
Tikri Khera 28.4% 0.0% 0.0% 37.4% 65.8% 52.5% 14
Koti (Bamrad) 25.7% 0.0% 0.0% 34.6% 60.2% 50.3% 15
Sainsa 22.8% 0.0% 0.0% 40.5% 63.3% 32.3% 16
Rikhar 31.2% 0.0% 1.1% 33.2% 65.5% 31.1% 17
Kakari 31.4% 0.0% 1.3% 40.4% 73.1% 29.9% 18
Nithala 24.6% 0.0% 0.0% 32.4% 56.9% 29.2% 19
Bisoi 26.4% 1.3% 10.8% 48.1% 86.7% 28.1% 20
River Range 20.1% 0.0% 5.3% 36.1% 61.5% 25.2% 21
Koruwa 20.7% 0.4% 6.7% 28.6% 56.5% 21.4% 22
Amroha 8.3% 1.6% 0.1% 20.0% 30.0% 19.3% 23
Nevi 23.2% 0.0% 0.3% 31.9% 55.3% 17.6% 24
Sainda 23.6% 0.0% 0.0% 26.2% 49.8% 14.6% 25
Kwarana 28.5% 0.0% 0.0% 30.5% 59.1% 5.8% 26
Samalta Dadauli 10.0% 0.0% 0.0% 30.3% 40.3% 5.8% 27
Udapalta 23.5% 0.0% 0.0% 31.9% 55.4% 5.5% 28
Kalasi 11.0% 0.0% 0.0% 13.0% 24.0% 2.0% 29
Rani 21.5% 0.0% 0.0% 53.7% 75.1% 1.7% 30
Thana 12.3% 0.0% 0.0% 28.2% 40.5% 1.5% 31
Vyas Bhood 10.2% 0.0% 0.0% 11.7% 21.9% 0.4% 32
Chakrata CB 10.2% 0.0% 2.1% 18.2% 30.4% 0.3% 33
Mangrauli 12.1% 0.0% 0.0% 27.8% 40.0% 0.3% 34

LULC Classes-2019
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that slope stability is improved by vegetation cover, whereas unplanned human actions

may worsen the slope stability. A considerable amount of research has been carried out on

how the plant root system can sturdily stabilize the soil and improve the slope stability;

however, there are limited studies available for assessing the impact of landscape change

on landslides in the Indian Himalayan region. (Randall et al. 1997; Glade et al. 2003;

Stokes et al. 2008; Pisano et al. 2017; Meneses et al. 2019; Dikshit et al. 2020). It has also

been studied that except for some landslides that occurred due to the undercutting of

slopes, commonly, the shallow landslides are directly triggered by land use changes in an

area (Chen et al. 2019). These studies support the fact that landslide susceptibility in many

areas has a strong correlation with the changing land use pattern, and hence, it will be

imperative to investigate the relationship of LULC and landslide susceptibility in the

landslide-prone Lesser Himalayan terrain. In this context, it should be kept in mind that the

change in the landscape should be viewed integrated with the persistent socioeconomic

development and climate change scenarios that may lead to ecological degradation and

substantial landscape disintegration (Abbas et al. 2020). Hence, a more robust and detailed

investigation may be carried out considering the climate change impacts and socioeco-

nomic variations concerning the landscape change and landslides in continuation of the

present study.

To better understand the influence of LULC change on the spatial occurrence of

landslides in the Kalsi-Chakrata area, a statistical correlation has been established. The

result shows that over the past decade (2010–2019), the forest cover in the study area has

been reduced by 6%, while the open areas have risen by more than 5%. The increase in

settlement areas by 1.1 sq. km. is considerably higher for the Lesser Himalayas’ hilly

terrain. It has probably resulted not only in the increasing number of landslides from

35 nos. in 2010 to 56 nos. in 2019, but also most of the newer landslides (51%) occurred in

the LULC category of open areas. Such an example strongly supports the fact that the

conversion of LULC from vegetation cover to open land and sparse vegetation has a

positive influence on aggravating the landslides. Table 4 shows that the majority of the

very high landslide susceptible areas are contained by open areas (73%), followed by

scrubland, sparse vegetation, and forest cover, which account for 9.9%, 8%, and 5.7% of

the total very high landslide susceptibility areas, respectively.

Although the present study considers a small road corridor as a test area, the findings are

significant and promising because it could establish the correlation between the decrease in

vegetation cover with increasing landslide susceptible areas. Due to increased human

interference on the land cover through road widening, increased vehicular movements,

expansion of agriculture, and mining in the study areas, high landslide susceptible areas

have increased considerably, which has expanded the threat of landslides in the settlement

areas and agricultural lands. While adopting the current study for applying in other

geographies, it should be kept in mind that the other landslide conditioning factors other

than LULC were considered to be static while correlating the LULC and landslide

occurrences temporally and spatially. In reality, the other factors are dynamic though the

pace of change may vary significantly in a few decades. Even in a short period, the

populated areas like in the Lesser Himalayan terrain, the conditioning factors such as the

slope angle, aspect, rainfall distribution, and intensity can be altered by earth movement

processes of soil erosion, undercutting of slopes, landslides, etc. To compensate for such

variations, the present study focused on the use of high-resolution and latest vintage

datasets (including DTM, lithology, rainfall data, etc.) applying integrated remote sensing

data and GIS techniques to establish the finding of the study in a more comprehensive

manner. The use of a fuzzy algorithm has also helped overcome some of the uncertainties
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that authors have faced in some past reviews. As a whole, this study promotes an easily

interpretable contemporary multi-criteria decision-making process that integrates the fuzzy

method with the RS and GIS technique to provide a strong basis for understanding the

landscape of the study area concerning the landslide occurrences. Furthermore, extending

the outcome of LULC and landslide susceptibility connection at the village level opens the

path for a detailed investigation that has not been thought of as an essential means for

intensive and comprehensive landslide mitigation measures and sustainable development

local scale.

6 Conclusion

In the past two decades, landslides have been observed quite calamitous, combined with

extreme climate events in India’s Himalayas. The rapid changes in landscape categories in

the Lesser Himalayan regions have been inevitable with the recent developmental and

economic activities. Therefore, to systematically evaluate the impact of the landscape

changes on landslide hazards in both the short and long term, this study adopted an

integrated GIS-based fuzzy LNRF–MCDM approach to understand the processes that

contribute to landslides landslide-prone Lesser Himalayas.

The proposed fuzzy LNRF approach ascertains that this method of GIS-based MCDM

can be effectively instigated for landslide susceptibility assessment in other areas of the

Lesser Himalayas. The combined use of detailed landslide inventory and high-resolution

landslide conditioning factors layers justifies the geo-spatial aspect to capture the minute

information across the study area. Regarding choosing the probabilistic LSI model for a

complex geo-environmental setup, the fuzzy membership approach provides more com-

prehensive, flexible, and substantial results when the decision criteria are qualitative, as in

the landslide risk assessment. The FLNRF model can help identify the groups of condi-

tioning factors in relation to the LULC classes that may have more influence on future

landslides. The decrease in vegetation cover and increase in human activities escalate the

risk of frequent landslides. It was observed that the LULC class of rocky and barren land

devoid of vegetation coupled with steep slopes ([ 50�) and greywacke type lithology are

among the main contributing factors responsible for landslide occurrence in the study area.

Moreover, the higher torrential rainfall, recent geological formation, and anthropogenic

impacts (nearness to roads) certainly intensify landslides’ chances along the Kalsi-Chak-

rata road corridor.

The present study contributes significantly to providing a useful prediction for the

decision-makers and authorities in adopting appropriate approaches in minimizing the

potential damages and losses from existing and future landslides by studying the landscape

changes. Due to the uncertainties inherent in the landslide conditioning factors, certain

uncertainties will always persist in landslide susceptibility assessment. Therefore, the fuzzy

LNRF approach in the future may consider other significant conditioning factors such as

spatiotemporal change of rainfall distribution and frequency under the climate change

scenarios as well as other causative factors responsible for landscape change. The fuzzy

LNRF model applied has 89.6% prediction accuracy at 95% confidence level. Thus, the

current model has an excellent prediction capability, and the LSM generated for this study

has a close resemblance for future landslide scenarios at specified locations. Furthermore,

the study of the connection of LULC change with the landslide probability and identifi-

cation of the most fragile landscape at the village level has been instrumental in studying

the spatial landslide occurrences in the study area. Such an exercise may help the decision-
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makers adopt appropriate mitigation measures in those villages where the landscape

changes have mainly resulted in increased landslide occurrences and formulate strategic

plans to promote ecologically sustainable development of the mountainous communities in

India’s Lesser Himalayas. Hence, the present fuzzy LNRF-based methodology coupled

with the GIS technique applied herein may be encouraged for landslide susceptibility

assessment to the landscape changes in the other Lesser Himalayan road corridors.
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