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Abstract
Management of hazardous waste deals with the cost-effective, efficient, social, and envi-
ronmental concern, and the concept of sustainability includes all of these issues. In this 
regard, new approaches are emerging to handle waste management according to the con-
cept of smart city. In the current study, a mathematical model is developed for the hazard-
ous waste location-routing problems to determine the best decisions in a hazardous waste 
Management (HWM) system. The proposed model aims to maximize the total profit of the 
HWM system and reduce the destructive effects of hazardous waste from the perspective of 
environmental and social impacts. In order to advance the efficiency and practicality of the 
proposed model, a solution method based on the non-dominated sorting genetic algorithm 
III, a recently presented metaheuristic procedure, is applied to efficiency solve the prob-
lem. The current study takes into account the concept of Information and Communications 
Technology ICT and Internet of Things technology in hazardous waste location-routing 
modeling. In addition, some sensitivity analyses are implemented to assess the behavior of 
the model and extract managerial insights.

Keywords Location-routing · Hazardous waste · Smart cities · Sustainable optimization · 
Multi-objective optimization

1 Introduction

The dramatic ever-increasing trend of urbanization, population, quality of life and 
change in lifestyle, also the substantial industrialization and the expansion of commer-
cial areas has led to higher amounts of hazardous waste production. The big issue is that 
this high volume of hazardous waste produced in industrial and urban areas causes many 
dangers and concerns on the environment and social activities including air pollution, 
the inappropriate landscape of cities due to visual pollution and the enormous economic 
costs incurred to governments by mismanagement of the issue. Hence the importance 
of HWM has increased and gained the attention different countries all over the world. 
This issue has caused new challenges for decision-makers, municipalities and urban 
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planners. By considering the issues as mentioned earlier, the necessity to implement 
the concept of a smart city with a sustainable approach becomes more indispensable. 
According to the authors, by implementing Information and Communications Technol-
ogy (ICT) and pay attention to the issue of sustainability, we can achieve cleaner envi-
ronments, prettier cities, and more economical HWM costs. According to the authors, 
by implementing Information and Communications Technology (ICT) and pay attention 
to the issue of sustainability, we can achieve cleaner environments, prettier cities, and 
more economical waste management costs. The way to achieve this is through the use of 
the IT-based infrastructure in the fleet of waste transportation, bins, and managing the 
location-routing of the problem.

Hazardous waste can be divided into two main groups: Municipal Hazardous Waste 
(MHW) and Industrial Hazardous Waste (IHW). Municipal Hazardous Waste (MHW) 
includes waste from Household Hazardous Waste (HHW), thinners, fluorescent tubes, 
heavy metal containing batteries, Chlorofluorocarbons (CFC) containing equipment, 
household cleaning products, and insecticides. MHW can also be caused by commercial 
and municipal solid waste (MSW) streams such as hospital, gas station, laboratory, laun-
dry, car repair shops, photography centers and many other urban and social activities which 
are examined in the review paper by Slack et al. (2004). Industrial Hazardous Waste (IHW) 
is caused by industrial processes and products such as factories, electrical plumbing work-
shops, oil refineries, and so forth, have large dimensions and sizes. Because the scope of 
the smart city problem includes MHW and IHW types of waste and eliminating one of the 
them removes part of the model’s objective function, we consider both of them in the prob-
lem to use it to provide a more inclusive and broader vision. Hazardous waste has the char-
acteristics of flammability, corrosivity, reactivity, and toxicity. The control of hazardous 
waste due to last long harms for the environment is generally heavily regulated in devel-
oped countries, and it has been the subject of controversy. A convenient Hazardous Waste 
Management (HWM) system that is addressed by Nema and Gupta (1999) Contains dis-
posal and treatment facilities and Guaranteed safety and cost-efficiency. Another aspect of 
HWLRPs is that there are several types of hazardous wastes. Therefore, the compatibility 
between wastes, recycling, disposal, and treatment technologies, is essential. For instance, 
some chemical hazardous wastes are inflammable, so any model that is suggested should 
incorporate these real-world aspects of the HWM problems.

The concept of the smart city represents fundamental ingredient including sustainabil-
ity, flexibility, productivity, people prosperity, and many meaning of this kind (Giffinger 
et al. 2007). By utilizing the appropriate infrastructure, wireless sensors, actuators, smart 
communication devices, and online data will enable technologies such as information and 
communication (ICT) and the Internet of Things (IoT) to build a bed which with the help of 
that smart city concept is created and effective optimization of urban activities are provided 
(Miorandi et al. 2012). One of the most acute aspects of achieving the concept of sustain-
ability and satisfying the characteristics of the smart city is the suitable administration of 
hazardous wastes made as an outcome of increasing public welfare and population as well 
as the growth and expansion of industries. Although recent widespread research on the 
smart and sustainable city has been carried out, most of the related studies have focused on 
the areas such as energy management, transportation, infrastructure routing, surveillance, 
and dynamic scheduling, and still some remarkable issues have not yet been addressed. The 
objective of hazardous waste location-routing problems (HWLRPs) in a smart city with a 
sustainability approach is one of the significant issues on which not been well considered 
in the literature. Therefore, these concerns prompted us to answer the following questions 
with the help of smart city concepts and attention to sustainability:
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• How can the operational benefits of waste recycling be achieved by implementing 
smart city concepts and sustainability?

• Where should the treatment, recycling, and disposal facilities be located to meet the 
sustainability requirements?

• How can developing a sustainable and IT-based location-routing model help to reduce 
the visual pollution and greenhouse gas (GHG) emissions in the industrial and urban 
zones?

• How to manage the uncertainty related to the volume of waste generated at each gen-
eration nodes and use it to optimize the model?

In this paper, we offer an optimization model to facilitate decision-making for optimal 
and sustainable Hazardous Waste Location-Routing problems (HWLRPs) in a smart city. 
The intentions of the proposed model are to (1) enhance the total income of the HWM 
system, (2) reduce the GHG emission from the fleet of collection vehicles and system 
facilities, (3) and minimize the visual pollution to contribute to the social aspect of sus-
tainability. Information and ICT and IoT opened ample prospects for developing waste 
management (WM) models. Owing to the significance of the (HWLRPs) (Especially green 
routing), the necessity of using techniques and tools related to smart city, and also to con-
sider three scopes to achieve sustainability including social, environmental, and economic 
aspects simultaneously, a novel structure of HWLRP in the case of smart and sustainable 
city is designed (Table 1).

2  Literature review

Newly, the idea of WM in the smart city has attracted the attention of researchers. By sur-
veying the literature, we found that most of the works can be classified into studies that 
deal with online data and information and methods for their collection and analysis and 
articles that have proposed models to indicate the application of ICT and IoT technology 

Table 1  List of abbreviation used 
in text HWM Hazardous waste management

HWLRPs Hazardous waste location-routing problems
NSGA-III Non-dominated sorting genetic algorithm III
ICT Information and Communications Technology
IoT Internet of Things
MHW Municipal hazardous waste
IHW Industrial hazardous waste
CFC Chlorofluorocarbons
MSW Municipal Solid Waste
GHG Greenhouse gas
WM Waste management
LCA Life cycle assessment
VaR Value-at-Risk
HAZMAT Hazardous material
RFID Radio-frequency identification
GPS Global Positioning System
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for befitting WM. In the following, new WM operations in smart cities are discussed. 
Before addressing this discussion, it should be noted that there are related studies in the 
area of HWM whereas, there are few studies referring to concept of the smart city. (Fac-
cio et al. 2011) described a scheme of the solid waste collection-routing model to decrease 
the travel time and enhance total covered distance. The work of Carli et al. (2013) made a 
comparison between traditional tools as a static manner of Hazardous waste collection and 
innovative devices such as actuators, sensors, and IoT technologies as a dynamic solution 
of (WM).

To be aware of the advantages of using ICT and IoT technologies in WM modeling, we 
need to analyze the conceptualization between the two conventional approaches in opti-
mizing the decisions related to routes and travel time of waste muster vehicles that exist 
in the literature. In the first approach, researchers considered traditional tools in WM sys-
tems, which is in the static outlining models category. The static models do not find the 
real-time status of reservoirs contain waste or trash bins, on the contrary, in the second 
approach dynamic modeling is used to the ability system to acquisition up-to-date infor-
mation received by IoT-enabled sensors Anagnostopoulos et al. (2015). Lella et al. (2017) 
addressed network analysis to set the best decisions of routing in the HW collection system 
in the proposed smart city. Jatinkumar Shah et al. (2018) developed a stochastic model to 
optimize the preparation of waste collection operations in smart cities. In their model, they 
minimized the total transportation cost by considering the fact that consequence of value 
recovery is the main criteria in their study. In addition, a multi-level IoT-based smart cities 
foundation architecture is proposed by Marques et al. (2019).

2.1  Sustainability

It is becoming increasingly important that an integrated approach for sustainable HWM 
systems has appropriately addressed. To achieve the broader goals of sustainability of a 
community such as a Smart City the economic, social and environmental sustainability 
factors should be balanced in harmony (Le Blanc 2015). The economic aspect of sustain-
ability deals with the optimizing profit or cost of a system. The environmental aspect of 
sustainability includes a wide range of topics comprising life cycle assessment (LCA), gas 
emissions of the HWM systems and impurity of air, soil, and water resources. For exam-
ple, Zhang et al. (2018) developed a location-routing model for minimization CO2 emis-
sions, emergency relief cost, and maximization of vehicle route travel time. Habibi et al. 
(2017) designed a model with to minimize, simultaneously, the social impacts, greenhouse 
gas emissions, and total cost. The importance of sustainability in a reverse supply chain 
of perishable goods was addressed by Tavakkoli Moghaddam et al. (2018). Heidari et al. 
(2019) proposed a multi-objective robust possibilistic model with take into consideration 
environmental, economic, and social concern together. Maximizing the job creation oppor-
tunities, maximizing the profit, and minimizing the GHG emissions were the objective of 
their study.

2.2  HWM optimization problems

A significant part of the proposed models for optimizing HWM has addressed undesir-
able/obnoxious facility location problems or routing of hazardous wastes independently. 
In this regard, the first attempt for noxious centers location modeling is related to Ratick 
and White (1988). Kang and Batta (2014) introduced a Value-at-Risk (VaR) model for 
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hazardous material (HAZMAT) shipment. Minimizing the shipment risks was the objec-
tive of their study. In addition, various studies have been presented in case of hazardous 
waste collection and routing problems. To point a few studies Hemmelmayr et al. (2013) 
developed a new hybrid algorithm for the periodic truck routing problem to collect solid 
wastes, in which a central facilities is considered. Reducing the number of vans and the 
traveling time, multi-demand system (e.g., residential, commercial, industrial), multi-peri-
ods and containers with various sizes were addressed by Wy et al. (2013).

Samanlioglu (2013) developed a multi-objective MIP model for IHW location-routing 
problem. His work shed light into decisions related to facilities locations with different 
technologies, routing diverse types of IHW and routing waste residues. The work of Rab-
bani et al. (2017) focused on application of waste collection phase in the problem. They 
used a case study was to suggest the environmental impacts of facilities location. Aydemir-
Karadag (2018) addressed a MIP model for the HWLRPs to increase the profit of the sys-
tem. Other contributions of the prementioned work includes temporary holding nodes in 
system and formulating model for long-term planning period. A comprehensive HWLR 
model with minimization various objective functions, including costs of the system, total 
shipment and location risks of IHW was addressed by Rabbani et al. (2018). Considering 
incompatible characteristics of variant types of hazardous wastes and the heterogeneous 
fleet of vehicles distinguishes this study from other studies in the literature.

Visual pollution deals with the traces of pollution that people are able to admire watch-
ing a view. It can make damaging impacts on the nature and frustrates the visual zones 
(Habibi et  al. 2017). Nevertheless, there is presently no related research in the literature 
that focuses on visual pollution as the social aspect of sustainability in a HWLRPs. Most 
attempts to model the social perspective of sustainability are related to justice and equity in 
abominable facility location problems, minimizing population exposure risk that takes into 
account population who are in a path of carrying IHW, and minimizing the risk of disposal 
facilities that affects the peoples. By reviewing the literature on the topics discussed, and 
identifying the aforementioned research gaps, we distinguish our work from existing stud-
ies in the literature by bring up these contributions which we will outline below:

• Application of ICT and IoT technology in HWLR modeling.
• Proposing a new mathematical model that consider three conflicting objective func-

tions Contains maximizing the total profit, minimizing the visual pollution and mini-
mizing the GHG emissions, and also a new mathematical model for the social aspect of 
sustainability

• According to Table 2, there is no study regarding sustainability aspects in a location-
routing problem of HWM systems.

3  Problem description

Here, a novel multi-objective MIP model for HWLRPs with the aim of implementing a 
smart and sustainable city in an organized manner is formulated. In this regard, two main 
groups of hazardous wastes are generated, municipal hazardous waste (MHW) and indus-
trial hazardous waste (IHW), and the generated hazardous waste includes recyclable and 
non-recyclable wastes which are well-matched with different technology types. In the 
municipal zone, waste produced at various waste generation nodes is gathered at the waste 
collection centers. This collection centers and also the source nodes in the industrial zone 
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are considered as our generation nodes. To implement the concepts of smart cities hazard-
ous waste reservoirs, have IoT-based sensors such as radio-frequency identification (RFID) 
tags, actuator, and other intelligent devices. In the case of the container’s fulfillment, the 
cloud-based system is notified, to administer the HWM system. Because of the priority of 
addressing environmental issues, visual pollution, and greenhouse gas emission, we do not 
use the GPS for identifying the location of generation nods/bins and facilities in our work.

In our work, in each decision-making horizon, a certain number of generation nodes 
( Gs ) may reach the predefined threshold, and this has led us to consider different scenarios 
with different coefficient of scenarios occurrence for the problem. We show this approach 
by defining a matrix that members are binary parameters. It is important to note that, the 
advantage of using IoT-compatible devices in our work that is not to visit all the genera-
tion nodes and only visit the nodes that reach to the threshold, which reduces unnecessary 
visits. The collected waste from generation nodes is shipped by heterogeneous fleets of 
vehicles that are compatible with waste type, to recycling or treatment facilities, with com-
patible technology according to hazardous wastes type. For reaching the maximum profit 
of HWM, recycling of hazardous waste is another important subject that should be taking 
account of consideration.

The collected waste from generation nodes is shipped by heterogeneous fleets of vehi-
cles that are compatible with waste type, to recycling or treatment facilities, with compat-
ible technology according to hazardous wastes type. For reaching the maximum profit of 
HWM, recycling of hazardous waste is another important subject that should be taking 
account of consideration. Processable wastes are moved to reprocessing centers, and others 
are shipped to removal centers. As we seek to reach a sustainable approach in our hazard-
ous waste location-routing problem, we try to formulate a new model for the social aspect 
of sustainability with considering visual pollution for a heterogeneous fleet of collection 
vehicles and also for each system’s facilities. In the environmental side of sustainability, we 
need to formulate an objective function that minimizes the amount of GHG emissions from 
all of the system facilities and also amount of GHG emissions as a result of navigating our 
fleet of collection vehicles. Figure 1 depicts the framework of the hazardous waste manage-
ment system of this study.

3.1  Mathematical model

Here, a novel multi-objective MIP model is developed for hazardous waste location-routing 
problem in a smart city with a sustainable approach regarding the assumptions mentioned 
above, developing the model introduced by (Rabbani et al. 2018) to determine the follow-
ing decisions:

• Routing the incompatible hazardous waste types from production centers and collection 
nodes to the facilities, and also the waste reminder generated at different facilities

• Locating the treatment, reprocessing, and removal nodes.

Gs =

1 2 ⋯ g

1

2

⋮

s

⎡
⎢⎢⎢⎣

0 1 ⋯ 1

1 0 ⋯ 0

⋮ ⋮ ⋱ ⋮

1 1 ⋯ 0

⎤⎥⎥⎥⎦



10100 A. Saeidi et al.

1 3

• Assigning the different technology types at treatment nodes.

Tables 3, 4 and 5 display the list of sets, parameters, and variables that are used in the 
mathematical formulation of the model. The proposed model of this problem includes three 
objective functions which are determined by applying a smart city concept and aspects of 
sustainability.

Fig. 1  Framework of the hazardous waste management system

Table 3  List of sets for the proposed models

Sets Definition

S = {1,… , s} total number of scenarios
G = {1,… , g} generation nodes
Gs ⊂ G active generation nodes of each particular scenario
R = {1,… , r} total recycling nodes including potential & existing waste recycling facilities
ER ⊂ R existing waste recycling facilities
T = {1,… , t} total treatment nodes including potential & existing waste treatment facilities
ET ⊂ T existing waste treatment facilities
L = {1,… , l} total disposal nodes including potential & existing waste disposal facilities
EL ⊂ L existing waste Disposal facilities
D = {1,… , d} depots
B = {1,… , b} treatment technologies
W = {1,… ,w} waste types
F = {1,… , f } fleet of collection vehicles
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Table 4  List of parameters used in the proposed models

Parameters Definition

Rev Revenue of one unit recycled waste
�s Occurrence coefficient of each scenario
ectbi Cost of opening treatment center with technology b ∈ B at node i ∈ (T − ET)

ecri Cost of opening recycling center at node i ∈ (R − ER)

ecdi Cost of opening disposal center at node i ∈ (L − EL)

ω Importance of the strategic planning expenses
octwb Operational expense for a unit of waste type w ∈ W during treating
ocr Operational expense for a unit of waste within recycling
ocd Operational expense for a unit of waste within disposing
TCij Shipment cost from node i to node j
etf Volume of emitted gas per unit of distance by vehicle f ∈ F

disij Travel distance from node i to node j
get Volume of GHG emissions from treating one unit of waste
ged Volume of GHG emissions from disposing one unit of waste
vwf 1 if waste w ∈ W is well-matched with vehicle f ∈ F ; 0 otherwise
trewb 1 if waste w ∈ W is well-matched with treatment technology b ∈ B ; 0 otherwise
atbi 1 if technology b ∈ B is accessible at treatment node i ∈ ET; 0 otherwise
CAPw Maximum volume of a vehicle for a waste w ∈ W

�w Acceptable shipment distance of a vehicle with waste type w ∈ W

amwi number of waste w ∈ W gathered at production node i ∈ G

cti Volume of treatment node i ∈ T
ctm

i
Least of capacity needed to open a treatment node i ∈ T

cri Recycling capacity of node i ∈ R
crm

i
Minimum recycling capacity needed to open node i ∈ R

cdi Disposal capacity of node i ∈ L
cdm

i
Minimum disposal capacity of node i ∈ L

prwb Part of reprocessing for waste w ∈ W and technology b ∈ B

pmwb Part of mass lessening for waste w ∈ W and technology b ∈ B

pti Part recycled waste at node i ∈ R
𝜙f

ij̇
Visual pollution factor from shipping of vehicle f ∈ F from node i to node j

�tbi Visual pollution factor from establishing a treatment facility with technology 
b ∈ B at node i ∈ (T − ET)

�ri Visual pollution factor from establishing a reprocessing node i ∈ (R − ER)

�di Visual pollution factor from establishing a removal node i ∈ (L − EL)
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3.1.1  Objective functions formulation

(1a)Max f1(x) =
∑
i∈R

RevYri

(1b)−�

(∑
b∈B

∑
i∈(T−ET)

ectbitbi +
∑

i∈(R−ER)

ecriri +
∑

i∈(L−EL)

ecdili

)

(1c)

(∑
w∈W

∑
b∈B

∑
i∈(T−ET)

octwtbiYtwi +
∑
w∈W

∑
i∈ET

octwYtwi

+
∑

i∈(R−ER)

ocrriYri +
∑
i∈ER

ocrYri +
∑

i∈(L−EL)

ocdliYli+
∑
i∈EL

ocdYli

)

(1d)

−

(∑
s∈S

∑
i∈Gs

∑
j∈G∪T∪R∈F

∑
f∈F

�sTCijzijf +
∑
i∈T

∑
j∈R

TCijYtrij +
∑
i∈T

∑
j∈L

TCijYtlij +
∑
i∈R

∑
j∈L

TCijYrlij

)

(2a)

Min f2(x) =
∑
s∈S

∑
f∈F

∑
i∈Gs

∑
j∈Gs∪T∪R

�setf disijzijk

+
∑
f∈F

∑
i∈T

∑
j∈R

etf disijYtrij +
∑
f∈F

∑
i∈T

∑
j∈L

etf disijYtlij

+
∑
f∈F

∑
i∈R

∑
j∈L

etf disijYrlij

(2b)+
∑
w∈W

∑
i∈ET

getYtwi +
∑
i∈EL

gedYli

Table 5  List of variables used in the proposed models

Variables Definition

xif Traveled distance by vehicle f ∈ F after meeting node i
tbi 1 when treatment node with technology b ∈ B is opened i ∈ (T − ET) ; 0 otherwise
ri 1 when reprocessing node is opened at node i ∈ (R − ER) ; 0 otherwise
li 1 when removal facility is opened at node i ∈ (L − EL) ; 0 otherwise
zijf 1 node j meeted after node i by vehicle f ∈ F ; 0 otherwise
loif Cargo of vehicle f ∈ F after visiting node i
Ytwi Waste w ∈ W loaded at node i ∈ T

Yri Waste reprocessed at node i ∈ R

Yli Number of disposed waste at node i ∈ L

Ytrij Remained waste shipped from node i ∈ T to node j ∈ R

Ytlij Remained waste shipped from node from node i ∈ T to node j ∈ L

Yrlij Remained waste shipped from node from node from node i ∈ R to node j ∈ L
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The first objective function consists of four components that aim to increase the profit of 
the HWLR system. Equation (1a) is related to the income of the system. The opening cost 
of treatment, reprocessing, and removal centers is formulated by Eq.  (1b). Equation (1c) 
represents the operating cost of facilities, waste collection, transportation, shipment from 
gathering centers and to treatment centers and transferring from gathering to recycling 
centers is formulated by Eq. (1d). The second objective function (2a)–(2b) minimizes the 
emissions. Equation  (2a) is about the GHG gained from hazardous waste transportation, 
whereas Eq.  (2b) corresponds to the amount of GHG caused by HWM system facilities. 
The third objective function is expressed with Eq. (3a)–(3b) and tries to satisfy the social 
aspect of sustainability in terms of minimizing the visual pollution due to shipping of 
vehicle(Eq. (3a)), and visual pollution due to HWM system facilities.

3.1.2  Constraints formulation

(3a)Min f3(x) =
∑
s∈S

∑
i∈Gs

∑
j∈Gs∪T∪R

∑
f∈F

𝛽s𝜙
f

ij̇
zijf

(3b)+
∑
b∈B

∑
i∈(T−ET)

�tbitbi +
∑

i∈(R−ER)

�riri +
∑

i∈(L−EL)

�dili

(4)
∑
i∈D

∑
j∈Gs

zijf = 1 ∀f ∈ F

(5)
∑

i∈DUGs

zijf −
∑

i�∈GsUR∪T

zji�f = 0 ∀j ∈ Gs, f ∈ F

(6)
∑
i∈Gs

zijf −
∑
i�∈D

zji�f = 0 ∀j ∈ R ∪ T , f ∈ F

(7)
∑

j∈GsUR∪T

∑
f∈F

zijf vwf = 1 ∀i ∈ Gs,w ∈ W

(8)zijf ≤
∑
w∈W

∑
b∈B

vwf trewbtbj ∀i ∈ Gs, j ∈ T , f ∈ F

(9)zijf ≤
�
w∈W

vwf

��
2 −

∑
b∈B trewb

�
rj
�

2
∀i ∈ Gs, j ∈ R, f ∈ F

(10)

xif − xjf +
∑
w∈W

vwf
((
�w + disij

)
zijf +

(
�w − disij

)
zijf

)
≤

∑
w∈W

vwf �w ∀i, j ∈ Gs ∪ R ∪ T , f ∈ F

(11)
∑
i∈D

disijzijf ≤ xjf ≤
∑
w∈W

vwf

(
�w +

∑
i∈D

(
disij − �w

)
zijf

)
∀j ∈ Gs, f ∈ F



10104 A. Saeidi et al.

1 3

(12)xjf ≤
∑
w∈W

vwf �w −
∑
j∈D

disijzijf ∀i ∈ Gs ∪ R, f ∈ F

(13)loif − lojf +
∑
w∈W

vwf CAPwzijf ≤
∑
w∈W

vwf
(
CAPw − amwj

)
∀i, j ∈ Gs, f ∈ F

(14)
∑
w∈W

amwivwf ≤ loif ≤
∑
w∈W

vwf CAPw ∀i ∈ Gs, f ∈ F

(15)zijf

∑
w∈W

amwjvwf ≤ lojf ∀i ∈ D,∀j ∈ Gs, f ∈ F

(16)lojf ≤
∑
w∈W

vwf
(
CAPw +

(
amwj − CAPw

)
zijf

)
∀i ∈ D,∀j ∈ Gs, f ∈ F

(17)Ytwj =
∑
i∈G

∑
f∈F

zijf loif vwf ∀j ∈ T ,w ∈ W

(18)
∑
w∈W

Ytwj ≤ ctj

∑
b∈B

tbj ∀j ∈ T

(19)
∑
w∈W

Ytwj ≥ ctm
j

∑
b∈B

tbj ∀j ∈ T

(20)Yrj ≤ crjrj ∀j ∈ R

(21)Yrj ≥ crm
j
rj ∀j ∈ R

(22)Yli ≤ cdili ∀i ∈ L

(23)Yli ≥ cdm
i
li ∀i ∈ L

(24)
∑
w∈W

∑
b∈B

Ytwitbi
(
1 − pmwb

)
prwb =

∑
j∈R

Ytrij ∀i ∈ T

(25)Yrj =
∑
i∈Gs

∑
f∈F

∑
w∈W

zijf lojf vwf +
∑
i�∈T

Ytri�j ∀j ∈ R

(26)
∑
w∈W

∑
b∈B

Ytwitbi
(
1 − pmwb

)(
1 − prwb

)
=
∑
j∈L

Ytlij ∀i ∈ T

(27)Yri
(
1 − pti

)
=
∑
j∈L

Yrlij ∀i ∈ R
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Equation (4) guarantees starting point of vehicles is a central node. Equation (5) guar-
antees the continuousness for vehicle’s path by incoming and leaving a constant generation 
node. Equation (6) ensures that the vehicles return to center by covering the treatment or 
recycling center. Equation (7) ensures about visiting all the nodes for each type of waste. 
Equation  (8) confirms a vehicle assigned to a non-recyclable waste is allowed to unload 
in a treatment center. Equation (9) indicates that the collected wastes must be shipped to 
a reprocessing center before coming back to the main node. Equations (10)–(12) enforces 
the heterogeneous vehicles fleet does not neglect the acceptable traveling distance. Equa-
tions  (13)–(16) are added to our constraints for ensuring that a cargo of gathering vehi-
cles does not surpass the determined capacity and preventing the emergence of sub-tours. 
Equation (17) determines the amount of waste handled at a treatment node. Equations (18), 
(19), (20), (21), (22), and (23) examine the capacity limitations on HWM system facili-
ties. Equation (24) indicates the flow from treatment facilities to the reprocessing centers. 
The number of reproducible waste handled at recycling centers is assessed by Eq.  (25). 
Equation (26)–(27) indicates the flow from treatment and recycling centers to the disposal 
facilities. The amount of disposing waste remainder at each disposal center calculated by 
Eq.  (28). Equation  (29) makes sure about demands at each generation nodes and collec-
tion centers must be covered. Equation (30) guarantees that at most, one of the treatment 

(28)Yli =
∑
j∈T

Ytlij +
∑
j�∈R

Yrlj�i ∀i ∈ L

(29)
∑
w∈W

∑
i∈Gs

amwi =
∑
w∈W

∑
j∈T

Ytwj +
∑
j∈R

Yrj

(30)
∑
b∈B

tbi ≤ 1 ∀i ∈ T

(31)tbi = atbi ∀b ∈ B,∀i ∈ ET

(32)ri = 1 ∀i ∈ ER

(33)li = 1 ∀i ∈ EL

(34)

tbi ∈ {0, 1} ∀b ∈ B,∀i ∈ T

ri ∈ {0, 1} ∀i ∈ R

li ∈ {0, 1} ∀i ∈ L

zijf ∈ {0, 1} ∀i ∈ Gs ∪ D, j ∈ T ∪ R ∪ Gs, f ∈ F

(35)

Yrlij ≥ 0 Yri ≥ 0 ∀i ∈ R, j ∈ L

Ytrij ≥ 0 Ytwi ≥ 0 ∀i ∈ T ,∀j ∈ R,w ∈ W

Ytlij ≥ 0 Yli ≥ 0 ∀i ∈ T , j ∈ L

loif ≥ 0 ∀i ∈ Gs, f ∈ F

xif ≥ 0 ∀i ∈ Gs ∪ D, f ∈ F
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technologies could be established at potential treatment nodes. Determining the existing 
treatment facilities is done by defined a binary parameter by Eqs. (31) and other existing 
system facilities are determined by Eqs. (32)–(33). Types of decision variables are denoted 
by Eqs. (34)–(35), respectively.

This model includes nonlinear terms in Eqs. (1c) of objective functions formulation as 
well as Eqs. (17), (26), (27) and (28) of constraints formulation subsection. Through using 
auxiliary variables and constraints, the model can be changed to a Mixed Integer Linear 
Programming (MILP) model. Appendix A shows how to linearize the model.

4  Methodology

This section introduces the proposed algorithm for solving the hazardous waste location-
routing problem. Location-routing is an outstanding NP-hard Problem (Nagy and Salhi 
2007). Because of the conflict between the objectives in our proposed model and complex-
ity in finding optimal solutions for large-scale problems, it is natural to find a set of solu-
tions depending on the non-dominance criterion. The newly offered metaheuristic algo-
rithm based on the non-dominated sorting genetic algorithm III (NSGA- III) employs for 
the small and large test problem. Solutions which dominate the others but do not dominate 
themselves are entitled non-dominated solutions. The advantage of NSGA-III in holding 
the diversity fails to be inherited and a parameter-less approach is used based on (Bi and 
Wang 2017). NSGA-III is coded using MATLAB R2017b software and run on a personal 
computer with 2.4 GHZ CPU Intel Core i7 and 8.00-GB of RAM memory. The following 
subsections, firstly, express proposed NSGA-III algorithms in details, and then, solution 
representation is introduced.

4.1  NSGA‑iii

This section is going to describe the process of the basic NSGA-III algorithm. The basic 
framework of NSGA-III is proposed by Deb and Jain (2014). In the following, a brief 
outline of the previous version of NSGA-III, NSGA-II, and then the details of NSGA-II 
will be described. NSGA-III is developed through a reference point-based selection sys-
tem. Nevertheless, this algorithm has an inherent similarity to the NSGA-II algorithm. The 
pseudo-code of NSGA-III is depicted in Fig. 2 (Deb and Jain 2014). Here, we give the pri-
mary procedure of NSGA-III:

Step 1: Set the initial status of decision variables according to the given lower and upper 
limits. Each individual (solution) in the population P0 is represented by si =

(
ni, hi, ki

)
 for 

i = 1,… ,Npop . It is important to note that, in this work, individuals (solution) of the initial 
population are randomly generated;

Step 2: Apply crossover and mutation operators to generate a new population Qt . In 
the crossover operator, two individuals si and sr from the current population are randomly 
selected to generate two offspring qi and qr(Michalewicz 2013), as follows:

9 6 1 3 12 8 14 13 10 11 5 7 2 4

Fig. 2  Example for assignments of generation nodes to vehicles
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Where � is an uniform random number in the range [0,1] which decision-maker decides 
on it. In the following, the parent population Pt and the offspring Qt are merged to form 
Rt = Pt ∪ Qt with a size of 2 ∗ Npop;

Step 3: Categorize population to some non-dominated stages, i.e., F1 , F2 and so on, based 
on the Pareto-dominance principle. After finding different levels of non-dominance levels F1

,F2,…, the next generation Pt+1(based on F1 , F2 and so on) are generated. Starting from F1 until 
the size of St equals to Npop or for the first time exceeds Npop . Assume that the non-dominance 
level is lth. Individuals (solutions) from the level l + 1 to the end are discarded. If ||St|| = Npop , 
let Pt+1 = St , next apply for Step 7. Otherwise the other Npop −

||Pt+1
|| individuals (solutions) 

will be nominated based on the further phases and from F1 based on reference points;
Step 4: The reference points are chosen during optimization by the use of systematic 

approach of Das and Dennis’s (Michalewicz 2013) to guarantee the diversity of solutions 
obtained on the Hyper-plan in objective space.

Step 5: By reaching the distance between solutions is allocated to an orientation point hav-
ing the least perpendicular distance;

Step 6: First we will categorize the orientation points in an increasing order matching to the 
number of related followers in St , and then choose a point with the least related followers and 
mark the number of related members as �i . Select the members with better results.

Step 7: Set t = t + 1 and go to Step 2.

4.1.1  Solution representation

The performance of evolutionary algorithms (here NSGA-III) is tremendously influenced by 
how the problem is encoded for the sake to obtain acceptable and interpretable answers at the 
appropriate time (Chen et al. 2013). Accordingly, each chromosome must be defined in a way 
that can cover all possible scenarios in the solution of the problem. So, order-based encoding 
is selected which defines chromosomes according to features and orders of the model. The 
first array is created of G + F − 1 , for engage in the first stage, which is a location-routing 
problem (LRP). In which G denotes the number of source nodes, and F denotes the number 
of vehicles that are compatible with waste type in the waste collection state. The generation 
nodes accomplice numbers between 1 and G. Numbers between G +1 and G + F − 1 con-
sidered as a delimiter. The generation nodes at the beginning allocated to vehicles. So, the 
position of numbers in the initial string is related to generation nodes. Numbers of initial ele-
ment in the string to the position of the delimiter are assigned to the initial vehicle and so on. 
Figure 2 illustrates an example of this encoding.

Here, eleven production nodes and four vehicles are considered. Numbers1-11 are related 
to generation nodes, and the location of these numbers are marked. Numbers 1, 3, 6, and 9 
are related to vehicle 1. Number 8 assigned to the second vehicle. Since there is no number 
between 13 and 14, the third vehicle will not visit any generation node, and finally, numbers 2, 
4, 5, 7, 10 and 11 are assigned to the fourth vehicle, and so all 11 of our generation nodes are 
visited in this example. In addition, a penalty function is used to regard capacity constraints 
and reach feasible solutions.

(36)qi = (�)si + (1 − �)sr

(37)qr = (1 − �)si + (�)sr
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5  Parameter tuning

Initial parameters of metaheuristics algorithms can affect the performance of such metaheuris-
tic algorithms. So, to improve the experimental results of such algorithms and reduces the 
runtime of them, a Taguchi method is applied. This can lead to reach the best combination of 
parameters. Four tuning parameters namely, the number of iterations 

(
Maxiter

)
 , the size of the 

population (Npop) , Crossover rate (Cr) and mutation rate ( Mr ) are considered as the affecting 
parameters in Taguchi method. The value of the objectives and assassinate time of trials have 
been used as criteria to check the quality of trials. The results are given in Fig. 3 reached by 
MINITAB. Finally, the desirable value of NSGA-III evolutionary algorithms is expressed in 
Table 6.

Fig. 3  Analysis diagrams of NSGA-II parameters tuning based on Taguchi method

Table 6  Candidate values of 
parameters for parameter tuning

Parameter Level 1 Level 2 Level 3

Maxiter 70 100 120
Npop 30 40 50
Cr 0.7 0.8 0.9
Mr 0.3 0.4 0.5
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6  Case Study

Tehran, with a large population, about 13,778,000, is the largest city and capital of Iran. 
Because of its steadily growing population, the city’s future HW handling and management is 
a major concern. The main challenge of Tehran’s HWM system is the large quantity of daily 
generated HW that must be collected, treated, recycled, and disposed of. In addition, control-
ling the large amounts of HW produced in the Tehran is related with social and environmental 
issues considering the population of this city. According to the statistics of Tehran Municipal-
ity Waste Management Organization, from 1997 to 2019, the size of Tehran’s HW generation 
has had increased at a steady rate. Thus, likely difficulty of handling future HW generation 
volumes can be expected to cause adverse effects such as decreased urban hygiene, increased 
rate of contamination and resulting diseases, increased vermin population, etc. Therefore, Tak-
ing into account the outdated technology and operations of Tehran’s HWM system, including 
collection fleet, treating, recycling, and disposal facilities, there is an absolute need to improve 
the efficiency of the HWM system of the city and utilize more updated approaches and facili-
ties. In this regard, determining the location of facilities can meet the demand of public in 
terms of social and environmental concern too (Table 7).

To demonstrate the performance of the proposed model in practical cases, the model has 
been implemented in a case study to determine the proper HWM system for 22 districts of 
Tehran, and the collected data is from these 22 districts of Tehran cities. Distances between 
the nodes are based on the nearest distance between each node. Although Euclidean distance 
also could have been used. The transportation cost is considered to be proportional to the 
distances between nodes. Also, the establishment cost of a facility depends on the type of 
technology. The visual pollution factor related to each facility has been determined based on 
questionnaires that are completed by people living in regions. The weight of the strategic plan-
ning costs and occurrence coefficient of each scenario have been determined according to the 
decision-maker opinions. In this respect, the related results are depicted the sensitivity analysis 
section.

7  Results and numerical examples

7.1  Model validation

In order to validate the solution presented by NSGA-III algorithm, 20 sample problems of 
randomly generated data sets including small, medium and large-scale sample problems is 
chosen. Main characteristics of these problems are in Table 8. We have solved this problem 
with the GAMS software, version 24.1.3, and CPLEX solver, based on the Epsilon constraint 
method. Then we compare the result of this method with the result of the NSGA-III. In 
Table 8, G indicates number of generation nodes, R indicates total recycling nodes including 
potential and existing waste recycling facilities, ER indicates existing waste recycling facili-
ties, T indicates total treatment facilities, ET indicates existing treatment nodes, L indicates 
total disposal nodes, EL indicates existing disposal facilities, and at last, F indicates the 

Table 7  Tuned parameters for 
NSGA-III algorithm

Parameter Maxiter Npop C
r

Mr

NSGA-III 70 30 0.8 0.5
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number of fleet of collection vehicles. In Table 9 solutions achieved from the GAMS software 
and NSGA-III algorithm are compared for the first five sample problems. For the first five 
sample problems, the minimum of the relative gap percentage is recorded as the minimum 
percentage of the relative gap (MPRG) and NSGA-III is compared with the optimal solutions 
as [ ZOpt−ZAlg

ZOpt
∗ 100 ], where ZOpt and ZAlg denotes the results of GAMS and the metaheuristic 

algorithm, respectively. GAMS software is incapable to deal with large-sized instances. Fig-
ure 4 illustrates the summary of results.

7.2  Numerical examples and sensitivity analyses

Due to the lack of access to source data for such problem and due to the novelty of pro-
posed model, sample problems including large scaled problems and small scaled problem 
are generated. Parameters of these problems were randomly created based on the judgment 
of related experts and other related articles (Rabbani et al. 2018) using the MATLAB soft-
ware. AS mentioned before Gams software was applied to validate the model too. Figure 5 
demonstrates the outcome of NSGA-III.

7.3  Effect of non‑recyclable waste generated amount on the model

To examine the effect of the non-recyclable waste parameters on the model behavior a 
sensitivity analysis has been conducted. After solving the proposed model by chang-
ing the values of objective functions reached by varying ± 90% alteration in the value 

Table 8  Characteristics of 
instance problems

No. G R ER T ET L EL F

1 10 3 2 2 1 2 1 4
2 15 5 2 5 3 4 2 4
3 25 7 3 7 3 5 2 7
4 35 10 5 10 5 7 3 10
5 50 15 7 15 7 10 5 12
6 70 20 9 15 8 12 6 15
7 90 20 10 20 10 15 7 17
8 120 25 15 25 15 20 10 20
9 140 27 16 27 17 20 10 20
10 170 30 15 30 15 25 15 30
11 200 40 17 35 20 30 15 40
12 250 50 20 50 25 40 20 55
13 270 50 30 50 30 40 30 60
14 290 60 30 50 30 40 20 65
15 300 60 30 60 30 50 25 65
16 350 75 35 70 35 60 30 70
17 370 80 40 70 35 60 40 75
18 385 90 40 80 35 65 40 80
19 400 100 50 85 40 70 45 90
20 450 120 60 100 55 80 50 100
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of non-recyclable waste were set. According to the results as that parameter values 
enhances; the costs and visual pollution of the model increases too. Figure  6 illus-
trates the effects of non-recyclable waste amount on the objective functions. As the 
figures show, the level of visual pollution increases dramatically with increasing rates 

Table 9  Results of relative gap 
and execution time of each 
instance

No. Exact time (s) MPRG (%) Time(NSGA-
III) (s)

1 976 0.097 89.1
2 1582 0.47 108
3 3789 1.97 159.3
4 6768 3.87 191.7
5 17,180 7.23 224.1
6 – – 234.9
7 – 275.4
8 – – 318.6
9 – – 434.8
10 – 553.7
11 – – 704.9
12 – – 1271.1
13 – – 1355.2
14 – – 1478.5
15 – – 1567.3
16 – – 1679.8
17 – – 1799.8
18 – – 2014.6
19 – – 2278.9
20 – – 2477.9
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Fig. 4  the results of the minimum percentage of the relative gap



10112 A. Saeidi et al.

1 3

of non-recyclable hazardous waste. Clearly, with the increase in the amount of non-
recyclable waste, the decision variable F indicating the number of vehicles that are 
compatible with the waste increases.

Fig. 5  Approximation of Pareto front for a problem instance
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Fig. 6  Sensitivity analysis on amount of non-recyclable waste
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7.4  Survey the effect of vehicles’ number on model sustainability 
and computational time

It is necessary to note that the optimization model can be lope according to agendas 
defined by decision makers. Due to changes in the number of vehicles carrying waste in 
a work calendar, we need to have a sensitivity analysis on parameter F. Figure 7 illus-
trates the effects of the number of vehicles on the computational time of the algorithm. 
As the figures show, the computational time increases dramatically with the distance 
from the optimal number of vehicles. Another significant result of this analysis is that 
by increasing the number of vehicles, the operation’s freedom is provided in the model. 
As shown in Fig. 8, the amount of visual pollution caused by these vehicles increases 
significantly, and in contrast, the amount of emissions is low.
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Fig. 7  Sensitivity analysis on number of vehicles
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7.5  Effect of recycling facility’s capacity on revenue and model’s variables

The parameter Cri indicates the capacity of recycling facility at node i ∈ R . As can be 
seen from Fig.  9 after solving the proposed model variations in values of benefit and 
cost functions resulting from ± 50% change in the capacity of recycling facility, altera-
tion of this parameter makes little change in cost against changes in benefit. In addi-
tion, according to the results depicted in Fig. 9 with increasing recycling facility capac-
ity, profits are rising significantly, and this can have an impact on strategic decisions. 
Another meaningful change in the model is related to variable Yri . As can be seen from 
Fig. 10, by increasing the recycling capacity, the value of this variable increases with 
the model increasingly.
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Fig. 9  Sensitivity analysis on the capacity of recycling facility
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7.6  Survey the effect of IoT components

Considering the uncertainty in the number activated generation nodes with IoT compo-
nents, in other word the total amount of waste produced in waste generation sources, and 
in order to investigate the effect of waste amount on the objectives, a problem instance 
has been solved with different scenarios and the sensitivity analyses have run on different 
number of activated nodes by IoT components to provides a comparison with the state of 
the lack of ICT and IoT technology in hazardous waste location routing management. As 
Fig. 11 shows, the presence of IoT components reduces the total costs and thus increases 
the profitability of the WM system.

8  Conclusions and further research

This paper presents an optimization model for optimal and sustainable Hazardous Waste 
Location-Routing problems (HWLRPs) in a smart city. To design a sustainable system, 
environmental and social aspects are considered alongside with economic aspects of the 
problem simultaneously. In this respect, three objective functions are defined, including 
maximization of profit and minimization of GHG emission and visual pollution. In addi-
tion, it is possible to have a sustainable system by taking into consideration green and 
social aspects alongside with economic aims of the system. Furthermore, the presented 
model has considered smart city components including techniques and tools related to 
information and communication technologies (ICT) and the Internet of Things (IoT) to 
proper the administration of hazardous wastes generated as a result of urban and industrial 
activities. Next, a solution representation is proposed based on the NSGA-III algorithm 
and the parameters of the metaheuristic algorithm are tuned by using the Taguchi method. 
In order to deal with the uncertainties in the proposed problem, various scenarios are gen-
erated regarding the number of activated nodes by IoT components and solved in small, 
medium, and large scales. As shown in previous sections, the presence of IoT components 
reduces the total costs and thus increases the profitability of the HWM systems. Moreover, 
the advantage of using this system is economic transportation and reducing greenhouse 
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gases. In this way, unnecessary visits are avoided, and the optimum fuel consumption will 
happen. Due to the features of a Smart City, the application of this model is noteworthy, 
because as it can be fined from the results, the breadth and integration of the objective 
functions make it possible for decision makers to be able to visually take a broader look at 
the issue and make their decisions on the satisfaction of the environmental, economic and 
social issues. For example, in the social dimension of the problem, the reduction of visual 
pollution caused by hazardous waste transportation fleet in the city has been significantly 
reduced. In addition to the advantage mentioned above, omnipresent availability of data 
stored in the cloud can be useful for different beneficiaries and entities including legisla-
tors, food industry, healthcare systems, researchers, department of environmental protec-
tion and related organizations, and many other organizations that are affecting or taking 
effect of this progress.

For future studies, developing a multi-period model, considering time window 
and implementing the model in a real case are good directions. In addition, using other 
approaches to deal with uncertainty of the model such as fuzzy approaches is appealing.

Appendix 1: Model linearization

The developed model is initially a MINLP model that will be linearized in this Appendix 
using an exact linearization method(Azadeh et  al. 2017). The nonlinearity of the model 
comes from the Eqs. (1c) of objective functions formulation as well as Eqs. (17) and (26) 
of constraints formulation subsection. A simple method to evade this nonlinearity caused 
by for example zijf loif  is defining auxiliary variable zlijf  and replacing zijf loif  by it. Also, we 
must add additional constraints A.1-A.4 to the model.

By applying the same approach, the nonlinearities associated with tbiYtwi and Ytwitbi will 
be overcome, and the initial nonlinear formulation will be reduced to a MILP model.
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