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Abstract
The impact of anthropogenic activities in major river watersheds leading to alterations in 
the environment has triggered this study within the Ashi watershed of northeast China. 
Understanding individual land use/land cover (LULC) change contribution to watershed 
hydrology is vital for water resource planning, utilization of land resources and sustaining 
hydrological balance. This research investigates the influence of LULC alteration on the 
hydrology of the watershed from 1990 to 2014 and predicts LULC impacts on the hydro-
logical components under different scenarios in 2030. Combined approach for Landsat 
images classification; Cellular-Automated (CA-Markov) for prediction and Soil and Water 
Assessment Tool were used. Partial least square regression (PLSR) model was applied to 
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quantify the contribution of each LULC on hydrology. The results show that urban, water, 
agriculture, open canopy and other vegetation experienced an increment from 1990 to 
2014. The predicted LULC for 2030 based on worst-case scenarios indicates urbanization 
and agriculture increase, while best-case scenario indicates a controlled expansion trend of 
urban and agriculture and regeneration of closed canopy. The changes in LULC increase 
stream flow (11.5%), surface runoff (86.6%), water yield (10.5%) but reduce lateral flow 
(64.9%), groundwater (27.9%) and ET (1%). Stream flow, water yield, surface runoff, lat-
eral flow and evapotranspiration are expected to further increase under both scenarios, 
increasing more in the worst-case scenario. Urban, agriculture and close forest contributed 
in determining hydrological processes and are therefore chief environmental stressors in 
the Ashi watershed. This recommends regulating urban sprawl and agricultural activities to 
maintain hydrological balance.

Graphic abstract

Keywords  Land use/land cover change · CA-Markov · Hydrological components · SWAT 
model · PLSR

1  Introduction

Northeast China has been the cradle of China’s industrialization since the country’s reform 
and opening up policy was initiated (Li 2015). Consequently, urbanization, industrializa-
tion and agriculture keep expanding rapidly in this region (Liu et  al. 2014). This devel-
opment frequently alters the existing land use/land cover (LULC) in an irreversible man-
ner (Kuai et  al. 2015). For instance, cultivation area is converted into urban area which 
involves elimination of forest and the alteration of permeable lands into impermeable sur-
face (Goonetilleke et al. 2005). Usually, such areas in the region will encounter the issue of 
pollution by nonpoint source (NPS) due to LULC changes (Eisakhani et al. 2009; Shukla 
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et al. 2018). Unlike point source pollutants that go into water bodies via pipes or channels, 
NPS pollutants are pollutants that come from different sources in the environment and can-
not be traced to a single source (Kuai et al. 2015). These pollutants which contribute to the 
declining health status of water resources are transported to water bodies via hydrology of 
the watersheds.

LULC changes can influence NPS pollution under a rapid economic development con-
text in two ways. First, LULC conversions modify the hydrology of watersheds and there-
fore increase surface runoff volumes and peak flow (Kuai et al. 2015; Barbosa et al. 2012). 
Second, rapid economic development persuades a growth in numbers of local people and 
increases socioeconomic activities, subsequently attracting waste and pollutants generation 
in watersheds. These waste and pollutants are then transported to water resources through 
the hydrology of watersheds. These processes are further influenced by different LULC 
planning and water resources administration choices (Barbosa et al. 2012). It is therefore 
necessary to tackle the issue of water quality by looking at the hydrology of a watershed 
through LULC change. Assessment of this nexus is valuable for watershed management.

Globally, researchers have, for some time, quantified impacts of LULC alterations on 
hydrological components (Nie et al. 2011; Gashaw and Melesse 2012; Gwate et al. 2015; 
Welde and Gebremariam 2017; Abe et al. 2018; Choto and Fetene 2019; Pal and Taluk-
dar 2018; Santos et al. 2019; Awotwi et al. 2019). For instance, it is reported that, in the 
upper San Pedro watershed, Mexico, an expansion of cultivated lands and reduction of for-
est cover increased surface runoff (Nie et al. 2011. It has also been observed that a changed 
in land cover from 1973 to 2012, in the Upper Crepori River Basin, south Brazilian Ama-
zon, increased stream flow by 2.5%, without noticeably changing the average annual water 
balance. Future conservation policies and “Business as Usual” trend scenarios were also 
observed to increased surface runoff by 238.87% and 300.90%, and stream flow by 2.53% 
and 2.97%, respectively, and reduced groundwater by 4.00% and 5.21%, and evapotranspi-
ration by 2.07% and 2.43%, respectively (Abe et al. 2018). In northeast of Portugal, San-
tos et al. (2019) also concluded that land use changes and afforestation scenario showed 
decreases in water yield, surface flow and groundwater flow and increases in evapotranspi-
ration and lateral flow. They further indicated that, land use and land cover changes in 2000 
and 2006 showed average decreases in water yield of 91 and 52  mm/year, respectively. 
Other studies have also documented an increased surface runoff due to land use/land cover 
change; Schilling et al. (2010), in the Upper Mississippi River Basin, USA, Leach (2015) 
in Turkey River watershed Iowa. The extension of farm land and reduction of wooded land 
and grasslands additionally increased stream flow in the Quaternary Basin, South Africa 
between 2004 and 2013 (Gwate et al. 2015). According to the study by Welde and Gebre-
mariam (2017), an increase in bare land and cultivation land areas has caused an increase 
in annual and seasonal stream flow and sediments yield volumes in the Tekeze dam, Ethi-
opia. Alterations in agriculture, urban and forest lands in Upper Du basin, China, from 
1978 to 2007 also influenced stream flow (Yan et  al. 2013). Although investigations of 
LULC relations with hydrology have been explored under different environmental condi-
tions globally, very few investigations have been carried out under varying conditions in 
the cold-temperate regions of China (Liu et al. 2018) per our investigation. Most studies 
conducted in these zones of China (Liu et al. 2011; Zhang et al. 2016; Yang et al. 2017; 
Shang et al. 2019) do not measure the influence of individual LULC types on hydrological 
components. The impact of LULC on hydrological components may be undervalued, over-
valued or misjudged, where the contributions of individual LULC are not further analyzed. 
To utilize land resources and at the same time sustain it for positive hydrological processes, 
it is important to measure how each LULC influences hydrology.
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The involvement of nonpoint source (NPS) pollution in deteriorating water quality is 
progressively becoming a global concern (Schaffner et al. 2011; Shen et al. 2012; Alvarez 
et al. 2016) and has made nonpoint source pollution an vital subject for local and nation-
wide policy makers. Research has reported that NPS pollution has become a significant 
factor in decreasing ecological water quality, since point source pollution has successfully 
come under control by many nations (Li et al. 2017a, b). Among the sources of NPS pol-
lutants are synthetic fertilizers, herbicides and insecticides from agriculture land and urban 
areas. China has become the largest user of these materials in the world (Sun et al. 2012). 
As a result, NPS pollution control in China has become an important topic in environmen-
tal protection in recent times (Shen et al. 2012). Heilongjiang Province is the largest com-
modity grain production area in China, and faces a significant NPS pollution in most of its 
water bodies. Ashi River located in the province is the foremost river of the Ashi watershed 
and one of the important tributaries of Songhua River in northeast China. The Songhua 
River Basin is a main national commodity grain base and supports the national food basket 
with 53% maize and 37% soybean production. It is also the source of drinking and irriga-
tion water in northeastern China (Ma et  al. 2013). Since China accepted the “open-up” 
policy and economic reform, the Ashi River watershed has experienced rapid urban sprawl 
and agriculture, resulting in environmental degradation and worsening of the water quality 
of the Ashi River, which has been reported as one of the polluted tributaries of the Song-
hua River (Li et al. 2017a, b). Due to this, scientific and engineering approaches, as well as 
social programs, have been executed to manage the deterioration of Ashi River water qual-
ity. Nevertheless, the degenerated status of the water quality and the environment has not 
improved significantly (Jun et al. 2011; Ma et al. 2015a, b). Dependence on industrialized 
approaches could pose a challenge to fundamentally changing the status of the water qual-
ity and environmental deterioration. Different approaches are needed to address the root of 
this concern.

Many researchers have conducted studies in the Ashi River Basin and claimed that the 
LULC of the watershed is related to the water quality status of the river. For instance, Ma 
et al. (2015b) analyzed nitrogen (N) pollution characteristics based on water quality moni-
toring of the Ashi River and concluded that the water quality in the midstream and down-
stream areas of Ashi River were negatively affected by cropland and developed area includ-
ing towns, villages and industries. Nitrogen pollution origins were also investigated in the 
Ashi River Basin by Yu et al. (2015) using water quality and soil monitoring techniques as 
well as δ15N stable isotope, and concluded that the water quality pattern is closely related 
to the LULC types and human activities of the watershed. Ma et al. (2015a, b) simulated 
the distribution of nonpoint source pollution in the Ashi River and observed that the dis-
tribution of NPS was mainly influenced by LULC. Ma et al. (2016) also investigated non-
point source pollution control of the Ashi Basin based on a Soil and Water Assessment 
Tool (SWAT) model and indicated that returning farmland to forest mode, fertilizer reduc-
ing mode, filter strips mode and syntaxic mode could all reduce nonpoint source pollutants 
to some level. A study by Li et al. (2017a, b) in the Ashi River also observed that agricul-
tural activities such as rice farming were contributing to the pollution of the river, because 
fertilizers and pesticides are heavily employed by the farmers.

Apparently, the existing literature did not consider the impact of LULC change patterns 
of the watershed at different points in time and how it affects the watershed hydrology and 
the river water quality. Moreover, there is no reported research on the relationship between 
LULC and watershed hydrology using SWAT and statistical models to estimate the influ-
ence of each LULC types in the Ashi watershed. To attribute water quality degradation 
to watershed LULC change, it is necessary to study the historical stream flow patterns in 
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same watershed over different time periods with reference to the dynamics in the watershed 
LULC. This is a knowledge gap that this research seeks to address. This study will further 
attempt to confirm the findings of in  situ investigations on the water quality of the Ashi 
River by other studies that linked LULC to the poor water quality of the river. The findings 
of this study are critical for effective implementation of both current and future water pol-
lution control programs for the preservation of the Ashi River and its ecosystem. The study 
aims at measuring the influence of LULC change on the watershed hydrology over differ-
ent time periods to feed into sustainable management decisions. Specific objectives are to 
assess the impacts of LULC at different points in time on the hydrology, measure the influ-
ence of individual LULC types on the hydrological processes and predict the future stream 
flow based on the future LULC of the Ashi watershed.

2 � Materials and methods

2.1 � Study area

The total coverage area of the Ashi watershed is 3545 km2, situated in the southwest of 
Heilongjiang Province, northeast China. It is confined by latitudes 45° 05′ and 45° 49′ N, 
and longitudes 126° 40′ and 127° 42′ E (Fig. 1). Ashi River is the principal waterway of 
the watershed, with a length of about 213 km and functions as a tributary of the Songhua 
River. The watershed altitude above sea level is from 109 to 833 m, with slopes ranging 

Fig. 1   Location of the study area
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from 0 to 67.3%. Northwest of the watershed is flat, while the southeast has low-lying hilly 
and sloping vegetation cover. The watershed experiences nippy atmosphere in the winter, 
with a mean temperature of 3.4 °C and minimum temperature of − 40 °C. It witnesses win-
ter between November and mid-April and gets uneven precipitation, which peaks in July 
and August. The multi-year normal precipitation is 580–600 mm (Ma et al. 2013).

2.2 � Ashi River watershed land use/land cover evaluation and prediction

Investigations of LULC of the watershed at different points in time were conducted with 
the aid of four satellite images; Landsat-5 1990, Landsat-7 ETM+ 2000, Landsat-7 ETM+ 
2010 and Landsat-8 OLI_TIRS 2014. These images with 30 m resolution and 0% cloud 
cover were acquired from the U.S. Geological Survey (USGS) Earth Explorer site (http://
glovi​s.usgs.gov) and extracted to assess temporal and spatial changes in the watershed. 
The watershed falls in one Landsat path (117) and two rows (28 and 29). The two scenes 
each of years 1990, 2000, 2010 and 2014 were recorded, respectively. Due to the spectral 
variations exhibited by the features in the watershed, the images were classified using the 
combined classification method which involved unsupervised and supervised classification 
approach. The Iterative Self-Organizing Data Analysis (ISODATA) clustering algorithm 
under the unsupervised technique was used, while the supervised classification technique 
was carried out with maximum likelihood algorithm by taking 480 ground truth samples 
from six LULC types (80 GPS points in individual LULC). The six LULC types were 
urban (URB), water (WAT), agriculture (AGR), closed canopy forest (CLF), open canopy 
forest (OPC) and other vegetation (OTV). Also, Google Earth images of corresponding 
time points were used as reference data for classifying the images at the various time 
points. Geo-visualization techniques and detailed focused group discussions with farmers 
and local environmental authorities were also undertaken. Accuracy assessment was per-
formed by matching reference data (i.e., ground truth data, Google Earth images) against 
the classified images to evaluate the classification precision. An error matrix in the form 
of a table is widely used to yield a series of descriptive and inferential statistics to assure 
the classification accuracy (Manandhar et al. 2009). This method was applied in this study 
to confirm accuracy. ArcGIS 10.4 and ERDAS 2015 were used for mapping purposes and 
image classification purposes, respectively.

The future LULC change distribution of the watershed was predicted with the integrated 
CA-Markov model under two scenarios for the year 2030. This model was used to take 
advantage of both Markov chain analysis and Cellular Automata for effective and efficient 
spatiotemporal dynamic modeling and predicting LULC change (Mishra and Rai 2016). 
The combination of these models is widely used to simulate complex processes such as 
LULC change by studying the transition probability between initial time point and final 
time point to define transition direction among different LULC categories. A Markov 
matrix of transition probability of LULC change from 2000 to 2010 was developed to con-
stitute a foundation for future predictions. The transition probabilities used 2000 and 2010 
images to generate a transition area file that confirms the quantity of pixels which are sup-
posed and expected to convert to other LULC over time. The existence of spatial distribu-
tion within each LULC class was not known to the transition probabilities, so a spatial fac-
tor to the model was added by Cellular Automata (CA). The transition area file and 2010 
classified image as base map were served as contributions for the Cellular Automata tool 
to model LULC for the period 2014. Following simulation of changes in 2014, the future 
LULC change for the year 2030 was predicted under two scenarios with the 2014 LULC 

http://glovis.usgs.gov
http://glovis.usgs.gov
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map as the base map. The first scenario was a worst-case scenario in which we assumed 
that the factors currently influencing LULC in the watershed maintain the same pace with 
the development of LULC change from 1990 to 2014 and will not change significantly 
from 2014 to 2030. The second scenario is best management practice; rehabilitation. Under 
this scenario, LULC maps for years 2010 and 2014 were inputs for predicting the 2030 
scenario. Prior to the prediction, the existing LULC map of 2014 was revised to predict a 
future scenario assuming good environmental policies; rehabilitation including tree plant-
ing interventions, restoring open canopy forest in the forest zone (areas with slope > 25°) 
into closed canopy and planting trees along river networks which all aided to lessen surface 
runoff. Restrictions were made along river networks at a buffer of 200 m to prevent urbani-
zation and agricultural expansion. The forest zone was constrained to prohibit anthropo-
genic disturbances.

2.3 � Land use/land cover change analysis

The overall LULC changes as well as the gains and losses in each LULC types through-
out the time period was analyzed. This was carried out using the classified images (1990, 
2000, 2010 and 2014) and the predicted LULC (worst case-2030W and best case-2030B) 
status to reveal the trend and status of LULC changes. To get insight into the LULC 
changes between the time points (1990–2000, 2000–2010, 2010–2014, 2014–2030W, 
2014–2030B), The study used the revised version of the single land use dynamic degree 
(Liping et al. 2018) and spatial-based land use dynamic degree (Liu and He 2002) to ana-
lyze the rates of gain and loss as well as the total rates of change among the different LULC 
types in the watershed. Many authors compute the single land use dynamic degree and 
neglect the transition, only considering the difference between the initial time and final 
time point, whereas the new version considers the areas of the LULC type that are con-
verted from one LULC type to another LULC type. Consequently, this study employed the 
revised version.

The single land use dynamic degree:

The spatial-based land use dynamic degree (total rate of change):

where St = dynamic degree of a single LULC type, LA(i,t1) = area of a given LULC type at 
initial time point, LA(i,t2) = area of a given LULC type at a final time point, ULAi = the part 
that is not changed, t1 = initial time point, t2 = final time point, TRLi = the transfer-out rate 
(loss), and IRLi = the transfer-in rate (gain), CCLi is the sum of TRLi and IRLi.

(1)St =
LA(i,t1) − ULAi

LA(i,t1)

×
1

t2 − t1
× 100%.

(2)CCLi = TRLi + IRLi

(3)TRLi =
LA(i,t1) − ULAi

LA(i,t1)

×
1

t2 − t1
× 100%

(4)IRLi =
LA(i,t2) − ULAi

LA(i,t1)

×
1

t2 − t1
× 100%,
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2.4 � SWAT model inputs and analysis

2.4.1 � SWAT model

Soil and Water Assessment Tool (SWAT) 2012 model (Neitsch et al. 2011) was used in 
the Ashi River watershed to evaluate the influences of LULC change on hydrological 
processes. The model has been applied to investigate hydrological processes in small 
and large watersheds in different parts of the globe. It is a deterministic, physical-
based, semi-distributed and continuous daily time step model. It is designed to evalu-
ate the effects of climate variability and land management on hydrology, sediment and 
nonpoint source pollution in river basins (Arnold et al. 1998). SWAT model splits the 
watershed into multiple sub-watersheds which are further divided into smaller areas 
with unique LULC, topography and soil combination termed as hydrological response 
units (HRUs). These HRUs are created to improve calculation accuracy for best physical 
account of the water balance (Kushwaha and Jain 2013). The surface runoff values cal-
culated from individual HRUs are summed to get the entire runoff value for the basin. 
To set up and run the SWAT model, various information of the watershed under study is 
needed, which include weather, soil, land use and hydrology data. The land phase of the 
hydrological cycle is simulated by the model using a water balance equation (5).

where SWt , SWo,Rday , Qsurf , Ea , Wseep and Qgw represents the final soil water content 
(mmH2O), initial soil water content (mmH2O), the amount of precipitation on day i 
(mmH2O), the amount of surface runoff on day i (mmH2O), the amount of evapotranspira-
tion on day i (mmH2O), the amount of water entering the vadose zone from the soil profile 
and the amount of return flow on day i (mm), respectively, and t is the time (days).

The model runs on the platform of ArcGIS a graphical use interfaces known Arc-
SWAT ArcGIS extension. This study employed ArcSWAT2012. For detailed description 
and understanding of the SWAT model, see SWAT theoretical documentation and online 
resources at http://swat-model​.tamu.edu/.

2.4.2 � SWAT model data inputs

To simulate the hydrological components of a watershed with the SWAT model, the 
necessary data required as inputs are topographic data also called digital elevation 
model, climatic data, soil data, LULC data and hydrological data of the river whose 
watershed is under study. Descriptions and how these datasets were obtained for this 
study are as follows.

2.4.2.1  Digital elevation model (DEM)  The first input of SWAT model is DEM, and this 
was obtained from the International Scientific and Technical Data Mirror Site, Com-
puter Network Information Center, Chinese Academy of Sciences with 90 m resolution 
(Fig. 2c). The SWAT model used the DEM to determine the flow direction and flow accu-
mulation, stream network generation, watershed delineation, sub-basin and HRUs set-up. 

(5)SWt = SWo +

t∑
i=1

(
Rday − Qsurf − Ea −Wseep − Qgw

)
,

http://swat-model.tamu.edu/
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Considering the topographic parameters of Ashi River watershed, the SWAT model par-
titioned the watershed into 27 sub-basins (Fig. 2a).

2.4.2.2  Land use/land cover  The LULC maps generated from the land use/land cover 
assessment at the various time points were used separately to reveal the influence of LULC 
types on the hydrology of the watershed. The LULC types were converted into four digits of 
the SWAT code. The codes that were given to the LULC types are URBN (Urban), WATR 
(Water), AGRL (Agriculture), CLCF (Close canopy forest), OPCF (Open canopy forest) 
and OTVE (Other vegetation), respectively.

2.4.2.3  Soil  The soil data of Ashi River watershed were acquired from Cold and Arid 
Regions Sciences Data Center at Lanzhou, China, with resolution of 1000 m (Fig. 2b). A 
soil database comprising the physical and chemical properties of soils was prepared for each 
layer of soil and added to the SWAT soil database to enable the integration of our soil map 
with the SWAT model.

2.4.2.4  Weather  Climatic data such as rainfall, temperature, wind speed, solar radiation 
and relative humidity from stations in and around the watershed (Fig. 2c) for the periods 
1990–2014 were obtained from the official website of global weather data for SWAT model 
(globalweather.tamu.edu/), where climate forecast system reanalysis (CFSR) data can be 
downloaded.

2.4.2.5  Stream flow  The Ashi River flow monthly data, from 1996 to 2014, obtained from 
Acheng City Hydrological Station of Water Conservancy Department (Fig. 2c) were used 
for the calibration and validation of the simulated Ashi River watershed by the SWAT model.

2.4.3 � Sensitivity analysis

It is the process of finding the significance of model parameters that determine the speed 
of alteration in model outputs with respect to variations in the model parameters (Arnold 
et al. 2012) for model calibration and validation. Based on published protocols, this study 
used 20 discharge parameters (Table 1) to identify the most essential SWAT parameters 

Fig. 2   Watershed delineation (a), soil map (b) and weather/hydro-gauge station locations (c) in the Ashi 
River watershed
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that influence stream flow. Global sensitivity analysis which permits varying each param-
eter at a time (Abbaspour 2013) was applied to the SWAT-CUP new version 5.2.1. The 
t-stat and p value statistics from SWAT-CUP provided the measure and meaning of sensi-
tivity, respectively. For instance, a high t-stat in absolute values indicates higher sensitivity, 
whereas a p value of zero indicates more significance (Abbaspour 2013).

2.4.4 � Parameter adjustment for calibration, validation and uncertainty analysis

Calibration of a model is the process of adjusting model parameter inputs to ensure that 
simulations match with observations so that prediction uncertainty is reduced (Arnold 
et  al. 2012). Before calibration, the difference between observed and simulated precipi-
tation, snowmelt and water yield from the uncalibrated model was initially fine-tuned to 
minimize the difference. This was achieved by fine-tuning the temperature and precipita-
tion lapse rate (TLAPS and PLAPS, respectively) from default to nearby derived values. 
The simulated precipitation, snowmelt and water yield were therefore closely matched with 
observed values. Validation is the confirmation of the calibrated parameters by testing the 
calibrated parameters with an independent set of data without altering the model param-
eters (Arnold et al. 2012). Nineteen years (1996–2014) of monthly flow data were used for 
the calibration and validation of the model. The 1996–2005 data were used for calibration 

Table 1   Parameters used for calibration and validation of the SWAT model

No Parameter Definitions

1 CN2 SCS runoff curve number
2 ALPHA_BF Baseflow alpha factor (days)
3 GW_DELAY Groundwater delay (days)
4 SHLLST Initial depth of water in the shallow aquifer (mmH2O)
5 GWQMN Threshold depth of water in the shallow aquifer required 

for return flow to occur (mm)
6 GW_REVAP Groundwater “revap” coefficient to occur (mm)
7 RCHRG_DP Deep aquifer percolation fraction
8 CANMX Maximum canopy storage
9 EPCO Plant uptake compensation factor
10 ESCO Soil evaporation compensation factor
11 REVAPMN Threshold depth of water in the shallow aquifer for 

“revap” to occur (mm)
12 CH_N2 Manning’s “n” value for the main channel
13 CH_K2 Effective hydraulic conductivity in main channel alluvium
14 SURLAG Surface runoff lag time
15 SOL_AWC​ Available water capacity of the soil layer
16 SOL_BD Moist bulk density (Mg/m3 or g/m3)
17 SOL_K Saturated hydraulic conductivity
18 SOL_Z Depth from soil surface to bottom of layer (mm)
19 SMFMN Melt factor for snow on December 21 (mmH2O/°C-day)
20 SMFMX Melt factor for snow on June 21 (mmH2O/°C-day)
21 SMTMP Snow melt base temperature (°C)
22 TIMP Snow pack temperature lag factor
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and the 2006–2013 data were used for validation. The Sequential Uncertainty fitting 
(SUFI-2) algorithm imbedded in SWAT-CUP program (Abbaspour 2013) was used for the 
calibration and uncertainty analysis. This was a good choice because SUFI-2 captures all 
sources of uncertainty to accurately reduce uncertainty of the model output. This method 
was adopted since the weather input data were from the SWAT website. The uncertainty is 
determined by the 95% prediction uncertainty band computed at the 25% and 97.5% levels 
of the output variable (Abbaspour 2013).

2.4.5 � Evaluation of model performance

The indices used to evaluate the SWAT model performance were the Nash–Sutcliffe effi-
ciency (NSE), percent bias (PBIAS) and coefficient of determination (R2) as recommended 
by Moriasi et al. (2007). The NSE value describes the accuracy of the model, whereas the 
R2 value describes the colinearity relationship between the simulated value and observed 
value. When the PBIAS > 0, it indicates that the simulated value is larger than the observed 
value and when PBIAS < 0, the simulated value is smaller than the observed value. On 
the other hand, when PBIAS = 0, it indicates that the simulated value is the optimal. For a 
SWAT model to be acceptable after evaluation, the performance of the model calibration/
validation must have R2 and NSE values greater than 0.5.

NSE is defined as:

PBIAS is defined as:

where n equals total number of observations, and Yobs
i

 and Ysim
i

 are the measured and the 
simulated values, respectively, R2 is defined as

where Si is the simulated value of i and Oi is the observed value of i; S is the average value 
of all simulated values; O is the average value of all the observed values; and n is the num-
ber of the value.

2.4.6 � Application of the calibrated model to explore the influence of LULC change 
on hydrological conditions

Evaluating the influence of LULC changes on hydrological processes of a watershed is sig-
nificant for water resources management (Yan et al. 2013; Gyamfi et al. 2016). Therefore, 
the calibrated model with the LULC maps (1990, 2000, 2010 and 2014) and the predicted 
LULC maps (2030W and 2030B) were used to reveal the hydrological effects of LULC 

(6)NSE = 1 −

� ∑n

i=1
(Yobs

i
− Ysim

i
)2

∑n

i=1
(Yobs

i
− Ymean)2

�
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i
− Ysim

i
)∗100
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�
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,
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variations. The fixing–changing method was employed, where the calibrated model was 
run for the individual LULC maps while keeping other input data constant. This method 
has been applied by other studies in different parts of the world (Nie et  al. 2011; Wag-
ner et  al. 2013; Yan et  al. 2013; Gyamfi et  al. 2016). To determine the influence of the 
changes that occurred in the watershed LULC on the watershed hydrology, the simulated 
results were analyzed. This was done by comparing the hydrological components obtained 
at the different time points on yearly and monthly average basis. To probe further, the link 
between hydrological components and variations in LULC types were evaluated using the 
pair-wise Pearson correlation method (Yan et al. 2013). Consequently, partial least square 
regression (PLSR) model was applied to measure the influence of each LULC variation on 
the hydrological processes of the watershed.

PLSR is a strong multivariate regression approach suitable for data analysis under the 
condition of multi-collinearity of data or when explanatory variables or predictors are 
highly correlated (Wold et al. 2001). The approach explores features from principal com-
ponent analysis and multiple regressions for its predictive ability. This is achieved based on 
linear combinations called factors, latent variables or components of explanatory variables 
(predictors) that have the greatest predictive power (Cox and Gaudard 2013). Unlike the 
ordinary least squares approach, PLSR approach achieves satisfactory results more than 
OLS approach in circumstances where independent variables are more than observations, 
there are highly correlated independent variables, or a large number of predictors and many 
response variables (SAS Institute Inc 2017). To find out about these conditions in the study 
data, multi-collinearity was checked using tolerance and variance inflation factor (VIF). 
The results revealed colinear characteristics of the data. With our data exhibiting collin-
earity with VIF values greater than 10 and tolerance nearing to 0, PLSR model is suitable 
for discovering the impact of each LULC types (Godoy et al. 2014; Li 1999) in the Ashi 
watershed.

where Y = the dependent (response) variable, k0 = intercept, x = the predictors (independent 
variables from 1 to i) and k = the regression coefficients of the x variables.

PLSR techniques additionally give weight to independent variables by developing com-
ponents and regression coefficients of each predictor in the greatest explanatory factors. 
With this, the most inducing variables for a particular response can easily be understood 
(Abdi 2010). To keep the number of significant components, a criterion involving a cross-
validation was assessed with two main indices; R2 (goodness of fit) and Q2 (goodness of 
prediction). These were used to achieve the suitable number of factors in individual PLSR 
models. According to the literature when R2 is > 0.5 and Q2 is > 0.0975, the PLSR model 
portrays significance and good predictions (Trap et al. 2013). Hence, to avoid the issue of 
overfitting, the suitable number of factors for the individual PLSR model was determined 
using the above indices through cross-validation. Also, to ascertain the number of compo-
nents elucidating the model, the Root Mean PRESS (predicted residual sum of squares) 
was employed (SAS Institute Inc. 2017). A predictor’s variable importance for the projec-
tion (VIP) measures the influence on the factors that define the model (Cox and Gaudard 
2013). Therefore, the VIPs and regression coefficients (RC) were employed to ascertain 
the relative impact of each independent variable on the dependent variable. Hence, it was 
possible to detect which LULC types powerfully connect with the hydrological processes 
in the watershed. Independent variable with large VIP value indicates how important it is 
in influencing the dependent variable. A minimum acceptable VIP is 0.8 (SAS Institute Inc 

(9)Y = k0 + k1x1 + k2x2 +⋯ + kixi,
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2017). The RCs of the model indicate the strength and direction of the influence of each 
predictor in the model. A predictor with a large RC and a large VIP implies that the predic-
tor is relevant and contributes greatly to the forecast and thus has to be kept in the model, 
whereas a predictor is deleted from the model, if both RC and VIP have small values (SAS 
Institute Inc 2017).

In this investigation, the predictors are the LULC types, while the response variables are 
annual stream flow, surface runoff, water yield, lateral flow, groundwater flow and evapo-
transpiration. However, a multi-collinearity test revealed an extreme collinearity among 
the predictors thus, to get satisfactory regression results, open forest was eliminated from 
the predictors to reduce extreme multi-collinearity. In view of their association, four PLSR 
models were established; PLSR 1 for annual stream flow, PLSR 2 for surface runoff and 
water yield, PLSR 3 for groundwater flow and lateral flow and PLSR 4 for evapotranspira-
tion. PLSR was performed in JMP 14.3.0, whereas STATA 15.1 was used for other statis-
tics and multi-collinearity tests.

3 � Results and discussion

3.1 � LULC changes assessment

The LULC status of the Ashi watershed from 1990 to 2030 is shown quantitatively 
and spatially in Figs.  3 and 4, respectively. Agriculture and urban areas are increas-
ing in size throughout the period 1990–2014, and is expected to continue from 2014 to 
2030W under the worst-case scenario, but will expand in a lesser degree from 2014 to 
2030B under the best-case scenario. Urban and agriculture areas increased from 1.8% 
and 43.4% in 1990 to 2.9% and 43.7% in 2000 to 5.7% and 45.9% in 2010 and continued 
to 5.9% and 47.8% in 2014, respectively. These areas will continue increasing to 10.4% 

Fig. 3   Area extent of LULC types in the Ashi River watershed from 1990 to 2030 time points
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and 51.2% in 2030W under the worst-case scenario but will shrink to 9.1% and 49.7% 
in 2030B, the best-case scenario, respectively (Fig. 3). The observed incremental trend 
of urban and agriculture reflects the impact of resettlement programs, agriculture mod-
ernization and economic liberalization reforms of the Heilongjiang Reclamation Area 
(HRA), where Ashi watershed is located in the northeast of China (Liu et  al. 2014). 
This trend clearly demonstrates that the government policy on “House-hold Respon-
sibility System” initiated in 1978 and the market-oriented economic system in 1992 
(Godoy et  al. 2014) had a strong influence on LULC. The policies permitted farmers 
to make decision concerning land resources and as a result destruction of forest cover 
areas and along hillsides to cultivate were common (Yan et al. 2013). Congruently, the 
size of close forest areas also decreased from 33.3% in 1990 to 26.7% in 2000 to 9.5% in 
2010 and continued reducing from 2010 to 2014 (9.5% to 6.9%). However, close forest 
area is expected to increase from 6.9% in 2014 to 7.3% in 2030W under the worst-case 
scenario and this could be attributed to the fact that, in the 1990s the ecological func-
tions of forest, and other natural land covers were recognized nationwide and therefore 
green projects such as grain to green policy for Heilongjiang Province were accepted 
which lessened the rate of natural cover destruction due to human activities (Wang et al. 
2009). Moreover, with conservation policies close forest is expected to expand some 
more to about 32% in 2030B under the best-case scenario (Fig. 3). Open forest area also 
revealed an increased trend from 1990 to 2010 but begin to reduce from 2010 to 2014 
and is expected to further reduce from 31.4% in 2014 to 27.9% and 5.4% in 2030W and 
2030B, respectively (Fig. 3).

The total rate of LULC change is presented in Fig. 5, where the total annual rate of 
change (km2/yr) of urban is greater than agriculture. This indicates that the watershed 
which used to be a major agriculture zone is gradually becoming an urban area due to 
rapid urban sprawl in the watershed. The highest total annual change of close forest 
occurs in the period 2010–2014 (Fig. 5), and it is expected to achieve highest gain rate 
during 2014–2030B. Findings in other conducted studies (Gebremicael et al. 2013; Shi 
et al. 2013; Ottinger et al. 2013; Puertas et al. 2014;Yeboah et al. 2017) are consistent 
with the finding of this study. The findings of the projected LULC change under worst-
case and best-case scenario are also in line with studies done by Han et al. (2015).

Fig. 4   LULC status in the Ashi watershed from 1990 to 2030 time points
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3.2 � LULC accuracy assessment and CA‑Markov validation

The overall accuracies of all the four maps examined with ground truth points were 
greater, 89%, and generated kappa statistics of more than 84% (Table  2). This sug-
gests accuracy between the classifications made and the ground reference informa-
tion (Monserud 1990). The minimum of about 67% recorded for Other vegetation was 
accepted because of its similarity with open and close forest classes and agriculture. 
A kappa index of 0.87 was achieved, which is above 0.75 indicating that the predicted 
2014 LULC from the CA-Markov model exhibited consistency with the kappa index 

Fig. 5   Total annual rate of LULC change (km2/year) from 1990 to 2030 in the Ashi River watershed

Table 2   Classification accuracy values for LULC maps (%)

a Producer accuracy
b User accuracy

LULC classes 1990 2000 2010 2014

PAa UAb PA UA PA UA PA UA

URB 100 90 86.67 86.67 100 86.67 92.31 80
WAT​ 100 93.33 100 93.33 93.75 100 92.31 80
AGR​ 85.71 80 91.67 73.33 92.86 86.67 75 80
CLC 100 90 83.33 100 81.82 90 88.89 80
OPC 87.5 70 81.82 90 83.33 100 69.23 80
OTV 66.67 80 72.73 80 77.78 70 72.73 80
Overall accuracy (%) 84.00 86.67 89.33 81.33
Kappa coefficient 0.8062 0.8394 0.8712 0.7749
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and shows the reliability of the model to forecast future LULC change of the watershed 
under different scenarios (Wang et al. 2011).

3.3 � SWAT sensitivity analysis

Out of the 20 flow parameters (Table  1) selected for the model calibration, 17 influen-
tial parameters were identified to be sensitive to the output variables (Table 3). Sanadyha 
et al. (2014) also verify that the most sensitive parameters controlling stream flow in snow-
dominated areas include those governing groundwater and snow processes. Parameters 
related to surface runoff such as CN2, CH-K2 CH-N2 were also identified to be sensitive 
(Table 3).

3.4 � Calibration, validation and uncertainty of SWAT model

The comparison between observed and simulated stream discharge for the calibration 
(1996–2005) and validation (2006–2013) is shown on a monthly basis in Figs.  6 and 7. 
The statistical performance indicators showing a consistent match between simulated and 
measured stream flow data are presented in Table 4. The achieved R2 values for calibration 
and validation are greater than 0.80 indicating a very good match between simulated and 
observed stream flow and fewer error variations between the dataset (Moriasi et al. 2007). 
With NSE greater than 0.80 and PBAIS of ± 10 the SWAT model portrays a good perfor-
mance in the Ashi watershed. Despite the SWAT model exhibiting a good model perfor-
mance in the watershed, the PBAIS indicated an overestimation of stream flow by − 6.16% 
and − 9.12% during the calibration and validation periods, respectively. This could be 

Table 3   Sensitive flow parameters analysis results

Parameter t-Stat p value Rank of 
sensitivity

Fitted values Min value Max value

V_SHLLST.gw 3.36 0.07 1 553.302 355.025 595.361
V_GWQMN.gw 2.21 0.15 2 1700.980 1688.925 2171.151
V_ALPHA_BF.gw 1.76 0.21 3 0.074 0.044 0.124
V_GW_DELAY.gw 1.61 0.24 4 181.437 157.897 220.670
V_REVAPMN.gw 1.52 0.26 5 224.971 176.093 243.511
V_ RCHRG_DP.gw 1.46 0.27 6 0.377 0.277 0.586
R_SOL_Z.sol 1.35 0.30 7 − 0.299 − 0.344 − 0.225
V_GW_REVAP.gw 1.34 0.31 8 0.095 0.089 0.102
V_EPCO.hru 1.12 0.37 9 0.038 0.022 0.065
R_SURLAG.bsn 0.96 0.43 10 − 3.610 − 5.206 − 3.382
R_CN2.mgt 0.91 0.45 11 0.043 0.006 0.076
V_CH_N2.rte 0.80 0.50 12 0.103 0.027 0.119
V_CH_K2.rte 0.60 0.60 13 40.018 27.561 46.016
R_SOL_K.sol 0.49 0.66 14 − 0.390 − 0.496 − 0.368
V_ESCO.hru 0.44 0.69 15 1.025 0.896 1.087
R_SOL_BD.sol 0.27 0.80 16 − 0.247 − 0.256 − 0.186
R_SOL_AWC.sol 0.07 0.95 17 0.010 0.002 0.040
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Fig. 6   Monthly average stream flow, a calibration and b validation of the SWAT model

Fig. 7   Scatter plot of observed and simulated monthly mean flow (m3/s) in a calibration and b validation 
periods
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due to uncertainties associated with input data quality, applying the SCS curve number in 
SWAT model simulation method, or misinterpretation of the watershed processes (Abba-
spour 2013).

3.5 � Influences of LULC changes on hydrological components at watershed scale

The calibrated SWAT model was applied to ascertain the hydrological responses under six 
different LULC distributions of the watershed at different time points. The average annual 
values and percentage change of the stream flow and five hydrological components, surface 
runoff, water yield, groundwater flow, lateral flow and ET, are shown in Table 5. Matching 
the upward trend of urban and agriculture areas and reduction of close forest cover (Fig. 3), 
the yearly stream flow of the watershed increased from 12.665 mm in 1990 to 13.873 mm 
in 2000 and to 14.005 mm in 2010 and continued to 14.123 mm in 2014. The results also 
indicated that annual stream flow will continue to increase from 14.123  mm in 2014 to 
14.204 mm in 2030W which is associated with the expected increase in urban and agricul-
ture areas and reduction in close forest cover in 2030W (Fig. 3). In contrast, the expected 
reduction in urban and agriculture areas and expansion in forest cover in 2030B revealed 

Table 4   Calibration and 
validation model performance 
values

Index Calibration (1996–2005) Validation 
(2006–
2013)

R2 0.86 0.92
NSE 0.85 0.89
PBIAS − 6.16 − 9.12

Table 5   Annual average water balance components (1990–2014) at different time points in the Ashi water-
shed and percentage change between time points

SURF, Surface runoff, WYLD, Water yield; GW_Q, Baseflow; LAT_Q, Lateral flow; ET, Evapotranspira-
tion; W, Worst-case scenario; B, Best-case scenario

Time points Stream flow (m3/s) Other water balance components (mm)

Annual SURF WYLD LAT_Q GW_Q ET

1990 12.665 3.244 9.212 0.541 5.095 37.026
2000 13.873 5.870 9.997 0.192 3.670 36.811
2010 14.005 5.995 10.098 0.202 3.640 36.773
2014 14.123 6.054 10.179 0.190 3.673 36.655
2030W 14.204 6.271 10.248 0.193 3.533 36.659
2030B 14.167 6.214 10.213 0.195 3.535 36.648
Percentage change
1990–2000 9.538 80.950 8.521 − 64.510 − 27.969 − 0.581
2000–2010 1.802 2.129 1.010 5.208 − 0.817 − 0.103
2010–2014 0.843 0.984 0.802 − 5.941 0.907 − 0.320
2014–2030W 0.574 3.584 0.678 1.579 − 3.812 0.011
2014–2030B 0.312 2.643 0.334 2.632 − 3.757 − 0.019



7901Modeling the effects of historical and future land use/land…

1 3

an increase in stream flow from 14.123 mm in 2014 to 14.167 mm in 2030B, which is less 
than the increment under the 2030W.

The increasing trend of the stream flow is due to the growth of impervious surfaces in 
the watershed as a result of the rapid urban sprawl and expansion of agriculture areas. This 
is in agreement with other studies (Gebremicael, et al. 2013; Gwate et al. 2015; Welde and 
Gebremariam 2017; Choto and Fetene 2019). In the case of the future stream flow, the 
results recorded an expected increment in stream flow under both worst and best scenario 
case, but relatively expect a less increment in the best scenario case. This is contrary to 
findings by Shrestha et al. (2018), where they found that the flow rate is expected to reduce 
under combined impact LULC and climate change of both economic and conservation sce-
narios. The difference in findings could be attributed to the fact that they investigated the 
combined effect of LULC and climate change on the future stream flow, while this study 
only investigated the impact of LULC on future stream flow. It could also be due to differ-
ent geographical locations of the study sites.

Furthermore, increase in urban, agriculture, open forest, other vegetation and decrease 
in close forest resulted in a corresponding yearly increment of more than 8% in stream 
flow, surface runoff and water yield with surface runoff having the highest increment of 
more than 80%, while lateral flow, groundwater and ET recorded 66%, 28% and 1% reduc-
tion, respectively, from 1990 to 2000. Continuous reduction of close forest cover at the 
advantage of agriculture and urban areas further increased the yearly stream flow, surface 
runoff, water yield and lateral flow with lateral flow having the highest increment of more 
than 5% in 2010, while groundwater and ET recorded less than 1% further reduction during 
the same period. In 2014, the same trend of change in urban, agriculture and close forest 
also resulted in an increment of less than 1% in stream flow, surface runoff, water yield and 
groundwater, while lateral flow and ET recorded a reduction of 5.9% and 0.3%, respec-
tively (Table  5). With the expected LULC status in 2030W stream flow, surface runoff, 
water yield and lateral flow are also expected to increase to 0.6%, 3.6%, 0.7% and 1.6%, 
respectively, while groundwater is expected to reduce further to 3.8%. On the other hand, 
in 2030B, stream flow, surface runoff and water yield is expected to decrease to 0.3%, 2.6% 
and 0.3% as compared to the increment of 0.6%, 3.6% and 0.7% in 2030W, respectively, 
although lateral flow will be the opposite but groundwater and ET will behave the same 
way as that of stream flow, surface runoff and water yield.

The influence of LULC changes on stream flow, surface runoff, water yield, groundwa-
ter flow, lateral flow and ET were also evaluated based on monthly mean values (Fig. 8). 
From the 1990 to 2030 period, surface runoff has increased from June–August, while water 
yield from June–September and ET from May–September have increased and reduced in 
all other months. In addition to these months, surface runoff and water yield again recorded 
high values in the month of March throughout the period (Fig.  8). The reduction in the 
values of these hydrological components in the rest of the months, excluding June to Sep-
tember, is due to severe and long winters in the study area. Though the monthly values of 
lateral flow are not high relative to the others, its monthly flow dynamics follows the same 
trend but with the highest monthly flow values in 1990. The study findings are similar 
to other studies (Gebremicael et  al. 2013; Gyamfi et  al. 2016) which all concluded that 
the monthly values of these hydrological processes were related to changes in urban and 
agricultural areas. According to studies conducted by Karamage et al. (2017), the rise in 
surface runoff was attributed to expansion of agriculture areas and urban sprawl at the dis-
advantage of forest cover. Nie et al. (2011) also concluded that the general surface runoff 
increment was due to increasing trend of urban and agriculture and the reduction trend in 
grassland.
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3.6 � Changes in LULC and its simulated hydrological processes at sub‑watershed 
scale

The spatial distribution of variations in the five LULC types and their corresponding 
hydrological processes at the sub-basin scale from 1990 to 2014 is portrayed in Figs. 9 
and 10. Urban area is concentrated in the northwestern part, where the capital city of 
Heilongjiang Province, Harbin City, is located and extending to the central part of the 
watershed as well as toward the south. This is mainly due to urban sprawl and settle-
ment of farmers resulting from the economic and open-up reforms policy by the govern-
ment. Built-up areas have thus taken over areas of closed forest, open forest and other 
vegetation (Fig.  9), which is attested by the negative correlation between urban and 
close forest, open forest as well as other vegetation (Table 6). The growth in agricultural 
activities in the watershed also attracted farmers to put up buildings, contributing to the 
spring up of urban areas. The pattern of both urban and agriculture behaves similarly 
(Fig.  9) leading to high positive correlation between urban and agriculture (Table  6). 
Therefore, these two LULC types are expanding at the expense of close forest, open for-
est and other vegetation as substantiated by the negative correlation between them and 
close forest, open forest and other vegetation.

Fig. 8   Monthly average response of stream flow, surface runoff, water yield, lateral flow, groundwater flow 
and evapotranspiration to the different LULC conditions at various time points in the Ashi watershed
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Fig. 9   Spatial distribution of changes in LULC scenarios at sub-basinal scale between 1990 and 2014 in the 
Ashi River Basin

Fig. 10   Spatial distribution of changes in hydrological processes at sub-basinal scale between 1990 and 
2014 scenarios in the Ashi River Basin
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Close forest has reduced almost in all the sub-basins but the devastating reduction was 
observed in the northwest and east sections of the basin pointing to the central and south-
eastern part. The reduction in close forest (Fig. 9) reveals that, when humans through their 
anthropogenic activities disturbed close forest, it gives way to open forest and other vegeta-
tion to take over. This is confirmed by the fact that, close forest correlates negatively with 
open forest and other vegetation, where close forest exhibits a high negative correlation 
with open forest (Table 6).

The matching hydrological processes of these LULC types at the sub-basin level are 
shown in Fig. 10. Though surface runoff has been observed in the northwestern and cen-
tral western part of the watershed, the increase in both surface runoff and water yield was 
largely observed in the central, east, south and southeastern sections of the watershed. This 
agrees with the spatial distribution of expansion in urban and agriculture, which is proved 
by the positive correlation between surface runoff and water yield and the two LULC 
types. This connection could be ascribed to the impervious nature of these LULC types 
and impermeability of the top surface of soil in these two LULC types. However, sections 
of the watershed where both surface runoff and water yield were high could be due to the 
interaction of slope, close forest and these two hydrological components. The slopes in the 
east, southeast and southern part of the watershed are very high and steep, where forest has 
been disturbed. Therefore, when there is increase in slope length and steep slopes coupled 
with decrease in close forest, surface runoff will increase and consequently increase water 
yield (Akbarimehr and Naghdi 2012). This is validated by the negative correlation between 
surface runoff, water yield and close forest (Table 6) and the high land nature of these sub-
basins where these two hydrological components are high as exhibited by the watershed 
DEM (Fig. 2c).

The interaction of ET and the watershed LULC types is obvious in Fig. 10. ET decreases 
in all the sub-basins but increases in the southern part of the watershed where the Xiquan-
yan Reservoir is located (Fig.  10). This have been proved by the negative association it 
has with areas of urban, agriculture, open forest and other vegetation as well as the posi-
tive link with close forest areas. This is understandable because ET relies mostly on tree 
transpiration and water bodies as well as photosynthetic processes. The spatial trend of the 
substantial reduction in ET matches with growth in the areas of urban, agriculture, open 
forest and other vegetation (Fig. 9), which explains why ET is highly negatively correlated 
with urban and agriculture (Table 6). Lateral flow and baseflow exhibited almost similar 
spatial distribution trends, which look like the spatial distribution of urban, agriculture, 
open forest and other vegetation with negative correlation, but having a positive correlation 
with close forest.

3.7 � Influences of individual LULC changes on hydrological components

To assess the influence of each LULC types on hydrological processes in the watershed, 
the LULC types were regressed against each of the hydrological components. Four PLSR 
models were developed separately and the results are summarized in Table 7. The attained 
R2 and Q2 cum values are above 0.5 and 0.097, respectively, in all the four PLSR models 
constructed; PLSR 1, PLSR 2, PLSR 3 and PLSR 4 indicating a satisfactory model pre-
diction ability (Table  7). A minimum Root Mean PRESS was achieved with one factor 
in each of the models explaining the variability in the response variables. In each model, 
adding other factors does not significantly improve the prediction ability of the models and 
at the same time it does not boost the percent variation explained by independent variables 
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(Table 7). Prediction errors rather increased when other factors are extracted, which pro-
pose that these other factors do not correlate strongly with the residuals of the projected 
variables.

For PLSR 1 model, one factor explained 65.4% of the variability in stream flow. Extract-
ing more factors from the model did not improve the prediction and change explained by 
the predictors (Table 7). Thus, PLSR 1 is dominated by urban and agriculture land in the 
right direction and close forest in the left direction. Other vegetation type gave low weight 
value and thus low importance in influencing hydrology components. Similar results were 
reported by a study in China, that grass land has low importance in influencing stream 
flow (Shi et al. 2013). The RCs also indicated urban and agriculture influence stream flow 
positively, whereas close forest and other vegetation had a negative influence on stream 
flow (Table  8). Urban, agriculture and close forest have their VIP values to be 1.2, 1.2 
and 0.9, respectively, indicating a high significant contribution in the model (Table 9). For 
PLSR 2 model, the one factor that fits the model, explained 62.3% variation in surface 
runoff and water yield. Again, adding other factors did not enhance the prediction abil-
ity of PLSR 2 and percent change explained by independent variables (Table  7). It was 
detected that urban and agriculture had a positive influence on surface runoff and water 
yield, while close forest had a negative effect with a relative high significance (VIP > 0.8) 
in PLSR 2 (Table 9). The model RCs also showed similar direction of impact (Table 8). In 
the same vein, the one factor in PLSR 3 explained 49.9% of the variability in lateral flow 
and groundwater. Including other factors did not significantly improve the prediction capa-
bility and the explained variance (Table 7). Urban, agriculture and close forest have more 

Table 7   PLSR analysis results of the hydrological components in the Ashi River watershed

Bold numbers show the number of most suitable factors required to fit the models; minimum cross-val-
idated Root Mean PRESS indicates the number of LULC types (predictors) explaining the model (SAS 
Institute Inc 2017; Gashaw et al. 2018)

Response variable Y R2 Q2 Factor % of explained 
variability in Y

Cumulative 
explained variability 
in Y (%)

Root 
Mean 
PRESS

Q2 Cum

Stream flow 0.654 0.360 1 65.4 65.4 1.166 0.360
2 1.7 67.1 2.292 6.142
3 4.1 71.1 2.895 58.861
4 19.6 90.7 3.109 577.740

SURF and WYLD 0.623 0.627 1 62.3 62.3 1.226 0.627
2 1.6 63.9 2.411 9.725
3 5.1 69 3.034 109.331
4 20.3 89.3 3.350 1427.563

LAT_Q and GW_Q 0.499 1.181 1 49.9 49.9 1.483 1.181
2 1.7 51.6 2.817 15.503
3 8.7 60.3 3.496 194.730
4 24.2 84.5 4.033 2995.615

ET 0.815 0.114 1 81.5 81.5 0.941 0.114
2 4.9 86.4 1.533 1.083
3 1.9 88.4 1.753 5.407
4 8.3 96.6 1.863 21.243
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importance in the model with VIP 1.27, 1.21 and 0.81, respectively (Table 9). The model 
revealed urban and other vegetation had negative influence on lateral and groundwater 
flow, while agriculture and close forest have positive influence on these hydrological com-
ponents (Table 8). The constructed model for ET (PLSR 4) revealed that 81.5% of the vari-
ability in ET was explained by one factor of the model. In this model, the observed VIPs 
for urban, agriculture and close forest were 1.24, 1.25 and 0.810, respectively (Table 9).

Considering each LULC types on the hydrological components, change in urban area 
affected stream flow, surface runoff and water yield positively but influenced lateral flow, 
groundwater flow and evapotranspiration negatively under the four constructed PLSR 
models. This implies that the urban sprawl in the watershed has increase stream flow, 
surface runoff and water yield components while decreasing lateral flow, ground flow 
and evapotranspiration in the watershed. Similar findings were reported by Nie et  al. 
(2011), Gyamfi et al. (2016), Woldesenbet et al. (2017), Gashaw et al. (2018), Li et al. 
(2019). Also, according to the four models, agriculture impacted positively on stream 
flow, lateral flow, ground flow and evapotranspiration but influenced surface runoff 
and water yield negatively. This indicates that as agriculture area expands, it increases 
stream flow, lateral flow, groundwater flow and evapotranspiration in the watershed. The 
increase in lateral and groundwater flow reflects the irrigated agricultural activities in 
the watershed, because irrigated farming using surface water sources increases these 
components (Foster et al. 2018). The findings of this study therefore demonstrate that 
the increasing irrigated agriculture activities in the Ashi watershed has led to increase in 

Table 8   Regression coefficients of PLSR models indicating the impact of each LULC types on hydrological 
components and the direction of influence (− and + signs)

PLSR model Response variables PLSR predictors

Urban Agriculture Close forest Other vegetation

PLSR 1 Stream flow + 0.335 + 0.319 − 0.260 + 0.123
PLSR 2 SURF + 3.388 − 2.755 − 0.276 + 0.608

WYLD + 3.051 − 2.342 − 0.254 + 0.590
PLSR 3 LAT_Q − 3.578 + 3.037 + 0.286 − 0.686

GW_Q − 3.553 + 2.946 + 0.276 − 0.603
PLSR 4 ET − 2.177 + 1.2694 + 0.0249 − 0.637

Table 9   Variable importance of the projection values (VIP) and PLSR weights of hydrological components 
in the watershed

VIP indicates the importance of each LULC in contributing the prediction in each model, + and − signs 
indicate the loading signs in PLSR model. Bold values are values > 0.3

PLSR predictors Stream flow SUR Q and WYLD LAT Q and GW Q ET

VIP W*(1) VIP W*(1) VIP W*(1) VIP W*(1)

URBN 1.229 + 0.617 1.273 + 0.620 1.277 − 0.612 1.248 + 0.629
AGRL 1.171 + 0.588 1.221 + 0.585 1.216 − 0.561 1.252 + 0.630
CLCF 0.956 − 0.480 0.826 − 0.482 0.805 + 0.507 0.810 − 0.407
OTVE 0.452 + 0.227 0.453 + 0.219 0.493 − 0.255 0.464 + 0.234
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lateral and groundwater flow in the watershed. Moreover, the increase in plants through 
agricultural activities in the watershed has resulted in an increase in evapotranspiration, 
since ET depends on plants and trees for its transpiration mechanism. Change in close 
forest affected stream flow, surface runoff and water yield negatively, but positively 
affected lateral flow, groundwater flow and evapotranspiration from all the four models. 
This is in line with findings reported by Monserud (1990), Gebremicael et  al. (2013) 
and Puertas et al. (2014).

The socioeconomic development along the midstream and downstream areas of the 
Ashi River have adversely affected the water quality of the river due to domestic sewage 
and industrial wastewater as well as water released from farmlands (Ma et al. 2015b; Yu 
et al. 2015). The increasing trend of stream flow, surface runoff and water yield result-
ing from LULC changes especially urban growth as observed in this study could cause 
major water quality degradation.

4 � Conclusion

The application of process-based hydrological models such as SWAT and statistical 
models in this study have obviously demonstrated the influence of LULC changes on 
hydrological processes of the Ashi watershed at different points in time. The expan-
sions of urban and agriculture areas coupled with reduction in close forest from 1990 to 
2014 have increased the annual stream flow, surface runoff and water yield. In contrast, 
evapotranspiration has reduced, while the changing trend of lateral and groundwater 
flow is not stable after the 2000 period. It was observed that the major LULC changes 
that influence the hydrological components in the watershed were urban, agriculture and 
close forest, though they have different contributions for the changes in these compo-
nents. The VIPs in the four models was observed to have higher VIP values (VIP > 1) 
for urban and agriculture and (VIP > 0.8) for close forest. This undoubtedly establishes 
that urban, agriculture and close forest contributed mainly to determining the fate of 
the hydrological processes in the watershed and therefore are the chief environmental 
stressors in the Ashi watershed.

The LULC status under both worst-case and best-case scenarios are expected to further 
increase stream flow, surface runoff, water yield, lateral flow and evapotranspiration but 
reduce groundwater flow. Nevertheless, it was found that the magnitude of the increment 
under the worst case is more than the best-case scenario. This expected increase in surface 
runoff may increase soil erosion and sedimentation thereby aggravating the current water 
quality problem of the Ashi River. Therefore, this should be a trigger for decision makers 
to put more emphasis on best management practice in the watershed to avoid the expected 
increase in stream flow, surface runoff and water yield.

The research findings further suggest that conscious enforcement of sustainable land use 
management practices adoption should be encouraged in China’s sustainable development 
policy, especially at the local levels. Doing this could promote a balance between human 
actions on land utilization and hydrological components to secure water availability for the 
present and future generation in China.
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