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Abstract
In northern Thailand, biomass burning is a major source of high concentrations of particu-
late matter with a diameter < 10 μm  (PM10) during the burning season (January to May), 
leading to health concerns related to air pollution. Given the limited staffing and budget 
available to local agencies, identifying priority areas for management and mitigation is 
important. We herein developed an empirical model using Landsat 8 imagery and  PM10 
data from ground stations to estimate  PM10 concentrations in Nan Province, achieving an 
error of < 20% between the predicted and measured  PM10 values. The satellite-derived val-
ues were then classified into five air quality levels based on criteria defined by the Thai 
Ministry of Natural Resources and Environment. These levels were correlated with land 
use/land cover maps and fire hotspots with high confidence (> 80%) acquired by the Terra 
and Aqua satellites from January to May 2015–2019. Fire hotspots and problematic  PM10 
concentrations were most often correlated with agricultural land, followed by disturbed 
forests and dense forests. These results enabled us to identify critical areas where repeat 
burning and high  PM10 levels should by prioritized for mitigation, such as the upland agri-
cultural and forest areas of Wiang Sa District. Our methodology could benefit air pollution 
management in other developing countries with similar limitations.

Keywords Priority area analysis · PM10 concentration · Air pollution management · 
Biomass burning · Nan Province

1 Introduction

For more than a decade, the people of northern Thailand have suffered from air pollution 
caused by open agricultural burning and forest fires during dry and hot weather conditions 
from January to May, frequently called the fire season or burning season. During this time, 
local villagers set fires to burn rice straw or weeds in order to clear land, remove weeds, and 
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control disease before starting new crops. Forests and underbrush are also burned to enhance 
the reproduction and propagation of natural crops such as mushrooms or the edible plants 
Sauropus androgynus and Melientha suavis. These fires produce large amounts of small par-
ticulate matter (PM) in the northern provinces of Thailand (Chiang Rai, Chiang Mai, Mae 
Hong Son, Lampang, Lumphun, Phayao, Nan, Phrae, and Uttaradit). These aerosols are a 
serious threat to public health and tourism (Jeensorn et al. 2018; Silva et al. 2016; Air Qual-
ity and Noise Management Bureau of Thailand 2013; Ryan et al. 2013). However, the local 
staff and budget available to deal with air pollution management are limited in Thailand and 
most developing countries; thus, identifying and prioritizing critical areas (those experiencing 
repeated burning and unhealthy concentrations of  PM10, i.e., PM with a diameter < 10 μm) 
would be beneficial.

For many decades, satellite-based remote sensing has been a useful tool for mapping 
changes in land use/land cover (LULC). Furthermore, many remote sensing applications 
have been developed for retrieving aerosol optical depth (AOD) or aerosol optical thickness 
(AOT) air quality measurements using moderate- to low-resolution data from the MODerate-
resolution Imaging SpectroRadiometer (MODIS) or Multi-angle Imaging SpectroRadiom-
eter (MISR) aboard the Terra satellite or various Landsat products. The derived AOD/AOT 
or atmospheric reflectance can then be compared to  PM2.5 (PM with a diameter < 2.5 μm) 
or  PM10 data acquired from other instruments such as the Aerosol Robotic Network (AER-
ONET), physical measurements (such as sun photometers, spectroradiometers, and PM laser 
photometers), or local air quality measurement stations (Dumitrache et al. 2016; Meng et al. 
2016; Hagolle et al. 2015; Benas et al. 2013; Bhaskaran et al. 2011; Othman et al. 2010; Had-
jimitsis 2009). Remote sensing  PM10 data enable the estimation of air pollution levels over 
large and remote areas. AOD images from MODIS are widely used to develop  PM2.5 and 
 PM10 estimation algorithms at global or regional scales, while Landsat images are more suit-
able for local or provincial studies (Roy et al. 2017; Saraswat et al. 2017; Shaheen et al. 2017; 
Saleh and Hasan 2014; Mishra et al. 2012). However, the AOD/AOT retrieval algorithm for 
PM estimation from Landsat is not as well developed as it is for MODIS (Sun et al. 2016; 
Glantz and Tesche 2012; Remer et al. 2005; von Hoyningen-Huene et al. 2003).

In this study, we used multi-temporal Landsat 8 imagery acquired during the 2015–2017 
fire seasons in Nan Province, northern Thailand, to analyze  PM10 concentrations and land use. 
The estimated  PM10 concentrations were then classified to health risk levels based on criteria 
defined by Thailand’s Air Quality and Noise Management Bureau, Pollution Control Depart-
ment, Ministry of Natural Resources and Environment. Areas with high  PM10 levels were 
also correlated with LULC type (Vadrevu et al. 2018; Zahari et al. 2016; Zou et al. 2016b; 
Wu et al. 2012), and the locations of biomass burning or fires (hotspot data from the MODIS 
sensor) acquired during the 2015–2019 fire seasons. This enabled identifying and prioritizing 
critical areas experiencing repeated burning and unhealthy  PM10 levels for improved air pollu-
tion management. These findings will be useful for many local agencies tasked with air pollu-
tion control, fire management, forest conservation, disaster prevention and mitigation, public 
health, and land use or agricultural planning. Such agencies can use the resulting data as a 
resource for deciding where to focus local efforts and for developing strategic plans for air pol-
lution management.
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2  Materials and methods

2.1  Study area

Nan Province is bordered by many mountainous forested national parks, with a narrow 
swath of flat terrain in the middle of the province. Almost 900 villages are located in 99 
sub-districts (Tambon) within 15 districts (Amphoe). Most villagers work in the agri-
cultural sector growing maize, rice, rubber, tree fruits (longan, mango, lychee, tamarind, 
lambutan, etc.), teak, and other crops. Agricultural land use in Nan has increased for at 
least the past decade, making biomass burning an increasingly critical issue in this area 
(Nan Statistical Office Annual Report 2015–17). Figure 1 presents a map of the study 
area showing the provincial boundary of Nan (highlighted boundary) and neighboring 
provinces where eight of the  PM10 monitoring stations used in this study were located 
(all in the same Landsat scene; path–row 130–47) as well as the main roads in Nan. In 
addition, the industrial land consisted of agricultural product (dry longan, tobacco, rice 
mill) and teak processing plant in Nan was overlaid. Small-scale or household industrial 
land uses cover less than 2% of the entire areas in Nan; hence, these small portions 
cannot be seen clearly on the map. These components were overlaid on the mosaicked 
scenes from Landsat 8 (Path–Row: 129–47, 130–46, and 130–47) acquired in 2015.

Fig. 1  Study area
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2.2  Data

The details of all imagery, air quality data, and other data used in this study are given 
in Table 1. We used three Landsat 8 scenes to cover all of Nan, as 70% of the area was 
within Path–Row 130–47, as well as most ground stations (see Fig. 1). In addition, cloud-
free images are rare in Southeast Asia or the tropical climate zone; thus, some cloudy or 
smoky scenes were initially included. After defining the  PM10 concentration maps, images 
that had high error levels were omitted to avoid overestimating unhealthy areas (Table 2). 
Unfortunately, most of the Landsat 8 operational land imager (OLI) images acquired dur-
ing January–May 2018 had serious cloud contamination problems; therefore, we could not 
produce  PM10 concentration maps for 2018.

Thailand has a limited number of AERONET member stations, the closest of which 
is located in Chiang Mai Province, almost 300  km from Nan (NASA 2018). Therefore, 
in situ  PM10 time series data were collected from eight Thai Pollution Control Department 
air quality measurement stations located in Nan and neighboring provinces (see Fig. 1). A 
few meteorological stations are located in Muang Nan (almost 10 km from the  PM10 moni-
toring station located in the central of Muang Nan), Tha Wang Pha, and Thung Chang. 
However, the observations in these stations have limited parameters and are aimed at agri-
cultural activities. Because of the uncomplete historical data and less significant weather 
fluctuations during our observed period, the burning season (dry weather), these meteoro-
logical parameters were not included in our analysis.

2.3  Methods

The study methodology is presented in Fig. 2. First, the selected Landsat data were pro-
cessed for radiometric calibration by converting the digital number (DN) of the multi-spec-
tral OLI data (using no thermal bands; Table 3) to the top-of-atmosphere (TOA) radiance 
using the radiance rescaling factors in the Landsat metadata (MTL) file as follows (Ver-
mote et al. 2016):

where L� is the TOA spectral radiance (W m−2 sr−1 μm−1), ML is the band-specific multi-
plicative rescaling factor from the metadata (Radiance_Mult_Band_x, where x is the band 
number), AL is the band-specific additive rescaling factor from the metadata (Radiance_
Add_Band_x), and Qcal is the quantized and calibrated standard product pixel values (DN).

The multi-spectral radiance images were then processed for atmospheric correction 
using the Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) algorithm 
in the Environment for Visualizing Images (ENVI) application (ExelisVisual Informa-
tion Solutions, Inc. 2013). FLAASH incorporates the MODerate-resolution atmospheric 
TRANsmission (MODTRAN) radiation transfer code and works well with wavelengths 
from those in the visible light range up to 3 µm. Each image was computed based on the 
specific standard MODTRAN model atmospheres and aerosol types, with surface reflec-
tance (SR) bands as the output:

(1)L� = ML × Q
cal

+ AL

(2)L =
A�

1 − �eS
+

B�e

1 − �eS
+ La
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where ρ is the pixel SR, ρe is an average SR for the pixel and surrounding region, S is the 
spherical albedo of the atmosphere, La is the radiance backscattered by the atmosphere, 
and A and B are coefficients that depend on atmospheric and geometric conditions, respec-
tively, but not at the surface.

The difference between the derived TOA and SR is the path radiance (PR), which repre-
sents noise or radiance that is backscattered by particles and molecules in the atmosphere. 
Therefore, it was used to estimate the PM10 concentration in the air (Fernández-Pacheco 
et  al. 2018; Roy et  al. 2017; Yoram 1993). The PR images were correlated with  PM10 
(µg m−3) acquired on the same date and time at the air quality measurement stations. The 
correlation between each PR image (independent parameter) and  PM10 from the stations 
(dependent parameter) when compared at the same geographic location was calculated as 
follows:

Fig. 2  Methodology flowchart

Table 3  Landsat 8 OLI bands used in this study

Band Wavelength (µm) Spatial resolu-
tion (m)

Independent 
variables (Eqs. 3 
and 4)

Band 1 ultra blue (coastal/aerosol) 0.435–0.451 30 X1
Band 2 blue 0.452–0.512 30 X2
Band 3 green 0.533–0.590 30 X3
Band 4 red 0.636–0.673 30 X4
Band 5 near infrared (NIR) 0.851–0.879 30 X5
Band 6 shortwave infrared 1 (SWIR 1) 1.566–1.651 30 X6
Band 7 shortwave infrared 2 (SWIR 2) 2.107–2.294 30 X7
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where a is the gradient slope, b is the y intercept, and X is the variable. The R2 of each band 
in each PR image varied from less than 0.1 to 0.86. We selected only the linear regression 
equations from bands/dates with high correlations (R2 ~ 0.7 or higher) to further estimate 
 PM10, such as the correlation between Band 1 (X1 or PR derived from the Band 1/ultra 
blue (coastal/aerosol)) acquired on February 28, 2015, and the  PM10 values measured at 
ground stations on the same date. The linear regression with the highest R2 (0.85,885) was 
used for  PM10 prediction; the following derived linear Eq. (4) was applied to the image for 
 PM10 estimation:

However, higher correlation coefficients were found for different bands on differ-
ent dates. Thus, the relationship between several independent parameters or bands of PR 
images (multi-spectral and multi-temporal) and  PM10 values measured from ground sta-
tions in the study area (dependent parameters) was analyzed using a multiple linear regres-
sion equation:

where Y′ is the predicted  PM10 (dependent variable), X1 through Xn are predictor variables 
(Table 3), a0 is the value of Y′ when all independent variables are equal to zero, and a1 
through an are the estimated regression coefficients. The best subset for use in the forecast-
ing model for estimating  PM10 was analyzed using the stepwise method that either began 
with no variables in the model and added one variable at a time (called forward regres-
sion) or began with all potential variables in the model and removed one variable at a time 
(called backward regression). In this study, the best subset of variables used in the fore-
casting model for the estimated  PM10 comprised X1, X4, and X7, which had R2 = 0.704 
(RMSE ~ 17 µg m−3).

The derived linear regression equations were applied to PR image(s) to predict  PM10 
values, which were compared to the  PM10 measured at ground stations. The differences 
between the predicted and measured  PM10 values were converted to percentages. Our 
predicted  PM10 values showed less than 20% error and were then reclassified into five 
health impact levels (Table  4) based on guidelines from Thailand’s Air Quality and 

(3)Y = aX + b

(4)Y = 0.00004X + 0.01224

(5)Y �
= a

0
+ a

1
X1 + a

2
X2 +⋯ + anXn

Table 4  Air quality classifications by  PM10 level, based on Thai government standards

PM10 (24 h) µg/m3 Air pollution level Health implications

0–40 Good Air quality is considered satisfactory, no risk
41–120 Moderate Air quality is acceptable. There may be minor to moderate health 

concerns for a small number of people who are unusually sensi-
tive to air pollution

121–350 Unhealthy Most people may begin to experience health effects; members of 
sensitive groups (small children, the elderly, and those unusu-
ally sensitive to air pollution) may experience more serious 
health effects

351–420 Very unhealthy The entire population is likely to experience health effects
> 420 Hazardous Health alert: the entire population will experience serious health 

effects
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Noise Management Bureau (2013), which in turn refer to US Environmental Protection 
Agency (1999) guidelines.

PM10 data were consolidated by level and overlaid with LULC data derived from 
Landsat 8 imagery from January 27, 2015. The study area contained five main LULC 
classes: agricultural land (paddy fields, orchards, and crops), which covered 61.90% 
of Nan Province, dense forests (thickly treed and difficult to access by road) covered 
14.75%, disturbed forests (treed but mostly disturbed or accessed by human activities) 
covered 19.03%, developed land and other (construction and areas not matching the 
other classes) covered 3.99%, and water bodies covered 0.33% of the entire province. 
For each main class, we homogeneously defined sub-classes for supervised maximum-
likelihood classification. The classification results were validated using ground-truth 
data from 2015, while the forest status was rechecked using field data from 2016 and 
2017. Table 5 presents the accuracy and error percentages (error of omission and com-
mission) of each LULC class in the confusion matrix. Every class exceeded the expected 
70% accuracy, although disturbed forests (accuracy = 78.85%) were confused with agri-
cultural land (error of omission = 10.38%, error of commission = 13.46%) and dense for-
ests (error of omission = 12.90% and error of commission = 7.69%). The accuracy of 
the classified images was high (overall accuracy = 85.42%, Kappa coefficient = 79.85%); 
thus, they were used for a correlation analysis in the next step.

The active fire hotspot data represent geographic coordinates with strong emissions 
in the mid-infrared (4 μm and 11 μm) wavelengths, as detected by the MODIS sensor on 
the Terra satellite in the morning and on the Aqua satellite in the afternoon. However, 
some pixels had higher temperatures than surrounding pixels, although no fire was pre-
sent (these so-called “artificial fires” included metal roofs or other areas that appear to 
be very bright). The confidence of fire occurrence should therefore be considered when 
using this product (Junpen et  al. 2013). We selected hotspot data during 2015–2019 
with > 80% confidence values, and we correlated these real fire pixels with the LULC 
and  PM10 concentration maps. The occurrence of more frequent fires and unhealthy 
 PM10 concentrations implied more critical environmental problems (fires and air pol-
lution) in an area and represented problematic human practices such as slash-and-burn 
techniques (converting forests to agricultural lands, burning fields before starting new 

Table 5  Accuracy assessment of the LULC 2015 in Nan Province classified from Landsat 8 OLI

Class Agricul-
tural land 
(%)

Devel-
oped/other 
(%)

Dense forests 
(%)

Disturbed 
forests 
(%)

Water bodies 
(%)

Total area for 
validation (%)

Agricultural 
land

84.91 10.00 3.23 13.46 0.00 42.08

Developed/other 3.77 90.00 0.00 0.00 0.00 12.92
Dense forests 0.94 0.00 83.87 7.69 0.00 12.92
Disturbed 

forests
10.38 0.00 12.90 78.85 0.00 23.33

Water bodies 0.00 0.00 0.00 0.00 100.00 8.75
Total % of class 

accuracy and 
errors

100.00 100.00 100.00 100.00 100.00 100.00
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crops) and adverse health impacts on local residents. Finally, critical areas were identi-
fied for management prioritization at the district level.

3  Results

3.1  PM10 concentrations

Only six  PM10 images with ≤ 20% error were classified by air quality (Fig. 3); the area of 
each classification is summarized in Table 6. In January 2015, good air quality (9566 km2; 
~ 78%) occurred over most of the study area, especially in mountainous areas, while mod-
erate air quality (2638 km2; ~ 22%) was found in the lower central region of the province. 
In February 2015, unhealthy (2854 km2; ~ 23%) and very unhealthy (902 km2; ~ 7%) air 
qualities were centered in southern mountainous areas including the Wiang Sa, Na Noi, 
and Na Muen districts, caused by southerly dry season flow and increased burning. In 
March 2015, unhealthy air quality (11,230 km2; ~ 92%) dominated the province along with 
areas of very unhealthy air quality (974 km2; ~ 8%). In February 2016, moderate air quality 
(9798 km2; ~ 80%) was dominant, with unhealthy air quality (2406 km2; ~ 20%) occurring 
in some central and mountainous western regions including the Wiang Sa, Na Noi, Na 
Muen, and Mueang Nan districts. In February 2017, good (8799 km2; ~ 72%) and moder-
ate (3406 km2; 28%) air qualities dominated. In March 2017, unhealthy (7223 km2; ~ 59%) 
and very unhealthy (2379 km2; ~ 19%) air qualities were most common, including in the 
Wiang Sa, Na Noi, Mae Charim, Mueang Nan, and Na Muen districts. Unhealthy and very 
unhealthy air qualities were predominant in Wiang Sa District for all dates, followed by the 
Na Noi district. 

3.2  Relationship between  PM10 concentrations, LULC, and hotspots

We selected areas classified as unhealthy and very unhealthy during February 2015, March 
2015, February 2016, and March 2017 and calculated their overlays with LULC types 
(Table 7). It was found that > 60% of unhealthy and very unhealthy areas in the observed 
periods were related to agricultural land, < 20% to forest, and < 4% to other classes.

During the 2015–2019 burning seasons, 1515 hotspots were identified in the 
study area (695, 294, 147, 118, and 297 in 2015, 2016, 2017, 2018, and 2019, respec-
tively). Only ~ 1–2% of the total hotspots were observed in January or February, but 
this percentage increased drastically in March (in 2015–2019, ~ 42%, ~ 22%, ~ 40%, 
~ 30%, and ~ 31%, respectively). The largest number of hotspots was observed in April 
(~ 56%, ~ 69%, ~ 48%, ~ 52%, and ~ 26% in 2015, 2016, 2017, 2018, and 2019, respectively), 
but their occurrence fell significantly in May (~ 0%, ~ 5%, ~ 9%, ~ 2%, and ~ 10% in 2015, 
2016, 2017, 2018, and 2019, respectively). Overall, ~ 67% of the total hotspots occurred 
over agricultural land, ~ 16% over disturbed forest, ~ 13% over dense forest, and ~ 2% over 
developed land (Table 8). In 2015, the largest number of hotspots occurred on agricultural 
lands (~ 91%) and forest areas (~ 5% in disturbed forest and ~ 2% in dense forest) in the 
Wiang Sa, Chaloem Phra Kiat, Bo Kluea, Pua, Na Noi, Na Muen, Thung Chang, and Mae 
Charim districts, with similar patterns in 2016 and 2017, although with lower overall totals 
(Fig.  4). In 2018 and 2019, the largest number of hotspots occurred followed a similar 
pattern as that in 2015 to 2017 on agricultural lands (~ 64%) and forest areas (~ 16% in dis-
turbed forest and ~ 16% in dense forest). The number of hotspots in 2019 was close to the 
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Fig. 3  Monthly air quality maps during the 2015–2017 burning seasons in Nan Province, Thailand
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number that occurred in 2016, which was higher than the number in 2017 and 2018, while 
more hotspots were distributed in agricultural land and forest areas than in the previous 
years. Overall, Wiang Sa had the most fires, followed by the Pua, Na Noi, and Chaloem 
Phra Kiat districts.

Unhealthy and very unhealthy  PM10 concentrations began to cover the southern and 
central parts of the study area in February, especially in the Wiang Sa, Na Noi, Mae Cha-
rim, Mueang Nan, and Na Muen districts. This expanded to the entire study area in March 

Table 6  Spatial coverage (%) of air quality levels on certain days (see Fig. 3) during the burning seasons in 
Nan Province, Thailand

PM10  
(µg m-3) 

Air 
pollution 

level

Landsat Image Acquisition Dates (see Fig. 3)

Jan. 27, 
2015

Feb. 28, 
2015

Mar. 16, 
2015

Feb. 15, 
2016

Feb. 17, 
2017

Mar. 5,
2017

0–40 Good 78.38 40.87 0 0 72.09 0.00
41–120 Moderate 21.62 28.35 0 80.28 27.91 21.32

121–350 Unhealthy 0 23.39 92.02 19.72 0 59.18

351–420 Very 
unhealthy 0 7.39 7.98 0 0 19.49

>420 Hazardous 0 0 0 0 0 0.00
Total 100 100 100 100 100 100

Table 7  Correlation between unhealthy and very unhealthy air quality levels and LULC types by observa-
tion

LULC type February 28, 2015 March 16, 2015 February 15, 2016 March 5, 2017

km2 % km2 % km2 % km2 %

Water 24.76 0.66 39.78 0.33 1.89 0.08 31.78 0.38
Dense forest 29.76 0.79 1799.83 14.75 0.84 0.04 1656.03 19.76
Disturbed forest 401.73 10.70 2323.14 19.04 56.26 2.34 1181.02 14.09
Developed/other 101.41 2.70 486.60 3.99 240.69 10.00 328.10 3.91
Agriculture 3198.39 85.15 7555.13 61.90 2106.73 87.55 5185.53 61.86
Sum 3756.05 100 12,204.48 100 2406.41 100 8382.46 100.00
% of study area 30.78 100 19.72 68.68

Table 8  Number of hotspots 
observed during the burning 
season by LULC category

LULC type 2015 2016 2017 2018 2019 Total

Dense forest 85 49 32 20 45 231
Disturbed forest 109 43 29 19 48 248
Developed/others 14 10 4 3 11 42
Water 3 0 1 0 1 5
Agricultural land 448 192 81 76 192 989
Total 659 294 147 118 297 1515
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due to southerly winds and new burning sites (Thai Meteorological Department 2015). 
Burning hotspots reoccurred most commonly on agricultural lands in the central and north-
ern parts of Nan Province. Although hotspots in disturbed and dense forests were much 
less common, they ranked second and third in terms of reoccurrence.

Fig. 4  2015 LULC classifications and MODIS-derived fire hotspots during 2015–2019 in Nan Province, 
Thailand
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Based on information from Thailand’s Air Quality and Noise Management Bureau, bio-
mass burning and unhealthy  PM10 both peak in March every year. During this time, Wiang 
Sa and Na Noi were the most critical districts for air pollution according to the results 
our study. Several villages in the Wiang Sa District, namely Naka Village in the Yai Hua 
Na Sub-district and Wana Prai and Nam Pi villages in the Nam Muab Sub-district, were 
located near highly repetitive burn sites and should be prioritized for air pollution manage-
ment by collaborating with local villagers. Specifically, villagers should be encouraged to 
adjust their practices and behavior by stopping open burning, creating fire barriers (open 
buffer zones between forest and other land uses), preserving forests, monitoring and report-
ing fires to the appropriate agency, and taking greater personal care for their health during 
unhealthy air pollution conditions, among other measures.

4  Discussion

In this study, the correlation between three PR images calculated from the coastal aerosol, red, 
and SWIR2 bands of Landsat 8 and ground station-based  PM10 levels presented the highest 
correlation and lowest error. By contrast, Saleh and Hasan (2014) showed that the coastal aer-
osol, blue, and green bands of Landsat 8 showed the highest correlation and lowest error. The 
difference between our predicted and measured  PM10 values was < 20%, which was accept-
able for determining  PM10 concentrations in different LULC types. However, our algorithm 
should be further developed in order to reduce errors that were mainly caused by the limited 
availability of cloud-free images and ground measurement data. Kanniah et al. (2016) sug-
gested integrating aerosol products from various satellite sensors to overcome the cloudiness 
(a common phenomenon in Southeast Asia) and orbital gaps of satellite tracks. In many stud-
ies, meteorological parameters (atmospheric pressure, relative humidity, air temperature, wind 
direction and speed, etc.) have provided valuable support for enhancing the prediction of sea-
sonal PM concentrations and dispersion patterns at the regional scale when they are incorpo-
rated with daily AQI data (which have high temporal resolution/high frequency) and AOD 
(high temporal resolution/high frequency but low spatial resolution) from satellites. None-
theless, the prediction results have shown very random affects (Diao et al. 2019; Qiao et al. 
2019; Kliengchuay et al. 2018; Kamarul Zaman et al. 2017; Chu et al. 2016; Yin et al. 2016). 
These parameters less effectively enhance  PM10 prediction when low-temporal-resolution data 
or long gap satellite observations (medium to high spatial resolution) are incorporated at the 
local scale when the relative magnitude of meteorological parameters seem to be similar. In 
our case, not only were limited parameters recorded from the meteorological station in Nan 
Province, but also, we focused on  PM10 concentration only in the burning season (January to 
May), which is a period of dry weather. Therefore, these meteorological parameters were not 
incorporated into our analysis. Land use information has also been mentioned in some reports 
as a necessary parameter for improving the reliability of predicting  PM10 concentrations over 
different LULC or for different sources of pollution (Meng et  al. 2016; Zahari et  al. 2016; 
Zou et al. 2016b). In addition, in most of the previous studies,  PM10 comes from incomplete 
combustion, automobile emissions, or dust from big cities, industrial areas, coalmines, and 
arid areas. By contrast, the major source of  PM10 in this study was evidently biomass burning 
in forest areas and agricultural lands, and the locations of these fires and sources of  PM10 were 
random or could not be fixed). Although LULC was not combined into our prediction model, 
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it was incorporated into the  PM10 concentration maps and hotspots in our analysis for identify-
ing priority air pollution management areas.

More advance and complex models (nonlinear regression methods) have been developed 
for predicting PM (both  PM2.5 and  PM10) using relevant covariates including high-temporal-
resolution (e.g., daily) AOD products, meteorological parameters, land use information, or any 
related auxiliary data. For example, generalized additive model (GAM), which is an exten-
sion of multiple linear regression models, linear mixed-effects (LME) or mixed-effect model 
(MEM), geographically weighted regression (GWR), geographically and temporally weighted 
regression (GTWR), artificial neural network (ANN), support vector regression (SVR), and 
random forest (RF) have all been applied. Many studies compared the ability of the resulting 
developed models with the simple and widely used linear regression (Park et al. 2019; Li et al. 
2018; Abdullah et al. 2019; Guo et al. 2017; Jiang et al. 2017; Zou et al. 2017; Kamarul Zaman 
et al. 2017; Chu et al. 2016; Nguyen et al. 2014). These additive or newly developed nonlinear 
models have presented higher correlation than linear regression when dealing with long-term 
and high-frequency data such as AOD/PM from satellites and ground-based PM observation 
data, daily meteorological parameters, LULC or source of pollution, and other related data. 
However, it has been difficult to conclude which prediction model is the best as their results 
have shown medium to high accuracies for large areas or at the national scale. However, many 
works have found that the linear regression method could still be used to predict PM concen-
trations, especially when only two parameters were considered, PM data from satellites (i.e., 
AOD, PR) and ground measurements.  PM10 concentrations have been found to increase line-
arly with the increase in PR or AOD, and the prediction results from the simple linear method 
presented medium to high accuracy (Roy et al. 2017; Shaheen et al. 2017; Nguyen et al. 2015; 
Glantz and Tesche 2012; Mishra et al. 2012; Themistocleous et al. 2012; Othman, et al. 2010). 
Our multi-spectral model accurately (high R2) predicted  PM10 concentrations in the study area 
(R2 = 0.704, RMSE ~ 17 μg m−3). In addition, our model shows a similar accuracy to the one 
derived using nonlinear methods in previous studies that used the same number of or more 
input parameters (R2 = 0.3–0.99, RMSE = 8–31 μg m−3).

Classifying the estimated  PM10 concentrations into the five classes defined by the Thai 
government (and based on US EPA guidelines), we showed that agricultural land, disturbed 
forest, and dense forest were repeatedly subjected to unhealthy levels of  PM10 concentra-
tions (> 120 µg/m−3) during the burning seasons of 2015–2017. Using different guidelines, 
Roy et al. (2017) found that approximately half of Vadodara city and Nandesari town in India 
showed unhealthy levels of  PM10 concentrations (120–160 µg/m−3, with some small areas at 
160–200 µg/m−3). However, they did not consider specific LULC types or extents. In the Gaza 
Strip, Shaheen et al. (2017) used two major land classes (urban and non-urban) to assess pol-
lution levels at 28–144 µg/m−3. Most of their study area had good to moderate air quality. 
However, it is difficult to compare our results to those of studies that are presented for AOT or 
 PM10 concentrations in graduated colors and values (not in µg/m−3), such as those reported by 
Themistocleous et al. (2012).

Although many studies have estimated  PM10 concentrations using satellite data (such as 
Landsat 8), to the best of our knowledge, this is the first time fire hotspots and LULC types 
have been integrated into  PM10 estimation to prioritize air pollution management efforts.
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5  Conclusions

Our empirical model based on ground station data estimated  PM10 concentrations with sat-
isfactory accuracy during the burning season (January to May) in Nan Province, Thailand. 
The 20% error rate was acceptable for the purpose of broadening our perspective on  PM10 
concentrations and their relationship with LULC and fire hotspots in the study area. Most 
problematic  PM10 concentrations and fire hotspots were associated with agricultural land, 
disturbed forest, and dense forest areas. Locations with repeated occurrences from 2015 to 
2019 showed especially strong correlations with agricultural land and forests.

As local agencies in Thailand and other developing countries face budgetary and staff-
ing limitations, defining the most-affected areas using this method enables focusing atten-
tion and resources to the greatest possible effect. For example, agricultural and natural 
resources offices can use such results (locations of high air pollution density or high-fre-
quency hotspots) for controlling or mitigating open-burning activities on agricultural land 
and monitoring potential forest fires. Moreover, pollution control, disaster prevention and 
mitigation, and public health offices can better cooperate with local villagers and farmers 
to properly adapt and respond to these issues.

The algorithm for  PM10 or AOT estimation presented here could be improved by (1) 
increasing/updating the number of high-quality samples, more cloud-free images with 
medium to high spatial resolution from various observation sensors (Park et  al. 2019), 
 PM10 measurements from ground stations or reliable handheld instruments to obtain a 
more reliable correlation analysis (e.g., well-distributed sites with frequent records in the 
study area), and incorporating other covariates such as weather and climate (increased 
local observation source/data) that influence the amounts and patterns of  PM10 concen-
tration and distribution in a study; (2) testing various types of regression algorithms or 
ensemble models that are applicable to the local or provincial scale (Shtein et  al. 2020; 
Zhang et al. 2019; Zou et al. 2016a); (3) investigating other methods for aerosol retrieval 
or atmospheric correction using Landsat data or data with higher spatial resolution (Diao 
et al. 2019); and (4) considering other air pollutants that are derived from biomass burning 
such as  SO2 and  NO2 (Qiao et al. 2019).

The low temporal resolution of Landsat 8 results in satisfactory mapping of LULC types 
and  PM10 concentrations at local to regional levels, but it limits our ability to observe and 
predict the pattern and direction of  PM10 dispersion in near real time. Although higher-
temporal-resolution products (such as those from MODIS) have better capabilities for near-
real-time air quality prediction at national to global levels, they also have poorer spatial 
resolutions that are not suitable for identifying LULC types.
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