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Abstract Normalized Difference Vegetation Index (NDVI) is estimated from Landsat 8

sensor acquired in June 2013 to drive four different water-related indices calculated as

NDVI derivatives. Different vegetation indices (VIs) have been extracted exclusively in

estimation of different VIs: Leaf Area Index, Water Supply Vegetation Index, Crop Water

Shortage Index, and Drought Severity Index in addition to estimation of daily evapo-

transpiration (ET). Sensitivity analysis assesses the contributions of the inputs to the total

uncertainty in the analysis outcomes. Vegetation indices are complex and intercepted,

therefore the interceptions of the five different vegetation indices are considered in the

current study. A comparative analysis of Gaussian process emulators for performing global

sensitivity analysis was used to conduct a variance-based sensitivity analysis to identify

which uncertain inputs are driving the output uncertainty. The results showed that the

interconnections between different VIs vary, but the extent of the features sensitivity is

uncertain. Findings from the current work conducted are anticipated to contribute deci-

sively toward an inclusive VIs assessment of its overall verification. Daily ET is the less

sensitive and more certain index followed by Drought Vegetation Index.

Keywords Global sensitivity analysis � Remote sensing � Uncertainty �
Spatial decision support system � Suitability map � Vegetation indices �
Water resources management

1 Introduction

Vegetation indices (VIs) have been widely used to monitor terrestrial precision farming by

satellite sensors and have been highly successful in assessing vegetation condition, foliage,

cover, and phenology (Pettorelli et al. 2005; Kerr and Ostrovsky 2003; Huete et al. 2008). VIs

are robust satellite data products computed the same way across all pixels in time and space,
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regardless of surface conditions. As ratios, they can be easily cross-calibrated across sensor

systems, ensuring continuity of data sets for long-term monitoring of the land surface and

climate-related processes (Edward et al. 2008). Studies carried out by Pettorelli et al. (2005),

Kerr and Ostrovsky (2003), and Huete et al. (2008) demonstrated that VIs have been

employed exclusively in estimation of vegetation parameters such as fractional vegetation

cover (FC), Leaf Area Index (LAI), Water Supply Vegetation Index (WSVI), Crop Water

Shortage Index (CWSI), and Drought Severity Index (DSI).

Spatial decision support system process inaugurates with the recognition of the problem to

be decided. In the intelligence phase, a situation is examined for conditions calling for a

decision (Dragan et al. 2003). In the design phase, decision makers develop alternative

solutions to the decision problem already identified. Typically, a formal model is used to

support a decision maker in determining the set of alternatives. In the choice phase, decision

makers evaluate the decisions and choose the best alternative (Accorsi et al. 1999). In the

context of decision problems with a spatial connotation, the potential for application of

spatial decision support system has already been examined (Elhag 2010). While the intel-

ligence and design activities can mostly be covered by multi-purpose spatial analysis

methods, the choice phase requires specific thresholds still absent from most of GIS models

(Focht et al. 1999; Gregory and Wellman 2001).

Global sensitivity analysis (GSA) methods assign the output inconsistency to the inconsistency

of the input parameters when they vary over their whole uncertainty domain (Petropoulos et al.

2009). Sensitivity of the input parameters is basically examined based on the generation of

samples distributed across the parameter domain of interest. Comprehensive review of the

available GSA methods and their applications is provided, for example, by Saltelli et al. (2000,

2004), Saltelli (2002). GSA is a powerful tool due to its ability to integrate the influence of the

input parameters over their whole range of discrepancy (Saltelli et al. 1999). GSA techniques are

able to deliver quantitative estimates not only of the most sensitive model inputs, but also of the

model input parameter interactions (Schwieger 2004), yielding quantitative information on the

degree of complexity of the model input–output interactions (Petropoulos et al. 2009).

The practice shows the lack of proper incentives discourages the promotion of water saving

technologies and changes in land management. Subsidies are responsible for ‘‘failure to value

water at anything to its true worth’’ and underpricing assists in anchoring believes that water

resources are plenty and abundant (Postel 1997). Heavy subsidies for irrigation are not only a

luxury the developed countries’ farmers benefit from, but the practice of undercharging is

widely spread in developing countries as well, especially in Egypt. The most challenging is the

fact that the free of charge approach for irrigation service is used in countries, which have high

risks of acute water shortages in the near future. (Postel 1997; Myers and Kent 1998).

The aim of sensitivity analysis was to determine how sensitive the output of remotely

sensed VIs is, with respect to the elements of the practiced water resources management in

the study area, which are subject to uncertainty or variability. This is useful as a guiding

tool when the model is under development as well as to understand model behavior when it

is used for prediction or for decision support.

2 Materials and methods

2.1 Study area

The Nile Delta was selected for this study because it is representative of farming scenarios

in the whole Egypt (different agricultural systems, different soil types, different systems of
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fertilizer application, irrigation and drainage systems); consequently, the research in this

study area can be applied to farms in other regions of Egypt. Also, the problems affecting

agriculture in this area are a miniature of that of the entire territory (salinity, alkalinity, and

water logging).

The huge triangle of the Nile Delta extends to the north of Cairo between Lake Mareotis

in the west and the Suez Canal in the east, forming a wide arc along the Mediterranean

coast bordered by lagoons and sand spits. Formed over millions of years by the deposits of

mud brought down by the regular annual inundation and sediment transport and deposition

of Nile, it marks the end of the river’s long journey; when emerging from its narrow bed at

the edge of the desert plateau, it breaks up into separate arms which pursue their mean-

dering courses toward the sea. This study was carried out in the one of the main agri-

cultural regions of Egypt represented by several Governorates located centrally at 30.07�N,

30.57�E. The Governorates are as follows: Alexandria, Buhayra, Cairo, Daqahliya,

Damietta, Gharbiya, Ismailia, Kafr El-Sheikh, Minufiya, Port Said, Qalyubiya, Sharqiya

and Suez and cover around 25,000 km2 in total representing 2.5 % of the total area of

Egypt (Fig. 1).

The most significant factors of land degradation are as follows: (a) wind, (b) water

erosion, (c) water logging, (d) salinization, and (e) soil compaction. On the other hand,

land reclamation processes, enclosing the wider Delta region, are very pronounced due to

human activities. The land use and land cover categories are as follows: (a) agriculture,

(b) bare soil, (c) sand area, (d) salt flat, (e) swamps, (f) salt, (g) fish farms, (h) water bodies,

and (i) urban areas (Elhag et al. 2013).

2.2 Vegetation indices

In principle, Normalized Difference Vegetation Index (NDVI) was obtained from Landsat

8 satellite sensor acquired in July 2013 to drive four different water-related indices cal-

culated as NDVI derivatives. Spectral enhancement is the changing of the values of each

pixel in the original image by transforming the values of each pixel along a multi-band

basis. Spectral enhancement allows different features that have specific reflective char-

acteristics in different bands of the electromagnetic spectrum to be compressed if data are

similar. It also allows modifying of the pixels of an image independent of the values of

surrounding pixels. Spectral enhancement creates new bands of data that are more inter-

pretable to the eye. NDVI derivatives are useful to recognize other VIs including, LAI and

WSVI. Meanwhile, soil–water relation in term of evapotranspiration is useful to calculate

other VIs including, CWSI and DSI. Estimation of the aforementioned VIs is previously

described in Elhag (2014) and estimation of daily evapotranspiration (ET) is described in

Elhag et al. (2011).

2.3 Spatial decision support system

Spatial decision support system methods make the options and their contribution to the

different criteria explicit, and all require the exercise of judgment. They differ, however, in

how they combine the data. Formal SDSS techniques usually provide an explicit relative

weighting system for the different criteria. SDSS techniques can be used to identify a

single most preferred option, to rank options, and to set a limited number of options for

subsequent detailed evaluation, and SDSS techniques adopted in the current research are

explained in Elhag (2014). The evaluation of land in term of rice cultivation was based on

the methods described in Food and Agriculture Organization (FAO 1976, 1978, 1983,
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1984, 1985, 2005) guideline for land evaluation and rice cultivation preferences con-

cerning the study area.

2.4 Generating the analysis matrix

The analysis matrix (M 9 N: M options and N criteria) is to be built from the environ-

mental indicators identified in the conceptual phase. The cells of the matrix relate to the

option–criterion pairs and contain the outcomes or consequences for a set of options and a

set of evaluation criteria. Construction of the reciprocal matrix and matrix analysis is

exemplified in Elhag (2014).

2.5 Basics of variance-based sensitivity analysis

Sensitivity analysis approaches are categorized according to the outcome of the related

sensitivity procedures into local or global methods. Sensitivity analysis methods may

depend on or are independent of the model characteristics (Schwieger 2004). To find out

which of the uncertain input factors are more important in determining the uncertainty in

the output of interest, GSA is required (Sobol 2001).

2.5.1 Global sensitivity analysis concept

Consistent with Saltelli et al. (2000), GSA is the study about the relations between the

input and the output of a model. Basically, sensitivity analysis is dealing with the variation

correspondingly the uncertainties of the input magnitudes. Moreover, input parameters

introduced to uncertainties of the model parameters and to the overall model structure. The

discrepancy of the input parameters encounters discrepancies of the output magnitudes.

The interconnections between speckled input and output are measured by different sen-

sitivity measures that are the basis for model validation and optimization (Schwieger

2004). Broad practice of sensitivity analysis is shown in Fig. 2. GSA is emphasis on

variance-based techniques to estimate global, quantitative, and model independent sensi-

tivity measures.

Fig. 1 Location map of the study area (Elhag et al. 2011)
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2.5.2 Global sensitivity analysis procedures

Based on Monte Carlo methods, sensitivity analysis methods are regression and correlation

analysis as well as analysis of rank transformed data. The general procedure to estimate

global sensitivity measures is founded on the following equations:

Si ¼
r2

EðY=XiÞ

r2
Y

ð1Þ

where r2
EðY=XiÞ is the conditional variance, and r2

Y is the unconditional variance.For non-

correlated input additive models:

Xn

i¼1

Si ¼ 1 ð2Þ

According to Schwieger (2004), this leads to an easy quantitative interpretation of the

sensitivity indices, because each Si delivers a direct measure for the portion of Xi on the

output variance r2
Y . For non-additive models, the interactions among the input quantities

within the model have to be taken into account. Non-additive models need a complete

decomposition of the function Y into summands of increasing order:

Xn

i¼1

Si þ
Xn

i¼1

Xn

j¼iþ1

Si;j þ
Xn

i¼1

Xn

j¼iþ1

Xn

k¼jþ1

Si;j;k þ � � � þ
X

. . .. . .Si;j;k;...;n ¼ 1 ð3Þ

The terms of higher order are estimated by holding more than one input quantity fixed:

Si;j ¼
r2

EðY=Xi;XjÞ

r2
Y

� Si � Sj: ð4Þ

Estimation of higher order terms leads to the estimation of total effects STi with respect to

an input quantity Xi to be computed as follows:

STi ¼ Si þ
Xn

i¼1

Si þ
Xn

i¼1

Xn

j¼tþ1

Si;j

þ
Xn

i¼1

Xn

j¼iþ1

Xn

k¼jþ1

Si;j;k þ � � � þ
X

. . .Si;j;k;...;n mit j; k 6¼ i; j 6¼ k ð5Þ

Fig. 2 General procedure for sensitivity analysis (Schwieger 2004)
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Corresponding total effect is computed as following:

STi ¼ 1�
r2

EðY=X� iÞ

r2
Y

ð6Þ

Consistently, a judgment between Si and STi leads to a conclusion concerning the additivity

of models with non-correlated input:

STi ¼ Si for additive model

STi [ Si fornon-additivemodel

3 Results and discussion

Evaluation of different VIs importance regarding to rice cultivation water requirements in

the designated study area is carried out to find out valuable parametric values in terms of

crop–water relations.

Table 1 Vegetation indices
reciprocal matrix eigenvector of
weights

Vegetation indices Eigenvector of weight

Daily evapotranspiration 0.3244

Leaf Area Index 0.1854

Water Supply Vegetation Index 0.1358

Drought Severity Index 0.1324

Crop Water Shortage Index 0.1146

Fig. 3 LAI suitability map for designated study area in Nile Delta region
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Reciprocal matrix is performed using five different factors. Table 1 demonstrated the

eigenvector weight of the five used factors and its importance were estimated through the

reciprocal matrix. The interception of the LAI and ET is the strongest among the rest of the

used factors according to Elhag (2014). The results of the matrix pointed out that the ET is

Fig. 4 WSVI suitability map for designated study area in Nile Delta region

Fig. 5 CWSI Suitability map for designated study area in Nile Delta region
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very important and had the biggest eigenvector weight followed by the distance to the LAI

(Malczewski 1999; Afify et al. 2011). Such a correlation need to be considered in water

conservation plans regarding to rice cultivation (Diker and Unlu 1999). Only ratios less

than 0.1 are accepted for a proper spatial decision support system, the importance and the

Fig. 6 DSI suitability map for designated study area in Nile Delta region

Fig. 7 ETdaily suitability map for designated study area in Nile Delta region
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Fig. 8 Overlaid suitability map for rice cultivation in designated study area

Fig. 9 Sensitivity variances of Crop Water Shortage Index main effects

Fig. 10 Sensitivity variances of Drought Severity Index main effects
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Fig. 11 Sensitivity variances of Daily Evapotranspiration Index main effects

Fig. 12 Sensitivity variances of Leaf Area Index main effects

Fig. 13 Sensitivity variances of Water Shortage Vegetation Index main effects

Table 2 Vegetation indices sensitivity analysis

Variance (%) SD Total effect

Crop Water Shortage Index 23.8 24.9 25.48

Drought Severity Index 21.5 22.1 22.9

Daily Evapotranspiration 9.8 10.1 10.6

Leaf Area Index 13.9 14.3 16.8

Water Supply Vegetation Index 22.9 22.7 24.21
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weights of the used factor need to be reconsider in case of consistency ratios higher than

0.1 (Dragan et al. 2003; Elhag 2010).

Vegetation indices including CWSI, Water Vegetation Supply Index, and DSI need to

be integrated together for satisfactory results (Bouman and Tuong 2001). Each one of the

eigenvector weights was multiply to its corresponded layer, and then the layers were

overlaid all together to be introduced to a final suitability map (Dragan et al. 2003).

Rice cultivation suitability values were ranging from zero to one and demonstrated in

Figs. 3, 4, 5, 6, 7, and 8 according to the corresponding factor. The spatial distribution of

rice cultivation suitable areas varies in the designated study area (Elhag 2014).

Suitable area for rice cultivation, based on LAI factor, is distributed on both east and west

side of the study area (Fig. 3) in contradiction with the spatial distribution of WSVI (Fig. 4).

Crop Water Shortage Index suitable area distribution (Fig. 5) showed no definite pattern and is

distributed all over the command area. DSI (Fig. 6) expressed the same pattern of CWSI. Daily

ET suitable area (Fig. 7) demonstrated marginal spatial distribution pattern surrounding the

lake and keep most of the designated study area with less rice cultivation suitable values.

The results from the sensitivity analysis are presented in Figs. 9, 10, 11, 12, and 13,

focusing specifically on the decomposition of variance (%) of the mean total variance in

emulator output, when input parameters have been assumed non-correlated, normally

distributed and varying within their whole range. Red lines in the following figures rep-

resent the mean and the standard deviation from the mean total effects according to Saltelli

et al. (2000). The relative sensitivity of the model input parameters with respect to the

sensitivity of the VIs estimated in the study area can be found in Table 2, and sensitivity

total effect is shown in pie chart representation (Fig. 14).

In the following table, parameters variances estimated to be deterministically sensitive

at the Crop Water Shortage Index (23.8 %), the second in order sensitive vegetation index

is Water Supply Vegetation Index (22.9 %), the third in order is Drought Severity Index

with estimated vaurince of 21.5 %. The sum of the above three VIs total effect is exceeding

the value of 70 % which implies presence of interactions in term of dependency on the rest

VIs (Holvoet et al. 2005). The least sensitive vegetation index is daily ET (9.8 %). Daily

ET has the smallest individual contribution to the total variances (Saltelli 2002).

Fig. 14 Vegetation indices total effect sensitivity analysis
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4 Conclusions

Multi-criteria decision analysis was constructed with the five important VIs, and the rel-

ative importance of each one was measured through the calculation of weights. The

importance is given to the value of the daily ET as the key factor for rational water

resources management in arid areas. Once the factor maps and the weight of composite

layers were obtained, and then the physical suitability map was evaluated for the rice

cultivation by weighted overlay (Yager 1988; Turban et al. 2005).

Identification of Rice crop suitable areas by realizing of Remote Sensing techniques

and Spatial Decision Support System model were successful in the designated study area.

The results obtained from this study indicate that the integration of RS–GIS and appli-

cation of multi-criteria evaluation using pairwise comparison matrix could provide a

superior database and guide map for decision makers considering crop substitution in order

to achieve better agricultural production (Allam and Allam 2007). However, in Egypt, this

approach is a new and original application in agriculture, because it has not been used to

identify suitable areas for rice crop intensively. Spatial distribution of rice crop derived

from Remote Sensing data in conjunction with evaluation of biophysical variables of soil

and topographic information in GIS context is helpful in crop management options for

intensification or diversification.

Global sensitivity analysis of five different VIs delivered a quantitative and model

independent sensitivity measure of each of the input factors and of groups of them to the

simulated outputs under consideration. Results evidenced the model concept to be suffi-

ciently sensitive to represent the natural systems’ behavior. The sensitivity analysis con-

firmed that daily ET is consecutively less sensitive among the different VIs based on water

management hypothesis.

Input parameters are related directly to the estimated variables derived from the

uncertainty analysis (Holvoet et al. 2005). The GSA is used to identify the portions of the

variance related to different measured input quantities. This method for sensitivity analysis

is independent of the characteristics of the analyzed model. The results may be used for

future model optimization, e.g., by comparing different VIs from different locations.

This study has been done considering crop water consumption and five different VIs to

find out the common thread in rice cultivation water requirements to achieve greater

accuracy from remotely sensed data. Therefore, it gives primary results, but for further

study, additional factors such as soil, climate, irrigation facilities, and socioeconomic

factors that influence the sustainable use of the land are required. Such conclusions are a

robust evidence of a defective water resources management planes used by either the

government or the farmers, and all of these management planes need to reformed, and

estimation and forecasting of daily ET values must be concentric.
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