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Abstract

Considerable research has been conducted on the estimation of Gross Primary Productivity (GPP) and Net Primary Pro-
ductivity (NPP) from different viewpoints. Each vision has proposed special applied materials and methodologies and
has provided specific insight into the results and overall conclusions. As NPP generally declines once crops start to begin
competing intensively for water resources, the identification of precise NPP estimation approaches can be of importance in
water and agricultural studies. Due to the lack of a comprehensive overview of the subject that investigates GPP and NPP
studies from both environmental and agricultural perspectives, we reviewed the existing approaches in estimating these two
parameters with a special focus on estimating NPP for agricultural studies. Categorization of the diverse proposed models
and approaches, with special attention to the role of newly introduced materials, such as chlorophyll proxies, is provided
on GPP and NPP estimations. After introducing the different categories, from the environmental perspective, we addressed
the most recent improvements in GPP estimations in the biosphere by applying a chlorophyll-based fraction of Absorbed
Photosynthetically Active Radiation (fPAR) into the light use efficiency (LUE) model. Then, by considering the agricultural
perspectives, the application of both chlorophyll-based fPAR and a new chlorophyll-based predictor was discussed to estimate
NPP and yield. It is expected that the outlined vision on estimating NPP in agricultural studies helps to identify the current
boundary of knowledge in these types of studies.
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1 Introduction Index (LAI). Since LAI is a proxy for the anatomized por-

tion of the GPP in ecology, it connects GPP to soil moisture

A portion of the radiated energy to the canopy is stored by
the process of photosynthesis in organic substances; this is
known as Gross Primary Productivity (GPP). The other por-
tion is either re-radiated or lost as latent heat [1]. GPP and
its derivatives have been the focus of various terrestrial sci-
ences, and it is a common term in interdisciplinary research.
In hydrology, there have been attempts at quantifying the
available root zone soil moisture sink according to the con-
nection between evapotranspiration (ET) and Leaf Area
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in ecohydrology [2-7]. Not all GPP incarnates into the Net
Primary Productivity (NPP) since a part of it is consumed
for the plant autotrophic respiration (R,) process through
which the plant respires carbon for growth (R;) and main-
tenance (Ry,) [8]. Each major organ of a plant (leaf, stem,
and root) respires carbon for its growth and maintenance.
This can be studied in the combined field of ecological and
plant phenological sciences to connect the concepts of GPP
and NPP [9-11]. Subtracting R, from GPP, the first deriva-
tive of GPP will be calculated as NPP which is measured
for estimating the rate of biomass accumulation [12].
NPP represents the net C uptake from the atmosphere
into vegetation [12] and can be calculated as the sum
of biomass increment, mortality, and turnover of foli-
age and fine roots [13]. The total biomass can be trans-
formed into crop yield in farmlands using the Harvest
Index (HI) if the index is multiplied by the accumulated
amount of biomass during the crop growing period [14—16].
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NPP, biomass, and yield are estimated in agricultural stud-
ies while they are still connected to ecohydrology and biol-
ogy through GPP and R, [17]. Heterotrophic respiration
(Ry) is the total flux of carbon to the biosphere caused by
the decomposition process (Rp) and by the respiration of
non-plant organisms (Ry) [18]. Both R, and R, estimations
are within the fields of ecology, biogeochemistry, and
dynamic biogeography sciences; these can be subtracted
from GPP to produce the second derivative of GPP known
as net ecosystem exchange (NEE). NEE can be directly
monitored by site level measurements through the global
eddy covariance (EC) tower network [19-21]. GPP can be
calculated indirectly by in situ measured NEE values that
can be extrapolated to the gridded global NEE values using
earth observation data [22]. GPP is calculated indirectly
because it is impossible to directly observe daytime GPP or
ecosystem respiration, and that is why it is typically inferred
from measurements of NEE [23]. Recently, solar-induced
chlorophyll fluorescence (SIF) has been shown to be well
correlated to GPP, thus offering a path to improve the NEE
partitioning by constraining GPP [24].

GPP can also be estimated at global scale using the mod-
els that connect soil, vegetation, and atmosphere parameters.
These connections are reflected in conceptualizing soil, veg-
etation, and atmosphere dynamic models for the biosphere
that capture the effect of water loss, water stress, nutrition,
and age on the stomatal operation and the subsequent amount
of LAIL. Examples of these models are soil-vegetation-
atmosphere transfer (SVAT), dynamic global vegetation
model (DGVM) and ORganizing Carbon and Hydrology
In Dynamic EcosystEm (ORCHIDEE) [25-30]. In these
models, LAI is one of the determiners for ET, in addition to
other predictors, such as precipitation, runoff, infiltration,
soil texture, and topography because LAI can be connected
to the available moisture in the root zone by ET. Instead
of estimating terrestrial GPP using multiparameter models,
the estimation process can be simplified using an ecological
concept called the efficiency model (PEM) or the light use
efficiency (LUE) model [31], Despite the apparent simplic-
ity of the LUE model that estimates GPP by multiplying
three terms, the photosynthetically active radiation (PAR),
the fraction of absorbed PAR (fPAR), and the LUE factor,
however, fPAR and LUE factors are controversial. LUE is
often calculated as a function of maximum daily LUE (e,,,)
regulated by environmental controls (temperature, soil water,
vapor pressure deficit, etc.) [32—34]. Traditionally, the whole
canopy proxies were used to define fPAR and LUE, while
recently, the controversy behind the fPAR and LUE defini-
tions refers to the assumption that the absorption of PAR
by the canopy’s chlorophyll part is effective in producing
GPP rather than the absorption by the whole canopy [35].
Solar-induced fluorescence (SIF) is the proxy of chlorophyll
content which can be sensed remotely and has great potential

@ Springer

for estimating GPP due to a strong observed relationship
between them from both ground-based and satellite observa-
tions [36]. From the environmental perspective, the impor-
tance of the in situ NEE measurements and subsequent GPP
calculation using complicated dynamic or LUE models is to
understand the role of carbon in the global climate system.
Hence, GPP and its derivatives have been studied to inves-
tigate the process of carbon sequestration and release, feed-
back between climate and vegetation change, heat, momen-
tum, and moisture fluxes as well as global greenhouse gas
concentrations [37—40].

GPP and NPP estimations also exist in regional-scaled
studies on ecosystem preservation, reclamation, and pro-
duction in wetlands, grasslands, and farmlands [41-44].
From the agricultural perspective, data on the accumulated
amount of biomass during the early growing stage until
harvest time is important to meet the information demand
for food security planners and policymakers [45-47]. Spa-
tiotemporal distribution of NPP and biomass on farmlands
can help scientists to determine the potential and scope of
improvements on agricultural lands for predicting yield
values before harvest and for providing early warnings to
traders, farmers, and insurance companies [48, 49]. Dif-
ferent approaches for regional estimation of GPP and NPP
can be classified into three main categories: mechanistic,
statistical, and functional [48]. Mechanistic models are usu-
ally known as crop models based on the dominant physical
and biophysical principles in a system consisting of crop,
soil, and atmosphere. If there is enough detailed informa-
tion from plant peripherals, litter circumstances, and agri-
cultural managing inputs and in integration with assimilated
remote sensing (soil moisture and LAI) data, crop mod-
els can provide an acceptable estimation of NPP [50-52].
When there is a lack of detailed information, statistic and
functional models are used to make assumptions on the rela-
tionship among the existing field-measured predictors and
NPP or to identify the best combination of predictors that
contribute the most variance to NPP. Functional models
are indeed simplified versions of the complex mechanistic
models in combination with statistical schemes [53-55].
After modeling and identification of effective predictors,
the monitored values of these predictors are imported
into forecasting methods to estimate future crop yield and
produce early warnings [48, 56]. In classical forecasting
approaches, an attempt is made to differentiate seasonality
and trend components of the predictors’ time series, and
then by assuming that these discovered trends are constant,
the forecast is made for the target parameter, while in newly
developed approaches, models are updated each time for
new observation [57-59]. However, required information
about weather, soil properties, and precise land cover data
to build a ground-data-dependent functional model are typi-
cally not available in developing countries, where reliable
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yield predictions are most needed [54]. In this case, machine
learning ideas like deep learning architectures by which the
model automatically learns useful features only from multi-
spectral remote sensing images seem to be the only solution
for making crop yield predictions. In an attempt, remotely
sensed multispectral images have been used in the deep
long short-term memory (LSTM architecture to estimate
and forecast crop yield [60].

Inferred from the previous explanations, Fig. 1 shows
the contribution of different fields of knowledge in study-
ing GPP and its derivatives and indicates their estimation
approaches in environmental and agricultural perspec-
tives. As shown in Fig. 1, ecohydrological investigations
with environmental perspective require the consideration
of several crucial parameters (such as GPP, ET, LAI, and
soil moisture) to the understanding of the complex interac-
tions between ecological and hydrological processes within
a biosphere. While in ecology and biochemistry the attempt
is to understand respiration processes, they are used to gen-
erate NPP and NEE derivatives from GPP. The figure also
depicts that the environmental perspective aims to monitor
carbon cycle in the biosphere including forest and wetland
land use. On the other hand, the agricultural perspective
aims to study food security in grassland and farmland land
use. While GPP and its first-hand derivatives are the target
parameters in environmental studies, the latest derivatives

Fig. 1 Contribution of different

Soil moisture

of it like biomass and yield are the specific targets of inter-
est for agricultural studies. In environmental studies, in situ
NEE measurements are used for conducting direct estima-
tions or for validating the dynamic models, while the LUE
model is used for reducing the complicacy of the estimation
process instead of dynamic models. Conversely, within the
realm of agricultural studies, the utilization of crop models,
statistical models, and newly developed functional models
that leverage remote sensing data has facilitated the research
process pertaining to agricultural lands. These models prove
particularly valuable in cases where the measured biomass
or yield serves as the validation indicator. In this paper, after
areview on the use of global models from the environmen-
tal perspective in the "Introduction” section, the rest of the
paper focus on the application of the LUE and functional
models from the agricultural perspective. Figure 2 shows
the relationship between the main terms reviewed and their
proximity to environmental and agricultural perspectives,
and Table 1 describes the contents clarified in each para-
graph or subsection and their interconnections. Here, with
a special emphasis on the most recent improvements in ter-
restrial GPP estimations using chlorophyll-based fPAR and
LUE concepts, the importance of future studies on the appli-
cation of chlorophyll-based predictors in functional mod-
els became apparent. From the agricultural perspective, an
argue on the regional application of chlorophyll-based fPAR
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Fig.2 The relationship between the main reviewed terms and their proximity to environmental and agricultural perspectives

on the LUE model was raised and recommended to be tested
in future studies using downscaled version of remote sensing
chlorophyll products. At the end, a new chlorophyll-based
remote sensing predictor was introduced for being tested in
functional models in estimating NPP.

2 Crop Models

Crop models are categorized into mechanistic model classes
that can be used to model the crop growth duration and NPP
for agricultural purposes [61, 62]. A crop model simulates
crop growth based on information about the crop litter and
surrounding atmosphere,furthermore, it can be used to build
a comprehensive dynamic biosphere model if it is integrated
with a climate change model. A crop model also can be
embedded in a hydrological model to explain the interac-
tions between the crop and the hydrological circumstances
around it [63—65]. Many crop models have been developed
for each major agricultural crop such as wheat, maize, and
rice in different parts of the world [66—69]. Equations that
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include explanatory variables and parameters in relation to
CO,, solar radiation, temperature, humidity, wind speed,
precipitation, available water, and nutrients provide crop
models to determine the required state variables [70]. In
some of these models, a linear or a nonlinear temperature
response function with an upper limit for the developmen-
tal rate is considered to simulate crop growth, while other
models consider a function with an optimum temperature
above which the growth rate decreases with the temperature
increase [71, 72]. Among the crop models, those assume
that NPP is driven by the amount of solar radiation and CO,
and is moderated by temperature use different concepts such
as canopy light use efficiency model, single-leaf photosyn-
thesis light-response model, and Farquhar-von Caemmerer-
Berry biochemical model [31, 73, 74]. Because not all
model parameters can be determined directly by measuring
explanatory variables, a crop model needs to be carefully
calibrated, including from the lowest calibration level only
containing end-season agronomic measurements to the high-
est level containing both in-season and end-season measure-
ments based on the calibration goals. By fitting the overall



183

Estimating Gross and Net Primary Productivities Using Earth Observation Products: a Review

eyep ndur
A[uo ay) se seSewr [endadsnnuw asn jey) spPpowr
Surures] suryorw ay) jo uonesrdde ay) saqLIOSI @
S[opow [euonouny
a1 Jo sjuowaainbar pue uonesrjdde oY) saqLIOSA(T @
sjepow doxo
oy jo syuowarinbar pue uonesrdde oy sequIoso
Jeuonouny pue ‘[eornsne)s ‘Onsiueyoa
—S3LI032780 UIRW 1Y) Ul JIN PUB 4O JO UONBWINSd
Teuo13a1 10§ soyorordde JUSISIIIP S SaqLIOSIq A

o121 Juasaxd oy ur snooj Jo eare o) s3o1dop ose I SpuB[ULIR) UO SSBWOIq Pue JJN JO uonnqrusip
1duosnuew oy ur pjuasaid sordoy oy Jo moy ay syordop [erodwajoneds Funewrss Jo 9[01 3Y) SUONUSN A
ydeSered jxou oy ‘Oreos [euoI3al e SIoM Jey) S[opout SOIpMIS [eIMNOLISE Ul SUrpnjour 9[eos
Sunewmnss JdN pue ddO yim paonponur Junjes 10y [euoI3ar ur uonewnsd JdN pue ddo SIYSIYSiH A ¢ ydei3ereq
ddD Suronpoid ur 9A1309y9 st 31ed
tAydoioqyo s, Adoueo a3 Afuo ey st uonduwnsse
[ejuSWEpPUN Y} YOIYMm UT s1ojowrered [opowr
ANT Yy Suruyap ur yoeordde mau € saqLIdSIq A
s1ojourered [apow g1 2y} auyap 03 sarxoid Adoueo
o[oym a3 sasn ey yorordde jeuonipen e saqrsag A
ydeiSered 1xou oy} ur pap[oq si s[opow 1ojowerednnuw
BIep SUISUDS 9JOWI (1M JIOM Jey) S[OPoW [BUONOUNy Jo peasur J4o Sunewnss J0§ pasn [opout (1)
Jjo uoneoridde oy, "oreos [eare uo Way) Sunewns9 Kouaroyje asn YSI] oY) 10 (INHJ) [Opowr AOUIdJo
10} SPOYJAW SNOLIBA SIUITINO pue JdN Pue Jdo 1oj Y1 pa[[ed 1dodU0d SATBUIA)E UL SIQLIOSI A
S9JRWIT)SA [BUOISAI JO 20urdYIUSIS 9y} SIYIYSTY ddD 91eWIISo pue [SpOW 0} pasn Ik
yder3ered juonbosqns oy ‘o[eds [8qo[3 e SyIoMm JBY) Jjey) a1oydsoiq 9y 10} s[opout orwreuAp Areydsoune
S[opow Sunewnse Jdo yim paonponur 3unjas 10y pue ‘uone1asaA “1os Jo 1doouod ay) saqLIsaq A Z ydeidereq
ddD 2Inseawl 01 MOY SIqLISIJ A
KAwouoi3e ut
(uoneadaa ojur areydsoune oy woiy ayeidn uoqres U
9U}) UONR[NWUNIOE SSEWOI] JO 91eI 3y} AJeWNS O, @
K3o101pAyoo9e ur JuIs
2IN)SIOW [10S QUOZ 1001 d[qe[IeAr ) AJnuenb oJ, e
K307009 ur suoneardsax
swstuegio pue jued jo sadA) Juaroyrp ayesnsoaur of, e
1S90UDIOS [BLIISALID) SNOLIBA UT
PAIOPISUOD SIE SOATIBALIOP S)I pue JJdo) AYm SaqLIOSIq A
9[eos [eqo]3 I (ydei3ered siyy ur paqrIdsap
poeWINs? 9q ued J4O Moy smaraal ydeidered 3xou oy os[e a1om suoneardsar) uonendsar orydonoreioy pue
‘SOATIBALIOP SII pUB JdO YIIm paonponut Sumes 1013y orgdonoine juefd 1918 SOANRALIOP S PUB JJ0) Sauyaq A 1 ydeiSereq uononponuy |
UOT}03S 1XaU A} O} UOTIOUUOD) uonoasqns/yderdered oy Jo Arewruing uornoasqns/yderdereq uorj09g

SUOTJOAUUODIAUI I3y} pue uondesqns o yderSered yoes ur payLe[d sjuuo)) | ajqel

pringer

A's



H. Sabzchi-Dehkharghani et al.

184

SUOI309SqNS

XU 9} UT [IeJap U Pamaraal are (s3doouod uonruyap
A VdJ PUE BIep UONRIQI[ED) ISLIB SOOUIIQYIP 35}
[OTYM WOIJ S92IN0S Y} ‘[opoul ()T oY) pasn Jey)

SOIPMIS Y} UT SOOUDISJIP JURIAYUI Y} SUIQLIOSIP IOy

[epow 4T oY) maraar 0} ydeaSered 1xou o) spe9|
o1301 pep1aoid oy, "sjepow doio ay) jo suoryeirwiy
A SuneIoqe[e AQ sAIpns pajefal ul [apout g 2yl
Surrop1suod 10y 013071 & sopraoxd uonoos juasaxd o)
‘ddN ewns? 0} spopow do1d Aq pazinn swyiLiod[e
pue s1o1owered oy} Jo uonisodxa payrelap e SuImor[og

sasodind TemynoriSe 10] JIN Sunewnsa ur
sjopow do1d jo uorjesrjdde oY) MITAI 0) S)IR)S UOT}ODS
1xau 3y ‘sordoy pajuasaid 9y Jo moy oY) Sunordop 1y

sonfea g1 partodar
oy} ur KouedaIosIp & Ul PA)[NSaI pauyop sem JYvdJ
yorym y3noayy sjdeouod oy pue ssedoid uoneIqyed
Ul pasn BIep 9Y) UI SIOUAIDJJIP ) MOY] SIQLISIJ A
sisaypuAsojoyd Aq pa1ols A310u9 Iejos
JO JUNOWE 10U JO UOTRWINS 9} J09)Je Aelll JI MOy pue
[opow )T A 3y Surdojaasp ur paxnbar are ssaooid
uoneIqIed pue uonezusjouwered sno1oSi e Aym surejdxg
s1oye[n3a1 pue ‘siojowered
)1 ‘[opout T 2y Jo uonesrdde ayy soonponuy A
S[opow
doio 03 paredwos uonexidsar pue sisayjuisojoyd
juerd jo sessaooid xordwoo oy Surkjrydwrs
ur [opour ()T 9Yp Jo 93eIURAPE ) SIQLIOSI A
ddN JO suonewnss pappris 91e1ouas 0) pasn oq Ued
s[opowr doId 99UBISWNIIID YIIYM IOPUN SIQLIISI A
suone[nuirs paIA doo ur Ajureraoun JI3Ie[ asned Jey
sjopout do1d UaaM]aq SIOURIAYIP IDYI0 SAQLIOSI A

uonjeoridde a10joq a1npadoid uoneiqied [nyored

© 0) A)1s$909u Ay} pue s[opow doId oY) Jo uonouny
asuodsar oy 10§ suondwnsse JUIIIYIP SIQLIOSIJ A

so[qerrea A1ojeuedxe jo roquinu

SNOWLIOUD 31} U0 Aduopuadop 03 anp suonoLnsal
1oy pue spepowr doxd jo uoneorjdde oy seqroseq A

S[epow [euonouUny Ojul
11 13doou0d oy peards 0 st jdwone oy pue sarxoid
[1Aydooryo s [opowr 4T Y} Ul sjudwsoxdur

U221 Jsoul uo ST siseydurd oy 1By sMoys A

M31A1 s1y) ut $91do) pajuasald ay) Jo Moy Yy smoys A
sasodnd
[eIMNOLISE IO S[OpOW [eUOnOUNy pue g Y JO
uoneosrdde ay) uo snooj pue aanosedsiad [eimnone

o) w01y A[ISOW ST MITAQI 3Y) JO 1531 9y} 1By} surefdxg A

SOATJBALISP SII pue Jdo) 21e3nsoAul
Jey) A3po[mouy JO P[oY JUAIJIP FUOWE SUOIIOAUUOD
s1ordap 11 ‘¢ pue ‘g °T sydeiSered woiy Suropur Ag A

1 ydeiSereq

7 yderdereq

1 ydeiSereq

 ydeidereq

[PpoWw 41 T9YL "¢

spepow do1)) g

UOT}03S 1XaU A} O} UOTIOUUOD)

uonoasqns/ydersered oy Jo Arewrwing

uornoasqns/yderdereg

uonog

(ponunuoo) | sjqey

pringer

Qs



185

Estimating Gross and Net Primary Productivities Using Earth Observation Products: a Review

pap1aoid st soAfeswAY)

S[OPOW [EUONOUN] 3Y) UO MIIAI B “ISIY T8 Ing "PIsSnosIp
SI s[opow feuonouny y) ut sponpoid asayp jo uoneordde
‘SUON09S 1xaU Ay Ul ‘sponpoid IS Y JO UOISIOA

PO[EISUMOP 0) SSAOIE JO ANIQISEa) oY) SuneSnsoAur Jo)y

sjonpoid IS uonn[osaI-y3Iy 9jerouad 0} pasn

9q ued JBy) SPOYIoW SUIRISUMOP S} JO SWOS MITAI
SUOIDASQNS INOJ IXAU Y} ‘(SAIPNIS [eINI[NOLISE 10§
9SI80J 00] 3Tk 9] ()7 210Joq A[eroads syonpoxd IS Jo
UOTSIOA [RUISLIO 9} 90UIS) [opowl )T oy} ut sjonpoid

jonpoid JIS poreosumop Afreneds

pue pa10a1109 A[rerodure) wrs-3uof pue ‘Surddew

uornjosaI-radns ‘SurdLry uorssordar jurod-oy-eare

‘yoeoidde uorssar3ar Furpnjour syonpoid IS uo
s[qeoridde sonbruyos) Sur[eosuMop 1oy sAQLISI A

s1deou0d g TpuROYvd s
S10M 1B [opou F ()T Y JO UWLIOJ B SAJBIOUID) A
Spue[ULIE} UO SUONBWNSI
PIIA pue ‘ssewolq ‘JdN Sunewnss o} uonnNgLIuod
I1oy) 9searour Kew sonbruyoe) Sureosumop paoueape
10 syonpoid J1S uonnjosal-y3iy mau jey) s1sa38ng A
uonnjosal [eneds as1eod
1oy 0) anp sesodind [ermynotide 1oy uonesrdde oy
sjuaaaxd ey s1onpoid JIS JO UORIWI] 3y} SAqLIdSIJ A
syonpoid xapur [jAydoIoryo
pue JIS om) ojur (£00g 2ours) sarxoid [jAydoroyo

Dypur,

AIS pafeosumop jo uonesrdde oy) Sunsa3sns 10y SUISUSS AJOWAI S[R[IBAR SIZLIOFILD PUB SILIOSIJ A

[epow g1 9y ur sarxod [[Aydoroqyo Sursuas
9jowal Jo uonezInn ay) sure[dxs uoroas juanbasqns
Ay ‘Topowr )T 2y} J0j s1a3owered 10301paid

Suruyop 03 pajerar s3doouos snorrea SUIqLIdSIp 1Y

ssaooid Surpopow oy ur sarxoid
[1AydoIoryo Sursuas 9j0twal Wodj Jauaq 1daouod oy

20y pueMOy vy 701 O™y v 0 1deouos o oSueyd 1red

snayiuAsoloyd ot A[UO JO UONBIGPISUOD MOY SIQLIOSIJ A
[opowt g7 Ay Jo s1awered
oY) Jo suonejedIolur JUAISHIp 03 ped] s}deouod
9SAU L, "SOATIBALISP S} pue J40) Junewnss ur suesio
onayiuAsojoyd-uou ay) Aq uoneIpel Suroour ) Jo
jred paydesigyur oy SuneuIWIR JO SUNUNOIIR UO Paskq
MVdJ Jo uonmuyap ay) ur s3doouod JUSIOYIpP SaqLIdSI A

Xeur,

JN1Sunardigurar
pue [opow 2y} SuneIqIed 10 Joselep PAINseaw
juopuodser100 sormbus (Jereyewr £I1p 10 ‘JdN ‘ddD 29
ued yorym Jojowered ja31e) parsap Aue) uonenba 41
U} JO 9IS puRY-1JI[ Ay} Ul dFueYD AUE ey SAQLIOSA

(syonpoid q1S
9} JO UOISIOA PI[BISUMO(]) €'+'¢ O) ['H'¢ "$1998qns

(1opow N7
oy ur sarxoid [[Aydororyo jo uoneosrddy) 4 ydeiSereq

Xeuw

(suonruyap Yvdj oy uo peseq *gn7) ¢ ydesSereq

(3aserep Sururen uo paseq **“gn1) ¢ ydeiSereq

UOT}03S 1XaU A} O} UOTIOUUOD)

uonoasqns/ydersered oy Jo Arewrwuing

uornoasqns/yderdereq

uonog

(ponunuoo) | sjqey

pringer

a's



H. Sabzchi-Dehkharghani et al.

186

SOIpN)S 21NNy I0J 1S9}

OJUI SJUSTOLJO0D JUBISUOI-UOU JO SUONOUNJ TESUI[UOU

oy SurSuLiq SPUAWIW093I )1 ‘ddD PUe IS UdaMmIaq

diysuornerar oy jo Ajresurjuou 9y Surpresay proik

pue JdN Sunewmnss Jo wre oy) YIIm (S[opou Jeaur|

Srdn[nur e pue uorssaI3ar Jeaur| 9[3uls €) s[opowt

reuonouny jo sexmonys pasodoid ayy ur payse) Sureq

10§ 10301pa1d paseq-[[Aydo1o[yo mau e seonponuj A

s[epow 4T 3ursn J40O Sunewnsa ut sarxoid

9SaY) JO 9sn YY) WoIJ ) nsaI Surstrord pamaraal oy

SOIPMYS 9IN)NJ Y} UI SIAIPNIS [RUOTIOUNJ UT Pajsd) Juraq uo paseq ‘sosodind [ermnoride 10y plaIk pue JdN

10§ poIsa33ns are sarxoid [[Aydoroyo yorym ur soded Sunewnsa Jo wre Y YIm SAPNIS 2ININJ J0J S[pow (s[epouwr [euonouny

MATASI 9} JO [0S UTRW 9 SAYORAI UONOASqns SIY], [euonouny ur sarxoxd [[Aydoroqyo Jo 1591 oy s1s933ng A urt sarxoxd [[Aydoroqyo jo uoneorddy) 7 4 's1095qns

suonjenbe Teourduwro Sursn SUOEAIISqO

xopur uone)agaoa-opnasd o3 [opowr do1o e w1y paurejqo

sonfea Ty sHeAu09 yoeoidde 1oyjo oy, Tv'1 pue Yvdy

usamjeq uonenba reornduwo ue uo paseq soyoeordde

9591} JO QU “AINJEINI[ Y} UI S[OPOW [euOnIUNJ
Supping ur sayoeoidde pazinn JUSIHIP 0M) SALIDSI(]  (S[POU [BUONOUN UT SPOYIAW JUAIYIQ) | '$199§qNnS

[opow [euonouny
& Jurp[Ing ur €jep Sursuas 9jowal pue suonenba
S[OpOW [BUOTIOUN  ONSIUBYIAW PUE [EINSTILIS JO UONNQLIUOD ) SIQLIISIJ A
ur st sarxoid [Aydororyo jo uoneosrdde s31s933ns BJep SUISUIS JOWI pUR
UOT}OSqNS JXU AY) ‘SIIPNIS [eIM[NOLISE UT P[AIA suorjenbo oyewrxordde Surzimn prorh doio oyewmnse
doxo Sunewnss Jo wre oY) YIIM S[OPOW [RUOTIOUN] Jey) S[opow dNSIUBRYIAW X[dWOd aY) JO SUOISIOA
SuIp[Ing Ioj sIoMauel} PIZINN oY) SUIQLIOSIP 1Y payI[duIs 9y} Se S[PPOU [eUOTIOUNJ dY) SIQLISIJ A 1 ydeiSereq

uoIsn[ouo))

S[opow
[euonoun ‘4

UOT}03S 1XaU A} O} UOTIOUUOD) uonoasqns/ydersered oy Jo Arewrwing uornoasqns/yderdereg

uonog

(ponunuoo) | sjqey

pringer

Qs



Estimating Gross and Net Primary Productivities Using Earth Observation Products: a Review 187

model to a portion of the observed data and then critically
validating the model by using the remainder of the observed
data, the robustness of the models across environments can
be assessed [75]. After the calibration and validation pro-
cesses, it is possible to analyze the response of a crop in
different scenarios by replacing the measured values with
scenario-based values for different variables [70, 76].

Crop models vary in terms of the way they involve vari-
ables in growth simulation. They simulate the effect of tem-
perature on the rate of crop development [77] and on spikelet
fertility [78, 79] in addition to their different CO,-fixation
algorithms that lead to various responses to climate change
factors [80]. Studies have investigated the single-leaf photo-
synthesis response to the amount of light and the biochemi-
cal responses of the plant depending on the amount of CO,
concentration to determine how the effect of CO, should be
incorporated into the crop models [81, 82]. Crop models
cannot solely be used to generate spatial distribution of NPP.
Integration of crop models into the Geographic Informa-
tion System (GIS)-based Environmental Policy Integrated
Climate (GEPIC) (including six types of input data: DEM,
soil map, land use map, climate data, plant data, and man-
agement data such as irrigation and fertilizer) simulates the
effect of elevation on crop dynamics and provides gridded
estimations of NPP [83, 84]. Taking advantage of DEM,
a semi-distributed hydrological model like Soil and Water
Assessment Tool (SWAT) configures sub-basins to connect
embedded crop modelers and hydrologic analyzer systems
together for estimating the distribution of NPP and biomass
on farmlands [85, 86]. Embedded crop modelers of SWAT
can also be used for environmental purposes like for esti-
mating NPP in the forest ecosystems by adjusting SWAT
default parameters for this type of ecosystems [87]. Process-
based mechanistic crop models are effective means to esti-
mate NPP and crop yield,however, these models create large
uncertainty in simulations [88]. Application of the LUE
model in estimating crop NPP instead of a mechanistic crop
model can simplify the complex physiological, biophysical,
and biogeochemical processes of plant photosynthesis and
respiration [89].

3 The LUE Model

In addition to its application as a crop model, the simplic-
ity of the LUE model has made it a suitable alternative to
complex biosphere dynamical models. The LUE model
reflects the effects of the physical and biophysical factors
that determine growth rate in the concept of efficiency. The
efficiency component in this model is defined as the net
amount of solar energy stored by photosynthesis divided
by the solar constant, and it is calculated by multiplying
the geometrical, atmospheric, spectral, photochemical,

diffusion, interception, and respiration factors that reduce
the efficiency component [31]. The final production of the
LUE model is the net amount of solar energy stored by pho-
tosynthesis, while the essence of the final product will be
changed by eliminating each factor. As it is difficult to quan-
tify all reducing factors, a disregard for any factor causes
an overestimation in the calculation of net production by
the LUE model. Thus, proper model structures and rigorous
model parameterization and calibration should be adopted in
the modeling process. The general form of the LUE model
is written as follows:

GPP = (fPAR) x (PAR) X (LUE), 1)

in which LUE is often calculated as a function of the maxi-
mum daily light use efficiency (LUE_,,) multiplied by
environmental regulators [35]. LUE values cannot be used
or compared when they are derived from different bases.
Different approaches in terms of describing how LUE is
controlled by ecosystem limiting factors have shaped vari-
ous structures for LUE models [90]. Even having the same
structure, LUE_,, values may not match in different stud-
ies. The reason for the incompatibility of reported LUE, .
values from different sources can be due to the data used in
calibrating the model or the concepts through which fPAR
was defined in each research project. In addition to different
fPAR definitions, consideration of the effect of diffusive
radiation on LUE_,, has also resulted in a discrepancy in
LUE,,,, reported values. In some research, an attempt was
made to improve the LUE model by differentiating LUE, .
for sunlit and shaded leaves based on the fact that diffuse
radiation results in an increase of carbon uptake [91, 92] .

3.1 LUE,,, Based on Training Dataset

The LUE model has been used often for estimating GPP
in the biosphere and forest ecosystems for environmental
research purposes [34, 35, 93-95]. The general form of the
LUE model in Eq. 1 has also been used to calculate GPP
for agricultural farmlands [89]. Given that the NPP is more
informative than GPP for agricultural purposes, some stud-
ies have estimated NPP using the same concept as in the
LUE model as follows [96-98]:

NPP = (fPAR) X (PAR) x (LUE). 2)

Despite that Eqgs. 1 and 2 have no difference in appear-
ance, application of the same calibrated LUE, that was
used for calculating GPP in this equation can cause NPP
overestimation. Estimation of NPP requires the considera-
tion of the respiration term and recalibration of the LUE
parameter. It is also possible to put the dry material (DM)
on the left-hand side of Eq. 1 [99], while any change in

the left-hand side requires a reinterpretation of LUE,,.
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Dry material is the dried body of a plant or a crop includ-
ing stems, leaves, roots, flowers, and fruits. Neglecting the
amount of NPP that is consumed by other creatures such as
insects and organisms during the growth period, the DM is
equal to the accumulated amount of NPP minus the weight
of the liquid component of the body. Based on which parts
are weighed and if the consumed portion is counted, the
calibrated LUE . can be case-specific. It is essential to dif-
ferentiate the reported LUE,, values in the literature since
the left-hand side of the equation may differ for different
research objectives. The training dataset and the process
of calibration used for the study should also be considered
before applying the reported potential LUE for another
study. A biome-independent LUE_,, for NPP estimation was
calibrated in the CASA model [100], while in the MODIS-
GPP algorithm, LUE_,, changes across the biome type [1,
101]. In the case of using a calibrated LUE_,,, which has
been obtained from a GPP training dataset, it is necessary
to calculate and import the autotrophic respiration term in
Eq. I and rewrite it as follows to estimate NPP:

NPP = (fPAR) x (PAR) x (LUE) — R,. 3)

In the MODIS daily GPP and annual NPP (MOD17A2/A3)
algorithm, the annual R, is calculated by summing the annual
Rg and the annual Ry;. The MOD17A2/A3 assumes that the
R is considered to be equal with 25% of GPP and the live
wood Ry, is calculated using the equations that relate live wood
mass to leaf mass [102].

3.2 LUE, . Based on the fPAR Definitions

'max
Despite the Leaf Area Index (LAI) that ignores the com-
plexities of canopy geometry (such as leaf angle distribution,
canopy height, or shape), it is only an abstract image of the
basic size of the canopy. FPAR is a radiation term that directly
relates to those remotely sensed variables which are affected
by the reflectance properties of different canopy structures
[103]. If it is considered that the intercepted fPAR by the
whole canopy contributes to the production of GPP, then
fPAR is defined as fPAR .,y and this concept leads LUE,
to be defined as LUE  cynopy- Through the fPAR ¢y, con-
cept, a sort of constant LUE, ;, c,,0py Values have been calcu-
lated for each of 11 biome classes and gathered into a table
known as Biome-Property-Look-Up-Table (BPLUT) for the
MODIS GPP/NPP algorithm [102]. The intercepted part of
the incoming radiation by the non-photosynthetic part of the
canopy turns to heat loss instead of GPP. Considering the
photosynthetic part of the canopy as the part that can produce
GPP, only the absorbed portion of fPAR(,,,, by the chlo-
rophyll (fPAR,) is used in the LUE model and leads to a
constant LUE ., value across all biome types. fPARy, can
be calculated using the Solar induced fluorescence (SIF) as a

@ Springer

remotely sensed proxy for the amount of chlorophyll content
of the canopy as follows [35]:

(SIF)

(EPAR)cw = BAR) % (FE)’ @

where FE is the fluorescence efficiency observed at the top
of the canopy.

3.3 Application of Chlorophyll Proxies in the LUE Model

Satellite chlorophyll proxies that are available for download
can be categorized into two SIF and chlorophyll index prod-
ucts. SIF is almost equal to 1-2% of the energy absorbed by
the photosynthetic part which is remitted between 734 and
758 nm by the chlorophyll content of the canopy. Interest
in SIF data has grown exponentially, and the retrieval of
SIF and the provision of SIF data products have become
an important and formal component of spaceborne Earth
observation missions [104]. Different space projects have
tried to capture this fluorescence emission with various
spatial and temporal resolutions (see Table 2) validated in
many research studies by in situ measurements over various
environments [105-108]. The SIF products are applied in the
LUE model to replace fPAR(opy and LUE 0y terms
with fPAR(,, and LUE ,, ~, terms improving GPP estima-
tions for global-scale environmental purposes [35]. To the
best of our knowledge, the application of satellite chloro-
phyll proxies in the LUE model for agricultural purposes for
tracing NPP, biomass, and yields in farmlands has not been
assessed yet. Negligence on the application of SIF products
by researchers for agricultural purposes can be due to the
coarse spatial resolution of these products, especially before
2016, when 1.3 kmx2.25 km (each pixel with an approxi-
mate area of 300 ha that can include variety of crops, soils
and management methods in agricultural regions) was the
highest available spatial resolution as show in Table 1. Pos-
sibly, it also can be due to insignificant contribution of non-
photosynthetic woody limbs in crop anatomy, supposing that
remote sensing of the crop canopy provides a good proxy for
the crop chlorophyll content. Any probable improvement in
NPP, biomass, and yield estimations on croplands using the
new SIF products (with finer resolution) or the downscaled
old SIF products can be investigated in future research to
make decisive comments. The LUE equation for estimating
GPP using the fPARy, concept is written as follows:

GPP = {(fPAR)y, X (PAR) X (LUE),,,, X (regulators)} — R,.

®)

Regulators in Eq. 5 are the environmental factors that

affect the calculation of LUE such as temperature, soil, and

water [109]. As NPP has always been the case for agricul-
tural studies, Eq. 5 can be written as:
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Table 2 Satellite products of NASA and European space agency for chlorophyll proxies and their spatiotemporal resolution. Continuity to the
MTCI is provided by OLCI on-board the Sentinel-3 missions from 2016 with a much higher spatiotemporal resolution

Chlorophyll proxies Resolution Available date Data openly available
Spatial Temporal
Greenhouse Gases 82 km? per 3 days Since 2009 https://data.caltech.edu/records/rtdes-7m264
Observing sounding (~ 10 km
Satellite diameter)
(GOSAT)
SIF product GOME-2 SIF 0.5° x 0.5° Daily Since 2007 https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/
GOME_F/
COC-2 SIF 1.3 km X 2.25 km 16 days  Since 2014 https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_SIF_
10r/summary ?keywords=0c02%20sif%20lite
0OCO-3 SIF 1.3 km X 2.25 km 16 days  Since 2019 https://disc.gsfc.nasa.gov/datasets/OCO3_L2_Lite SIF_
10r/summary
OLCI SIF 300 m x 300 m 2 days Since 2016 https://apps.sentinel-hub.com/eo-browser
TROPOSIF 7.5 km X 3.5 km Daily Since 2018 https://s5p-troposif.noveltis.fr/data-access/
(Sentinel-5P
TROPOMI
mission)
Chlorophyll MTCI 0.5° x 0.5° Decay 2002-2012 https://data.ceda.ac.uk/neodc/mtci/data
index OTCI 300 m X 300 m 2 days Since 2016 https://apps.sentinel-hub.com/eo-browser/

NPP=(fPAR)y; X (PAR) X (LUE),,,, . X (regulators). (6)

In Eq. 6, the LUE,,, ~, parameter can be calibrated
using NPP training dataset. It should be investigated if
Eq. 6 (fPAR(, and LUE_, ., concepts) could contribute
to improve NPP estimation on farmlands in agricultural
research. Given that traditional vegetation indices (VIs) tend
to exhibit saturation effects in dense canopies and consider-
ing the high correlation between satellite SIF datasets and
crop productivity [110], it is recommended to test the use of
SIF products in estimating crop production to explore their
potential for improving accuracy in such estimations. The
test may require the use of a downscaled version of the SIF
products as the spatial resolution of the available SIF prod-
ucts (especially before 2016) does not allow researchers to
calibrate LUE ., for specific crops (one pixel may cover
different types of land use).

3.4 Downscaled Version of the SIF Products
3.4.1 Regression Approach

Apparent canopy SIF yield of corn, soybean, forest, and grass/
pasture from two satellite instruments, OCO-2 and TROPOMI,
showed clear seasonal and spatial patterns [111]. This suggests
that the ability of SIF to observe spatial variances is worth
considering despite the coarse resolution of some SIF prod-
ucts. Despite the development of new SIF products with fine
resolutions, the endeavor to use coarse products is still ongoing

due to a lack of continuous satellite SIF data for long-term
evaluations [112]. One of the approaches to deal with the spa-
tial coarseness of the remote sensing products is downscaling
[113]. In the context of remote sensing, downscaling refers to
a decrease in the pixel size of remotely sensed images; this is a
scaling process, converting from a low to a high spatial resolu-
tion preserving the original image radiometry. Simplistically,
the average of the simulated high-resolution subpixel values is
equal to the pixel value of the original low-resolution image.
The effective emissivity is derived from the high-resolution
NDVI-composite image which has been used as the scaling
factor to downscale the LST image [114]. Along with the same
concept, the following equation downscales a SIF pixel with
0.05" spatial resolution (from GOME-2) using the number of
NDVI pixels with 250 m spatial resolution (obtained from
bands 1 and 2 of MODIS) covered by the SIF pixel:

(ST, = (ST X x5t 7
m 005° 7 (NDVI) 5
where SIF,s,, . is the downscaled SIF pixel with 250 m spa-
tial resolution, SIF, ;s is the original SIF pixel with 0.05"
spatial resolution, NDVI,s, is the NDVI pixel calculated
by red and near infrared bands of the MODIS with 250 m
spatial resolution, and NDVT, ,sc is the NDVI pixel with 0.05"
spatial resolution obtained from averaging NDVI,s, . pixels
underlaid the original SIF pixel. Both SIF s and NDVI,5,,
pixels should correspond to similar weather conditions, so
the downscaling process requires images of the same dates.
In another method, a linear regression model is established in
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the downscaling procedure [115]. After plotting SIF) s° pix-
els against NDVI, s pixels, the following equation is fitted:

(SIF)g 05" = @ + b X (NDVI)q - ®)

Assuming that inside a SIF, .- pixel the regression equa-
tion for SIF,s,, pixels versus NDVI,s,, pixels has the same
coefficients with Eq. 8, then it can be written as:

(STF)p50m = @ + b X (NDVI),50p,. )

The following revision is required on SIF,s,,, pixels to
preserve Eq. 8 for the downscaled SIF image:

(SIF) 50y = (SIF),5,, + 0 (10)
where SIF,, is the revised value of SIF,s,, and ¢ is calcu-
lated using the following equation:

_ avg
o = (SIF)g o5° — (SIF)OAOSO, 11

where SIF?)V(fSo is the average of the SIF,s,,, in pixels under-

laid a SIFO_(.)So pixel:
q
, (SIF)250m
(SIF)™® | = 21—250 (12)
0.05 q

where ¢ is the number of pixels underlaid a SIF, ;5 pixel.

3.4.2 Area-to-Point Regression Kriging

Downscaling changes the size associated with each data
value (support) which means that in geostatistics, it can be
considered as a change of support problem (COSP). The
GSOP is concerned with inference about the values of a
variable at points (point-referenced or simply point data)
or blocks (block data) different from those at which it was
observed [116]. Kriging processes have been applied to
take the kriged values for the blocks (larger support) from
the point-level observations (point-to-area prediction)
[117] and reversely to predict a support that is smaller than
that of the original data (area-to-point prediction) appli-
cable for the downscaling procedure [118]. For example,
one might be interested in the significance of the correla-
tion between point observations (point support) and data
derived from a regional model (areal support). In such
cases, the latter areal support predictions must also be
transformed to the point support level coherently in a way
that these point support predictions can reproduce exactly
the corresponding areal data when they are convolved
with the discrete sampling kernel (convolution kernel).
The uncertainty in downscaled data derived from coarser
resolution using area-to-point approach can be assessed in
a Monte Carlo framework [119]. In remote sensing, since
values lie in similar supports (pixels of the same size), the
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problem is simpler than for the cases with irregular sup-
ports (like zips in a census or hydrologic response units in
a semi distributed model) [120].

The prediction of area-to-point regression kriging
(ATPRK) for fine pixels Z\ll(x) of band k underlaid the
coarse pixels Z{,(x) of band 11is [113]:

Z\x) =Zw) + Z, ) (13)

where Z‘l/1 (x)and Zf/ ,(x) are the predictions of the regression
and ATPK parts. The regression part takes advantage of fine
ancillary data. For example, in case of downscaling a coarse
band of MODIS, one of the fine bands with the greater cor-
relation coefficient can be selected as a band that provides
ancillary data to be fused for the coarse band. Zbl(x) is the
prediction of the linear regression between the coarse band
Z\, and its corresponding ancillary fine band Z!* (used as
covariate) that can be calculated as follows;

ZL (x) = ay x Z¥(x) + b (14)

To estimate g; and b;, Eq.15 assumed to be exist at
coarse spatial resolution:

Zy,(X) = a, X Zyy (x) + b, (15)

where Z{l,‘ (x) is the coarse image produced by upscaling Zlvk
using the point spread function (PSF) and the convolution
operator. The residuals of the regression should be calcu-
lated to reproduce the spectral properties of the observed
coarse data. ATPK part downscales the residuals Z{,Z(x) to
fine spatial resolution residuals Zf,z(x). Based on ATPK,
the fine residual Zéz(x) is a linear combination of N coarse
residuals of band I:

N

N
2, = ) (AXZhy ()5t ) A =1, (16)
i=1

i=1

where 4, is the weight vector {4,, ..., Ay} that yields the mini-
mum prediction error variance among all weighed linear com-
binations of N coarse residuals. 4; is obtained from the corre-
sponding kriging system consists of coarse-to-coarse residual
covariance between coarse pixels, fine-to-coarse residual
covariance between fine and coarse pixels, and the Lagrange
multipliers. The N coarse residuals are from the N coarse pixels
surrounding the pixel in a N X N window. In case the area-to-
point regression kriging method is used to downscale a coarse
SIF image, a finer NDVI image obtained from MIDIS or Land-
sat bands can provide the required ancillary data.

3.4.3 Super-Resolution Mapping

Super-resolution mapping (SRM) uses auxiliary data to
increase the spatial resolution of each pixel based on the
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classification techniques [121]. The objective is to increase
the spatial resolution of an image with a coarse spatial resolu-
tion using other image(s) with the desired fine spatial reso-
lution but of a different spectral band(s) [122]. Unlike hard
classification approaches that assign one class for each pixel,
soft classification approaches predict the proportional cover
of each land cover class within each pixel. However, the loca-
tion of the land cover classes in the mixed pixels (the spatial
resolution of the thematic map) is not increased relative to
that of hard classification. SRM predicts the location of land
cover classes within a pixel based on the proportion images
produced by soft classification using different approaches like
image fusion [123]. Since soft classification methods are lim-
ited in terms of detail and accuracy of the resulting thematic
map, it is suggested the information available at a finer spatial
resolution should be used. Several sources of information at
a finer resolution are geostatistical data, fused images, and
panchromatic imagery [124]. A proliferation of SRM meth-
ods includes artificial neural networks, subpixel-swapping
methods, spatial attraction models, Markov random fields,
geostatistical solutions, interpolation-based approaches, and
other advanced methods [125].

Generally, an SRM analysis has two main steps: first
downscaling the coarse resolution fraction image to a fine
spatial resolution indicator image which represents the pos-
sibility of each fine resolution pixel belonging to a speci-
fied land cover class and, second, combining fine fraction
images to produce a fine resolution land cover map [126].
SRM models use different techniques for the downscaling
step. SRM models based on spatial dependence that define
the spatial pattern explicitly may be inadequate for the
representation of complex land cover mosaics for which a
learning-based model may work better in SRM [127, 128].
The aim of a learning-based model like back-propagation

P opoﬁ"o“ \m’c\%‘i

Fine spatial resolution indicator pixels

neural networks and support vector regression is to learn the
spatial pattern of land cover from existing fine-resolution
land cover maps assuming that the pattern is constant while
their performance is limited in the case of existing complex
nonlinear relationships between the coarse and fine resolu-
tion data [126]. Deep learning methods have been shown to
have considerable potential in SRM to produce more accu-
rate maps than traditional machine learning approaches
[129]. Figure 3 shows a schematic of a SRM process through
which a downscaled pixel is produced from the proportion
image and the auxiliary pixels. In the case of downscaling a
coarse SIF image, the SIF image is used to produce propor-
tion images, and the next one or multiple auxiliary images
such as a panchromatic image or a vegetation index image
obtained from other satellites with higher resolution can be
tested in RSM. By evaluating the downscaled SIF images
obtained from the application of different sets of auxiliary
images, the best set of auxiliary images for downscaling SIF
images can be determined.

3.4.4 Long-Term Temporally Corrected and Spatially
Downscaled SIF Product

Due to the temporal inconsistency induced by sensor degra-
dation and to correct the impacts of the degradation, genera-
tion of long-term temporally corrected and spatially down-
scaled SIF products is one of the latest attempts in making the
SIF products practical for studies [112]. The process includes
three main steps: spatial downscaling, temporal correction,
and multi-sensor fusion. The process leaded to generate a
long-term temporally corrected SIF product from July 1995
to December 2018 with a high spatial resolution (0.05°).
Downscaling phase can be conducted using the LUE-based
method and machine learning methods [130, 131].

Auxiliary pixels

X

\

+
Il

¥

Fig.3 A schematic of a downscaled pixel using RSM, assuming
that the goal is to increase the resolution of a coarse pixel by 4 times
according to the resolution of the existing auxiliary pixels. It is also
assumed that the proportional value of the coarse pixel is estimated
to 50% in the proportional image. Based on the above assumptions, 6

Downscaled pixel using SRM

modes can be imagined for the downscaled pixel, and the downscaled
pixel is one of these modes. An auxiliary pixel or auxiliary pixels are
used to determine one of the modes with the highest probability as
the downscaled pixel
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To conduct temporal correction phase, a long-term
time series of satellite SIF in a region as the benchmark
is required to correct the trend. A stable desert with a very
sparse vegetation is recommended as a benchmark since the
SIF signals is expected to be very small and constant across
the recent years in such a land cover [112]. Average monthly
time series of satellite SIF are extracted for the benchmark to
get the normalized SIF time series which is used for correct-
ing the temporal trend of satellite SIF. Finally, cumulative
distribution frequency (CDF) matching approach is used to
fuse these three independent SIF datasets into a long-term
consistent data record [131].

4 Functional Models

Functional models are simplified versions of the com-
plex mechanistic models or a combination with statistical
schemes and are more suitable for operational crop yield
forecasting due to their minimal data input requirements, and
the key processes can be parametrized using approximate
equations [48, 132]. In recent years, functional models have
tended to integrate both climate and remote sensing indices
into unified yield prediction models [133-136]. Functional
models can be trained through a single predictor regression,
a multiple linear regression, or a nonlinear relation analysis
approach [54, 55, 60],). Along with the agricultural perspec-
tive, functional models in combination with forecast statis-
tical algorithms are used for yield forecasting and produce
early warnings [48]. Figure 4 is a flow inferred from the
reviewed research to show the contribution of statistical and
mechanistic models and remote sensing data in a functional
model that can estimate NPP and yield values and produce
early warning for yield reduction before harvest.

Fig. 4 Development of the
concept of functional model
through the incorporation of
statistical and mechanistic
models, as well as the utiliza-
tion of remote sensing data
to estimate spatiotemporal
distribution of NPP and yield
values and its combination
with forecasting algorithms
to produce early warnings for
probable yield reduction before
harvest (inferred from the
reviewed research)

Single linear

Remote sensing regression

data

Data assimilation
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Statistical model

Multiple linear

A linear regression model that can

estimate NPP or yield from one or

multiple remote sensing predictors
(and maybe other predictors)

4.1 Different Methods in Functional Models

Functional models include different approaches through
which process-based methods are combined with remotely
sensed data. Figure 5 describes one of these approaches
based on an empirical equation between fPAR and LAI
[55]. According to the proposed methodology, LUE is cali-
brated using the data obtained from running a crop model.
The model is run for different scenarios for each DOY to
estimate NPP and LAI values for that DOY. The NPP and
LAI values for each DOY obtained from the crop model are
shown with CM subscript (NPP,, and LAI,, respectively).
Several values for NPP,, and LAl are calculated based on
different scenarios on each DOY for which the (Rz)Yeml’DOYl
value is obtained by plotting them versus each other. The
process is applied for different years for which the required
key parameters for running the crop model are available.
The highest amount of R? determines the DOY on which
the LAI (shown with LAI,,) returns the best estimation of
NPP. The LAl value returns the fPAR value using a linear
equation which is shown with CM subscript (fPAR,) since
it is obtained from running a crop model. Using the fPAR ),
value, LUE, is calculated by the LUE equation. Finally,
the NPP value for each pixel (NPPy; grs) is calculated from
the calibrated LUE value (LUE,,) and the remotely sensed
fPAR value (fPARyg) using the LUE equation.

Figure 6 shows another approach for building a func-
tional model based on converting LAl to pseudo-LAI
observations (LAlpg) and a multiple linear regression
equation [54]. The proposed method provides a way to
estimate the spatiotemporal distribution of the NPP values
using remotely sensed vegetation indexes integrated with
weather data. In the first step, the LAI values obtained
from a crop model are converted to pseudo-vegetation

Functional Model

In absence of enough amount of required
measured data to train the model

+  Mechanestic (Bio-Physics) model

Production of a training set:by running a

Cl‘Op models crop model based on the key parameters

Machine learning NPPtraimng Ser

regression LAltraining set

A model that can estimate NPP or
yield from analyzing non-linear
relatioships among multiple remote
sensing predictors
(and maybe other predictors)

Assessment of uncertainity

NPP and Yield values

Forecast statistical algorithms

Early warning before harvest
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Fig.5 A proposed process for Year 1
estimating the spatiotemporal DOY 1
distribution of NPP values in ]

which LUE is calibrated by
the data obtained from run-
ning a crop model for several
scenarios. The calibrated LUE
is used in integration with the
fPAR product of satellites to
calculate NPP for each pixel

NPPcmy Vs. LAlga
Scenario 2

NPPcmz Vs. LAlgp2

Scenario n
NPPen V- LAlcym

Year 1
DOY 2

Scenario 1
NPPcmq Vs. LAlgpg

—(R*)year 1,p0v 1

DOY corresponding to the highest R?

Scenario 2

— (R®)year 1,007 2

N

NPPcymz Vs. LAlpz

Scenario n
NPPcmn VS. LAlgpm

Year n
DOY n

Scenario 1
NPPcmg Vs. LAlgpg

Scenario 2

NPPcmz Vs. LAlgp

Scenario n
NPPcyMn V. LAlcpm

index observations using empirical equations. The pseudo-
values are used to calibrate the coefficients of a multiple
linear regression model after which the real remotely sensed
values of a vegetation index are imported into the model to
calculate the NPPy, rs values. Instead of training a simple
linear or multiple linear regression equation, grid data on
crop yield, remotely sensed data, and climate data can be
used to train a machine learning method such as the deep
learning algorithm to estimate crop yield [137].

4.2 Application of Chlorophyll Proxies in Functional
Models

Based on the promising results obtained from the use of
chlorophyll proxies in estimating GPP using LUE models,
the present paper proposes the evaluation of these prox-
ies in functional models in estimating NPP and yield for
agricultural purposes. Application of chlorophyll proxies in
functional models can be followed by introducing new NPP
and yield chlorophyll-based predictors for these models. The
proposed predictors that can be evaluated in future studies
in estimating NPP and yield can be a chlorophyll index or a
multiplied sentence including fPAR,. The proposed pre-
dictors can be used to build a single linear regression model
shown in Eqs. 17 and 18.

LAl corresponding to the highest R? — LAlg,;
fPAR = a X LAl + b - fPARcy = a X LAlggg + b

Since the calculated fPAR in this stage is obtained
from crop models it is called fPARcy

v

LUE¢y = NPP / (PAR X fPARcy)

v

NPP 1 zs =PAR X fPARgs X LUE ¢y,

NPP = a X (Chl) + b, (17)

NPP = a X (fPAR)y; X (PAR) X (LUE),cm + 55 (18)

where Chl is the chlorophyll index such as MTCI and OTCI,
fPAR(y, is the fPAR relating to chlorophyll content of the
canopy and LUE . ~, is the maximum daily LUE based
on PAR absorption by canopy chlorophyll. The predictors
can be used in a multiple linear regression model shown
in Egs. 19 and 20. In a multiple linear regression model,
a chlorophyll-based predictor can be integrated with other
predictors (P) as below:

NPP = a, X (Chl) +a, X P + a5, (19)

NPP = a; X (fPAR)y X (PAR) X (LUE),,,  +a, X P+ a.
(20)

Since the amount of actual evapotranspiration in the anthe-
sis stage (ET 4 mesis) has been recognized as a differentiating
factor to categorize wheat fields into high-productive and low-
productive classes [138], a model in which P is replaced by
ET 4 chesis €an be evaluated for estimating yield before harvest.
Remotely sensed chlorophyll-based predictors in addition to
other predictors relating to weather, soil type, soil moisture,

@ Springer
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DOY 1 DOY 1
. A multiple linear regression equation is built
Scenario 1 Scenario 1 using Vector of weather attributes (W), Vector

NPPCMI Vs. LAICMl

Scenario 2
NPPCMZ Vs. LAICMZ

Scenarion
NPPCM‘n Vs. LAICMn

DOY 2

Scenario 1
NPPCMl Vs. LAICM]_

NPPCM1 Vs. V|p01
Scenario 2

N PPCMZ Vs. V|p02

Scenarion
N PPCMn Vs. VIPOn

of remotely sensed vegetation index (VI) and
coefficients of regression(a,b ,c and d)

NPP=a+bXW+c XVI+d XW xVI

DOY 2

Scenario 1
NPPCM1 Vs. V|p01

Scenario 2
NPPCM2 Vs. LAlCMZ

Scenario 2
NPPCM2 Vs. leoz

Scenarion
NPPCM" Vs. LAICMn

Scenarion
NPPcMn Vs. Vipon

Coefficients of the multiple linear regression
equation are determined for each DOY (each
image) by substituting NPP¢); and Vlp values
on that DOY in the equation

NPPcy=a+b X W+c X Vipg+d X W X Vlipg

DOY n DOY n

Crop model estimations —» Pseudo observations

Scenario 1
NPPcM1 Vs. LAlgae

Scenario 1
NPPCM1 Vs. V|p01

Scenario 2
NPPCM2 Vs. LAICMZ

Scenario 2
NPPCMZ Vs. V|p02

Scenarion
NPPCMn Vs. LAICMn

Scenarion
NPPCM" Vs. VIPO!I

By substituting the VIp( values with remotely
sensed vegetation index values (Vi) on each
DOY, the NPP(y;;gs Values are calculated for
each pixel on that DOY using the calibrated
multiple linear regression.

Fig.6 A proposed process for estimating the spatiotemporal distribution of NPP values in which a multiple linear regression equation is cali-

brated using pseudo-vegetation index observations

topography, fertilizers, pesticides, etc. can also be used to train
a complex machine learning model for further investigation of
NPP and yield estimation. Despite an observed strong seasonal
correlation between SIF and GPP, changes in plant growth
stages can affect this relationship. Recently, the relationship is
investigated for maze from C4 plant category, and it has found
that canopy structure impacts seasonal variations of SIF and
its relation to GPP [36]. It has been found that exponential
regression is the best method to capture the nonlinearity at the
site level, while the degree of the nonlinearity varies among
different biomes [139]. Indeed, SIF-GPP relationships tend to
vary not only between vegetation types but also between crop
species specifically [140]. However, additional measurements
for different vegetation types are necessary for fully under-
standing the effects of factors on SIF signals for on croplands.
The fact that the relationship between SIF and photosynthesis

@ Springer

changes both seasonally and by events may lead to test the
nonlinear functions or non-constant coefficients in building
functional models for future studies.

5 Conclusion

A comprehensive overview and categorization of the lit-
erature that include GPP and NPP studies were presented
to clarify the different approaches applied to estimate GPP
and its derivatives with environmental and agricultural pur-
poses. From an environmental perspective, GPP as the out-
put from dynamic global vegetation models was reviewed
to identify its role in quantification of vegetation production
and in simulation of ecosystem processes and the hydro-
biochemical cycle [141]. The terrestrial carbon cycle
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also can be traced using the simple LUE model instead of
multiparameter complex models [89]. Application of the
LUE model for quantification of GPP in the biosphere has
improved by introducing fPAR(,; and LUE, concepts
based on remotely sensed SIF products [35]. The review
indicated that just as the GPP estimations are important for
environmental purposes, so are its derivatives, NPP, bio-
mass, and yield for agricultural purposes where attempts
have focused on crop yield predictions made before harvest
[48, 138]. The review showed that the LUE model, crop
models, statistical models, and their incorporation into so-
called functional models are the common approaches for
estimating the NPP as the most important derivative of GPP
in agricultural perspective. Due to a promising application
of chlorophyll proxies in the utilization of the LUE model
at global scale environmental studies for estimating GPP
[35], this study proposes the test of these proxies in reginal
scale agricultural studies for estimating NPP, biomass, and
yield. In the process of estimating NPP using chlorophyll
proxies, coarseness of the spatial resolution of historical
remotely sensed SIF products can limit their application for
agricultural purposes. Hence, different downscaling meth-
odologies that can be used in the downscaling process of
the SIF products were reviewed. Generation of long-term
temporally corrected and spatially downscaled SIF product
with cumulative distribution frequency (CDF) matching
approach was of the latest attempts to increase the resolu-
tion of SIF products up to 0.05° [112, 131].

With the increase in access to high resolution products
of SIF and chlorophyll proxies, the present review paper
proposed their application for being tested in both the LUE
and functional models for estimating NPP, biomass and yield
in agricultural studies. Since different functional models can
be built by different combinations of predictors including
ground measured or remote sensing predictors, introducing
any new remote sensing predictor that can reduce depend-
ency on the field measured data is useful to fulfill the objec-
tive of the functional model. Non-linearity generally exists
between total emitted SIF and GPP at the canopy level that
may require the change of the proposed linear equations into
nonlinear forms or employment of different coefficients for
crop growth stages. Hence, future studies on testing remote
sensing chlorophyll-based predictors will make it clear if
they are able to increase the accuracy of NPP estimations
with the LUE model or reduce the dependency of functional
models on field measured data.
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