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Abstract
The species-area relationship (SAR) is widely applied in ecology. Mathematically, it is usually expressed as either a semi-
log or power-law relationship, with the former being introduced by Gleason and the latter by Arrhenius. We here resolve the 
dispute about which form of the SAR to prefer by introducing a novel model that smoothly transforms between the Gleason 
semi-log (GSL) and Arrhenius power law (APL) forms. The model introduced has the form of lnq (S) = a + z ln A, with lnq 
being a generalized logarithmic function, which is a linear map (y = x) for q = 0 and a logarithmic map (y = ln x) for q = 1 and 
q can take any intermediate value between 0 and 1. We applied this model to 100 datasets (mostly islands), linking species 
richness to island area. The APL was the preferred model in 68% of head-to-head comparisons with the GSL. Both models 
were supported in 40% of cases. In just under half (44%) of the cases, an intermediate model best explained the data. The 
results demonstrate the utility of a simple intermediate SAR model. Visualizing the profile of the range of model fits for all 
q ∈ [0, 1] (a q chart) allows us to gain extra insight into SARs not yielded by head-to-head comparisons of GSL and APL. 
The mathematics related to the generalized logarithmic function introduced here should have applications to other areas of 
ecological modelling.
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1  Introduction

One of the earliest and persistently robust observations in 
the field of biogeography and ecology is that the diversity 
of species of a taxon increases in a predictable way with 
the area surveyed or the total area available (i.e., as on an 
oceanic island). This species-area relationship (SAR) has 
been described as the closest thing to a rule in ecology [1]. 
SARs have become fundamental to the understanding of 
patterns of biodiversity and a critical tool for predicting 

biodiversity loss [2–4]. The form and parameterization of 
SARs are known to be significantly affected by sampling 
scheme, spatial scale, and the types of organisms or habitats 
involved [4–7].

First observed as a qualitative phenomenon by naturalists 
such as Forster [8], it was originally presented in mathemati-
cal form by Arrnehius [9] as a power law:

where S is species richness, A is area, and c and z are param-
eters which are determined empirically. This was almost 
immediately challenged by Gleason [10] who counter-pro-
posed a SAR with a semi-log form (hereafter GSL):

One of Gleason’s main critiques of the Arrhenius’ power law 
SAR (hereafter APL) was that it gave “impossibly high esti-
mates” for large areas. In practice, this is not a such problem for 
oceanic islands, since island size is naturally bounded and usually 
relatively small (one of the largest oceanic islands is the large 
island of Hawaii which is approximately 10,457 km2, but more 
typical are the islands of the Cape Verde archipelago which range 

(1)S = cAZ
,

(2)S = a + b lnA.
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from around 2 to 1000 km2). This consideration has, however, 
led to later scale-dependant variants of the SAR, for instance, 
the persistence model of Plotkin et al. [11] for tropical forest 
plots (i.e., [11]) and the triphasic SAR model applicable across 
many orders of magnitude of scale (see [12]. At the scales we are 
interested in for this study, this consideration is largely irrelevant. 
In contrast, however, of particular relevance for us here is the 
observation that, for many field studies, the reported data often 
fall somewhere between the power law and semi-log models (i.e., 
[13, 14]). This suggests that a simple head to head comparison 
between the APL and GSL models may be inadequate.

Tjørve [15] proposed a hybrid model SAR to better fit 
datasets which did not cleanly fit an APL or GSL pattern. 
This model involved simply multiplying the two models 
together while introducing parameters to “slide” between 
mixed states of the GSL and APL, i.e.:

where c1, c2, b, d, and n are parameters.
This model has one immediate major problem, however, 

which is the number of free parameters it now contains. Tjørve 
resolves this problem by fixing four of the six parameters, b, z, 
c1, and c2, so that only two parameters, d and n, remain to be fit-
ted by regression. The justification for this scheme of parameter 
fixing relies on data not being noisy, which is a fair assumption 
for nested sample areas, such as those used for species accu-
mulation curves. However, data from non-nested areas, such as 
islands, do not conform to this assumption. This is why Tjørve 
[15] states that this hybrid model is not intended for, nor should 
not be fitted to, island SARs. The model that we propose has no 
such limitation and is, therefore, applicable to any SAR, includ-
ing the island SAR and species accumulation curves [16].

In this study, we present a novel method of construct-
ing SARs, intermediate between the APL and GSL forms, 
without the limitations of the Tjørve model. Our approach 
utilizes the generalized logarithmic function, which has not 
previously been part of the mathematical ecologist’s toolkit 
and is likely to be useful in other contexts (see Section 4.2). 
The resulting model contains only one additional free 
parameter and is identical to the regular APL and GSL in 
the limit cases (q = 1 and q = 0). We test the new approach 
on 100 datasets gathered from the literature, including the 
original datasets of Arrhenius and Gleason.

2 � Methods

2.1 � The Generalized Logarithmic Transform

A logarithmic function can be conceptualized as a com-
pression of space (or time) along some dimension. A 
generalized logarithmic function is where we have some 

(3)S = (c1 + blogA)
dA

A+n × (c2A
Z)

1−
dA

A+n ,

parameter (here q) which controls, continuously, the 
degree of compression along that dimension. Mathemati-
cally, such a function (in base e) can be defined as:

Equation (4) is a modified form of the generalized loga-
rithmic function as given in Tsallis [17] with the bottom 
limit changed from 1 to q. This makes the transformation 
exact rather than approximate (see also Martinez [18]). 
This then evaluates as

where p = 1 − q and q ∈ [0, 1] (derivation of this given in 
Appendix 2). This function smoothly transforms between 
a null transform (ln0 x = x) and a natural logarithmic trans-
form (ln1 x = ln x). Equation 5 is a modification of the Box 
Cox transform which is already approximately what we 
seek (the Box Cox transform goes from y = ln x to y = x + 1 
instead of to y = x so it just slightly “misses the mark”). This 
is fixed by the introduction of the qp term. The relation of 
Eq. 4 to the Box Cox transformation is given in detail in 
Appendix 1 in the Supplementary Materials, along with 
a discussion of the additional mathematical properties of 
this function.

2.2 � A New Hybrid SAR Model

The GSL model can be expressed as a log-transformed 
version of the APL, i.e.,

Therefore, a function such as that defined in Eq. 5 can 
smoothly transition from a linear map to a logarithmic 
map, producing a very simple hybrid SAR model, i.e.,

Although the form of Eq. 7 is the most convenient to 
conceptually understand the basis of our approach, a direct 
non-linear regression on data using this model immedi-
ately runs into some difficulties. If we expand Eq. 6 using 
Eq. 4, we get

If we fit this model in this form, then p (= 1 − q) appears 
with both c and z as well as twice independently (counting qp 
as a single instance). This has the potential to introduce statis-
tical artefacts into the parameter estimates since the estimate 

(4)lnq(x) = ∫
x

q

dt

tq
.

(5)ln
q
x =

{

x
p−qp

p
if q ≠ 1

ln x if q = 1
,

(6)s = ln(cAz) = ln c + z ln A.

(7)S = lnq(cA
z).

(8)S =
(cAz)

p
− qp

p
=

CpApz − qp

p
.
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of the optimal q value will be weighted more heavily over the 
over the estimates of c and z.

If instead we fit

where d = ln c (i.e., similarly to how the APL is regularly 
fit as a linear regression in log-log space), then this cleanly 
separates the optimization of the lnq transformation of the 
response variable from the estimation of the parameters on 
the RHS (z and c). Henceforth, we refer to Eq. 9 as the SqA 
model, and when we refer to the q value associated with this 
model, we are referring to the q in Eq. 9. In addition, the 
iterative optimization of the RHS of Eq. 9 over a range of 
different q values gives us a graph of an ensemble of models, 
which we call a q chart, which furnishes us more information 
about the relationship between species and area than would 
a single, non-linear, model fit.

There are some algebraic subtleties involved in the rela-
tionship between the expressions of the overall model given 
in Eq. 7 versus Eq. 9. Specifically, if we designate the q of 
Eq. 7 as q¯ and the q of Eq. 9 as q (or vice versa), then the 
relationship between them is given by

where expqx is the inverse of the lnq function (expq x = (xp 
+ qp)1/p). Thus, the model of Eq. 9 is properly expressed, in 
linear space, as

It is cleaner, for reasons already discussed, to estimate the 
parameters of this model in the form given in Eq. 9. The only 
reason that we introduced this model in the form of Eq. 7 is 
that, so expressed, the motivation for such a model is most 
immediately obvious. These mathematical details and the deri-
vations they rely upon are documented more fully in Appendix 
1 in the Supplementary Materials. For our current purposes, 
it is enough to note that as long as the path in function space 
between the GSL and APL is monotonic, and a full set of inter-
mediate models is represented, then we will have meaningful 
and interpretable results.

2.3 � Data

We analysed 100 datasets for which at least one of either the 
APL or GSL was statistically significant. Data was collated 
from GIFT database and from datasets previously published 
in the literature [19]. A full list of the sources of the data used  
is provided in Appendix 3 in the Supplementary Materi-
als. For Arrhenius’ and Gleason’s original datasets [9, 10], 
we present the analysis in detail, since these were the data 
that were the historical context for the original APL vs GSL 

(9)lnq S = z ln A + d,

(10)lnqx = lnq
(

expq
(

lnq(x)
))

,

(11)S = expq(ln(cA
z)).

debate. Arrhenius used species counts for plant associations 
of different types lying in the islands of Stockholm, sampled 
areas increasing by square decimetres up to 100, except for 
weed association species where the maximum area was 300 
dm2. Gleason, by contrast, used species counts of a series 
of scattered and contiguous quadrats for aspen associations 
in North Michigan. In Arrhenius’s data set, thePinus woody 
species were aggregated, similar to Tjørve [15], and the 
weed association species considered separately.

2.4 � Analysis

A model of the form of Eq. 7 was fitted iteratively by simple 
multiple regression while changing the value of q in the lnq 
transformation of the response variable over the interval of 
[0, 1] by increments of 0.01. Any models which are statisti-
cally significant for any q value are kept. We then compared 
the statistically significant models using the second-order 
bias correction to the Akaike information criterion (AICc) 
recommended for small samples [20].

Comparing AICc values for model fits with different 
transformations of the response variable (such as models 
defined by Eq. 9 which have a different q value) would mean 
comparing residuals in spaces where they are scaled differ-
ently, and so the errors are not directly comparable. There 
is, fortunately, a simple way to correct for this and recover 
useful AICc comparisons. This is by employing a Jacobian 
term as advised by Akaike [21]. A Jacobian transformation, 
the same one as used when changing variables in calculus, 
can be multiplied by the likelihood function when compar-
ing models in different coordinate systems by likelihood to 
make such comparisons statistically meaningful. Since AIC 
is constructed using a log-likelihood, this turns out to be a 
simple additive correction:

where si is the number of species in the ith sample or island 
and q is the q in Eq. 9. The novel part here is how the q term 
is incorporated, which, fortunately, turns out to be as simple 
as one could want: the usual Jacobian correction is multiplied 
by q. When using AICc, the model with the lowest value 
is considered to be the best, that is closest to the unknown 
“true” model. Models within an absolute difference (∆AICc) 
of one or two units are usually considered to be indistinguish-
able in statistical power [22, 23]. Thus, we consider a model 
to be equally well supported by the data as another model if 
it had ∆AIC < 2 following Triantis et al. [23].

Regressions were run for Eq. 9 for 101 q values spanning 
the range q ∈ [0, 1]. This was done using fitlm in MATLAB 
R2019b (code used given in Appendix 2 in the Supplemen-
tary Materials). For each regression, we extracted the AICc 

(12)AICCQ = AICC + 2q

(

∑

i

lnSi

)

.
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and the p-values of the slope and the intercept from model 
structure outputs and plotted the q values for models against 
the AICc values for those values of q which generated a 
statistically significant model (a “q chart”). A model was 
deemed statistically significant if both the slope and the 
intercept were statistically significant at the < 0.05 level.

In Section 3, we give overall statistics for all model fits. 
The q charts are given there for the Arrhenius and Gleason 
datasets. Those for the remainder of the model fits are given 
in Appendix 4 in the Supplementary Materials.

3 � Results

3.1 � Arrhenius Stockholm Dataset

For the (aggregated) Pinus wood species in Arrhenius’ study, 
we have the optimal SqA model at 0.5 < q < 0.8. All SqA 
models are statistically significant for all q. For the weed asso-
ciation species, the optimal SqA model was in the range 0.75 < 
q < 0.95. There was a statistical significance cutoff at around 
q = 0.4; that is, no SqA models with q < 0.4 were statistically 
significant. If only the APL and GSL were compared, the APL 
would be preferred for both datasets (see Fig. 1).

3.2 � Gleason North Michigan Dataset

The scattered quadrats clearly show a semi-log SAR (q = 0). 
For the contiguous quadrats, the power law is actually pre-
ferred on a head to head comparison, although the optimum 
model was q = 0.79 which is better supported (∆AICc > 2) 
statistically than the APL model (see Fig. 2).

3.3 � Example Model Fit Graphs

Examples of the model fits against the data are shown in 
Fig. 3, where we see how the APL, the GSL, and the opti-
mum SqA SAR fit the real data. In the case of Arrhenius’ 
Pinus woody species (Fig. 3A), the raw data more strongly 
supported the APL. For Gleason’s contiguous quadrats of 
aspens, the data more strongly supported an intermediate 
model, although the GSL would still have registered as sta-
tistically significant if it was the only model tested. In both 
cases, the optimal SqA model was a better fit for the data 
than either the APL or the GSL.

3.4 � Statistics for Model Fits Over the 100 Datasets

The APL was statistically significant for 90% of the data-
sets, and the GSL was statistically significant for 50% of the 
datasets. On head to head comparisons (i.e., if the intermedi-
ate models are not considered), the APL is preferred in the 
majority (68%) of cases. The GSL was preferred in 26% of 
cases. In 6% of cases, the APL and GSL models were equally 
well supported by AICc (∆AICc < 2). Both models were at 
least statistically significant (if not preferred) in 40% of cases.

The ranges of q values for statistically equally well sup-
ported models are shown in Fig. 4. We see here that there 
are a majority of datasets where an intermediate model would 
be preferred but also that the APL would be preferred in the 
majority of cases in a head to head comparison with the GSL. 
There are a number of cases for which q = 1 for the opti-
mal model, but hardly any with q = 0 for the optimal model. 
Overall, higher q values predominated (mean = 0.7, median 
= 0.76). The range of q values representing SqA models of 

Fig. 1   SqA model fits for Pinus wood species and weed association spe-
cies from [9] study of sites located in the islands of Stockholm. The red 
boxes indicate the range of SqA models which were within ∆AICc < 2 

of the optimal model. The black line on the right hand side graph of 
weed association species indicates the cutoff for statistically significant 
models, with no SqA models statistically significant for with q < 0.4
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∆AICc < 2 versus the optimum model was, however, rather 
large (mean = 0.4, median = 0.3) (Fig. 5). In 44% of cases, 
neither the APL or the GSL models were contained within the 
∆AICc < 2 interval around the optimal SqA model.

4 � Discussion

Applying the generalized logarithmic function to analyse 
species-area relationships (SARs) revealed that models 
intermediate between the Arrhenius power law (APL) and 
the Gleason semi-log (GSL) models can often best describe 

the data. If we take averages over the datasets, we do see 
broad support for the general practice of using the APL as 
the default SAR model. The mean of q = 0.7 together with 
a wide average range of ∆q ≈ 0.4 of models which were 
considered as good as the optimum model (∆AICc < 2) indi-
cates that the APL should at least show no substantial lack 
of fit in most cases. This is consistent with the findings of 
Conner and McCoy [2] who found that of the 100 datasets, 
they examined the APL showed no substantial lack of fit for 
75 of those datasets.

When comparing the APL and GSL head to head, two 
results suggest that an intermediate model might perform 

Fig. 2   SqA model fits for scattered and contiguous quadrats for aspen associations in North Michigan from [10] study. The red boxes indicate the 
range of models which were within ∆AICc < 2 of the optimal model

Fig. 3   Graphs illustrating the model fits for the Arrhenius power law 
(APL = grey), Gleason semi-log (GSL = orange), and optimal lnq 
S = d + ln A (SqA = yellow) SAR model fits against the raw data (blue 
dots) for A Arrhenius’s Pinus woody species data and B Gleason’s 
contiguous quadrats aspen association data. For the Arrhenius Pinus 

woody species, in linear space, residual sum of squares (RSS) for the 
GSL = 31.411, APL = 18.627, and optimal SqA = 8.074. For the Glea-
son contiguous quadrats, RSS for GSL = 28.821, APL = 8.925, opti-
mal SqA = 3.070
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better than either form of the SAR in some cases. Firstly, 
both models were statistically significant for 40% of the 
datasets, and these cases could therefore count as sup-
port for either model, if only the APL and the GSL were 
considered. Secondly, in only a few (6%) of the cases 
were the APL and GSL equally well supported by AICc. 
The first point is well illustrated by fits for the Aspen 
association data of Gleason. Although taken together the 
contiguous and scattered quadrats show statistical support 
for the GSL, the contiguous quadrats are actually better 
fit by the APL.

The results of the model fits for the 100 datasets fall into 
three main categories of interest:

1.	 where either the APL or GSL would be clearly preferred 
on a head-to-head com-parison and one of them is the 
optimal model.

2.	 where both are equally well supported by AICc.
3.	 where an intermediate model is clearly preferred.

In just under half (44%) of cases, a hybrid model (q ≠ 
1, q ≠ 0) was preferred and neither the GSL or the APL 
were equally well supported as the optimal model by AICc 
(∆AICc < 2). Thus, we find that we concur with Tjørve 

[15] in that, for a large proportion of the datasets in the 
literature, the best fit is a model somewhere between the 
APL and GSL. Indeed, 3 of the 4 original datasets used to 
derive the APL and GSL models are better described by 
intermediate models. It is thus both important to consider 
the optimum SAR (and surrounding models) model prior to 
further analysis and interpretation. Investigating q charts, 
such as those shown in Figs. 1 and 2, is more informative, 
we believe, than fitting a single model.

4.1 � A Note on Scattered Versus Contiguous 
Quadrats

Since the time of Arrhenius and Gleason, much research 
has been devoted to how sampling effort and sampling 
design can affect the observed shape of the species-area 
curve (see, for instance, [24–26] and references therein). 
What is particularly interesting when comparing Arrhe-
nius’ and Gleason’s datasets, in the context of the original 
debate, is the use of both scattered and contiguous quadrats 
in Gleason’s study. It is the scattered quadrats, rather than 
the contiguous quadrats, which furnish the clearest jus-
tification for the GSL in Gleason’s dataset. In [27] reply 
to Gleason’s original paper [27], he noted that Gleason’s 

Fig. 4   Optimum q values and q ranges for models equally supported by AICc (∆AICc < 2 versus the optimal model) for models of the type lnq 
S = d + z ln A for 100 datasets gathered from the literature. Datasets arranged in order of increasing optimum q value
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contiguous quadrats are well fitted by his own model, as we 
independently verified in this study. It is also relevant that 
Gleason [10] himself stated that he expected the accumula-
tion of species with area to have a different character for 
scattered rather than contiguous quadrats. As nearby quad-
rats are, on average, more likely to be similar to each other 
than distant quadrats, adding species counts from distant 
quadrats sequentially should cause a much faster rate of 

species accumulation with area than adding species counts 
from nearby quadrats [26]. These different accumulation 
rates will lead to different shapes of the species area curve 
as illustrated in Fig.6. This is an interesting avenue for fur-
ther study but our study was not designed to investigate this 
thoroughly, with most of our datasets being for islands. The 
ForestGEO network of large (4–120 ha) forest plots [28] 
would provide excellent datasets to investigate this further.

Fig. 5   Graphs of summary statistics for models of the type lnq 
S = d + z ln A for 100 datasets gathered from the literature. A and B 
show the distribution of q values for the optimal SqA models (low-
est AICc), C shows the cumulative distribution function for these 
optimal q values, and D shows the distribution ranges of q values for 
SqA models which were statistically equivalent (∆AICc < 2 versus 

the optimal model). For the optimal q values, we have mean = 0.70, 
standard deviation = 0.30, median = 0.76 Q1 = 0.52, Q3 = 0.99, and 
interquartile range = 0.47. The ranges of q values for “equally good” 
models (∆AICc < 2) around the optimum model had mean = 0.37, 
standard deviation = 0.27, median = 0.30, Q1 = 0.17, Q3 = 0.52, and 
interquartile range = 0.36
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4.2 � Other Applications of the General Logarithmic 
Function

The generalized logarithm has been applied to extending 
traditional approaches to statistical mechanics [29, 30], the 
theory of inter-temporal choices [31], and, even, to general-
izing the fundamental formulas for calculus  [32].  These 
applications, however, employ a version of the generalized 
logarithm which is defined as lnq = (xp − 1)/p rather than the 
version which we use here, defined in Eq. (5) ((xp − qp)/p). 
Because the −1 term does not vanish as the −qp term does as 
q → 0, it causes problems when using this function as part 
of larger algebraic constructions, leading to more complex 
expressions than are strictly necessary and confusing the 
interpretation of the mathematical models used. In ecologi-
cal modelling, the present authors have applied the general-
ized exponential function (see Section 2.2) to the unification 
of niche apportionment models [33]. This implementation 
employed a variably biased random variables defined by Xq 
= (expq λX)/(expq λ), where X is a uniformly distributed ran-
dom variable and λ is a scale factor which sets the strength 
of the bias at q = 1. This kind of random variable is likely to 
be useful in other ecological modelling contexts.

5 � Conclusion

The proposed approach of using generalized logarithmic 
functions provides deeper insights into SARs than the cur-
rently prevalent approaches of using the APL or head to head 
com-parisons of the APL and GSL. It furnishes a deeper 
understanding of the relationship of the increase in species 

richness with area. The capacity of generalized logarithmic 
and exponential functions to document ranges of modelling 
approaches that we have here demonstrated for SARs prom-
ises to have broader applications to other fields of ecological 
modelling.
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