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Abstract
The objective of this paper is to evaluate the indirect impacts of a set-aside policy on the environment through crop inten-
sification. We estimate a structural, multi-output model on a panel of French farmers from 2006 to 2010, accounting for 
multivariate selection (corner solutions) on crops and land use. We use a parametric and a semi-nonparametric (based on 
sieve estimation) version of a quasi-maximum likelihood (QML) estimator, compare their goodness of fit and parameter 
efficiency and check for closeness with a test for non-nested models. We then perform a simulation experiment based on 
elasticity estimates for set-aside area and input demand, to evaluate intensive margin effects of the set-aside policy. Results 
show that a set-aside subsidy can provide farmers with incentives to intensify their production, leading to potential adverse 
environmental effects.
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1  Introduction

Land set-aside (fallow) schemes, involving farmers being 
paid to take land out of production, are widely used in the 
European Union (EU) and the USA as an agricultural policy 
tool. In many cases, the initial aim of this measure was to 
reduce excess supply of cereals while lowering the level of 
public agricultural stocks. It was later complemented by 
tools to promote the development of non-food crops and 
maintain good environmental status. In the USA, the Con-
servation Reserve Program (CRP) was introduced in 1985 
as a voluntary set-aside program designed to control crop 
overproduction, reduce soil erosion, improve water quality, 
and provide wildlife habitat by taking vulnerable agricultural 
land out of production. In the EU, compulsory set-aside was 

one of the most important measures introduced at the time 
of the 1992 Common Agricultural Policy (CAP) reform. In 
2008, the policy package associated with the CAP Health 
Check abolished set-aside for arable crops, but farmers could 
continue to set land aside on a voluntary basis while adopt-
ing agri-environmental schemes with cross-compliance. 
With the reform of the CAP for 2014–2020, the European 
Commission introduced the Green Direct Payment program 
that links direct payments to farmers to requirements for 
mandatory “greening” farming practices. These “Greening” 
practices include: (1) crop diversification, (2) the maintain-
ing of permanent grassland and (3) Ecological Focus Areas 
(EFAs). EFAs are areas considered to have environmental 
benefits such as fallow land, margins catch crops, green 
cover and nitrogen-fixing crops. From 2015 on, farmers with 
more than 15 ha must have at least 5% of their land as an 
EFA. This “greening” of the CAP was described as a move 
back to compulsory set-aside1.

The objective of this paper is to evaluate the potential 
impacts of a set-aside policy on the environment, more 
precisely in terms of intensification of input use (fertilizer 
and pesticide) on cultivated crop area (intensive margin). 
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To capture these effects, we need to account for changes 
in the distribution of crops, because fertilizer and pesticide 
requirements are often heterogeneous across crops, as are 
their potential environmental impacts. This means that using 
individual farm data and for each crop is preferable in terms 
of policy impact evaluation. However, this type of data raises 
corner solution issues that are critical in empirical work at 
the individual farm level.

We apply a dedicated estimation procedure to estimate 
acreage and agricultural practice responses to the set-aside 
policy, for a sample of farmers from the département of 
Meuse (eastern France), observed from 2006 to 2010. We 
estimate a multi-output profit function based on a panel of 
individual farmers, controlling for multiple selection using 
both a parametric and a semi-nonparametric quasi-maximum 
likelihood (QML) estimator. The purpose of this economet-
ric strategy is to check for possible deviations from heter-
oskedasticity of the parametric QML estimator, by compar-
ing it with a more flexible semi-nonparametric estimator. 
The latter is based on sieve estimation [1] that allows for 
consistent, and in general more efficient, estimates than sem-
iparametric estimation based on, e.g., kernel nonparamet-
ric estimation of the underlying distribution of error terms. 
Parameters estimated from a structural multicrop system of 
equations allow us to estimate the change in pesticide and 
fertilizer demand corresponding to a set-aside policy. We 
propose two indicators to measure these impacts: chemical 
input (pesticide and fertilizer) demand and intensity elastici-
ties with respect to the set-aside subsidy rate.

Paper Contributions  The present paper makes two con-
tributions to the literature. The first contribution is meth-
odological and concerns the econometric strategy for 
dealing with multiple selection in a micro-panel sample 
of farms. Our contribution in this regard is to propose a 
consistent and flexible estimator for output and input deci-
sions from individual farm data. To allow for correlation 
between (possibly censored) equations in the multivariate 
Tobit framework while avoiding multiple integration, we 
consider a QML approach, based on pairwise joint prob-
abilities of structural equations. Yen et al. [2] and Fezzi and 
Bateman [3] use a (parametric) QML estimator, which is 
known to be consistent under the assumption that the con-
ditional mean of the model is correctly specified and that 
the density used for QML belongs to the linear exponential 
family [4]. However, the QML may not be consistent if 
higher moments of the error distribution are introduced 
in the QML criterion but are misspecified (typically, vari-
ance–covariance terms). To address this issue, we propose 
in this paper a semi-nonparametric version of the QML 
estimator applied to the multivariate selection model, 
which allows us to relax both distributional and homo-
scedasticity assumptions. By doing so, we go beyond the 

procedure proposed by [5], which is consistent only if the 
selection equations are uncorrelated. Our estimator is based 
on semi-nonparametric sieve estimation, which is faster to 
compute than semiparametric estimators based on kernel 
approximations (as in, e.g., [6]). To the best of our knowl-
edge, such semi-nonparametric methods to obtain output 
supply and input demand estimates from farm-level data 
have not yet been used in the literature. Because crops are 
different in terms of input requirements and environmental 
impacts, accounting for such heterogeneity at the farm level 
is likely to produce more precise estimates of farm input 
demands. This will allow us to more precisely estimate the 
environmental impacts of the set-aside policy in terms of 
agrochemical input intensification.

The second contribution of our paper concerns the ex 
ante environmental assessment of a land set-aside policy, 
in terms of agro-chemical input intensification. We contrib-
ute to the debate on the environmental impacts of greening 
policies in general, and on set-aside policies in particular. 
Indeed, some studies show that set-aside land supports bio-
diversity with much higher population densities and num-
bers of species of birds, insects, spiders, and plants [7]. This 
contradicts studies in which set-aside land has been found 
to be ineffective and inefficient for conservation [8]. More 
recently, the report of the [9] concludes that “greening, as 
currently implemented, is unlikely to significantly enhance 
the CAP’s environmental and climate performance”. This 
is mainly due, according to the same report, to the fact that 
“Greening lacks a fully developed intervention logic with 
clearly defined, ambitious targets...”. Indeed, farmers were 
not given any environmental target to achieve through the 
greening reform.

Our paper proposes a quantitative assessment of a “green-
ing” policy, which aims to increase the set-aside area by 5%. 
The first feature of this contribution consists of evaluating 
the indirect impact of this set-aside policy on crop intensi-
fication using two indicators: chemical input demand elas-
ticities and a new indicator, namely input demand intensity 
elasticities, both with respect to the set-aside subsidy rate. 
Such a complementary indicator is better suited, in our opin-
ion, to agricultural settings where input use per unit of land 
is more relevant than total input demand. The second feature 
of this contribution is to simulate the impacts, in terms of 
fertilizer and pesticide demand variation, of a policy aimed 
at increasing set-aside area by 5 percent, and to compute the 
level of the input tax that will be necessary to cope with the 
increased demand. Reducing fertilizer and pesticide use is an 
environmental objective that has been explicitly introduced 
in the recent Farm to Fork Strategy of the European Com-
mission, as part of the European Green Deal initiative. This 
strategy aims to reduce the use of fertilizers and pesticides 
in EU agriculture by at least 20% and 50%, respectively, 
by 2030. It is important to note that the impact evaluation 
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concerns only potential benefits (or negative externalities) 
from a reduction in nutrient load, following a change in land 
use and input use (fertilizer, pesticide). Strictly speaking, 
we are not evaluating actual environmental effects of the 
set-aside policy on, e.g., water quality, greenhouse gas emis-
sions (nitrous oxide from chemical fertilizer) and biodiver-
sity, but rather the potential of such policy to limit chemical 
input use at the farm level.

The paper is organized as follows: Section 2 discusses 
land set-aside policies in the context of the European CAP 
and presents a literature survey of both the impacts of set-
aside policies and econometric models with corner solutions. 
Section 3 presents a production model based on a multicrop 
framework and econometric methods to deal with corner 
solutions. Parametric and semi-nonparametric estimators are 
discussed in the context of panel data. Section 4 describes 
data used in our econometric analysis and discusses estima-
tion results. In Sect. 5, we discuss results of chemical input 
demand and intensity elasticities and simulate the impact 
of a policy consisting of a 5-percent set-aside rate as an 
agricultural greening measure and calculate the input tax 
on fertilizer and pesticide that would be necessary to cope 
with increased demand for these inputs. Section 6 concludes 
the paper.

2 � Policy Context and Related Literature

2.1 � CAP and Set‑aside Policy Context

Compulsory set-aside was one of the most important meas-
ures introduced in the European Union (EU) at the time of 
the 1992 reform of the Common Agricultural Policy (CAP), 
which introduced a new support system for producers of 
cereals, oilseed and protein crops. See Table 1 for a sum-
mary of CAP measures regarding set-aside policies. Farmers 
with production greater than 92 tons were eligible for set-
aside payments. In order to alleviate their revenue decrease 
due to the compulsory set-aside, farmers were allowed to 
cultivate energy crops (diester from rapeseed in our data) 

on set-aside land without losing the subsidy [10]. Among 
the many changes to set-aside rules during the period 
1993–2007, the major ones concerned adjustments to the 
rate of compulsory set-aside, the introduction of voluntary 
set-aside against payment, and the possibility of a fixed 
instead of a rotational set-aside, which was the only form 
available at the outset. In 2008, the policy package associ-
ated with the Health Check of the CAP abolished both the 
energy crop scheme and the compulsory set-aside scheme. 
However, farmers could continue to set land aside on a vol-
untary basis, while adopting agri-environmental schemes 
with cross-compliance. The eligibility requirement for pay-
ment in that case is that at least 5 percent of land should be 
within an ecological focus area. Moreover, eligibility condi-
tions remain the same regarding crop area: farms are eligible 
for area-based payment only if the area planted with cereals, 
oilseed, and protein crops is greater than 0.3 hectares, under 
European directive CE/1973/2004 (October 29, 2004). Since 
2008, the ceiling for the maximum voluntary set-aside area 
eligible for CAP payment is 1/9th of the arable area. It can 
be extended to 25 percent for arable crops (cereals, oilseed, 
and protein crops) for energy, chemical use, or animal feed. 
In practice, for rapeseed production, farmers were eligible 
for area-based payment under CAP after the 1992 reform, 
while voluntary set-aside over and above the compulsory 
rate was allowed. After 2008, rapeseed for diester production 
was also possible on set-aside areas, with the same subsidy 
rate as for non-set-aside areas, i.e., a different subsidy rate 
from the “agronomic” set-aside rate. In this case, farmers 
have to show evidence of a farming contract with energy or 
industrial buyers.

In December 2013, the EU enacted the CAP for the 
period 2014–2020 where, in addition to the Basic Payment 
Scheme, each farmer now receives a Green Direct Payment 
per hectare for respecting specific greening agricultural 
practices to reduce biodiversity loss and greenhouse gas 
emissions [11]. Member States are requested to use 30 per-
cent of their national budget in order to contribute to this 
program. The three greening measures are as follows: (i) 
maintaining permanent grassland; (ii) crop diversification; 

Table 1   Past and ongoing Common Agricultural Policy (CAP) measures regarding set-aside

Year - Period Set-aside reform Main objectives

1988–1989 Voluntary set-aside Prevent overproduction of some commodities
1992 MacSharry reform Compulsory set-aside Limit stocking levels
Agenda 2000 Decoupling
2003–2006 Attribution of set-aside payment on an historical basis Limit supply and provide better environmental efficiency
2008 CAP health check Abolition of the set-aside obligation
2013 Green direct payments and Ecological Focus Area (EFA) Reduce biodiversity loss and GHG emissions
2023–2027 At least 10% of agricultural areas devoted to non-productive 

features
Improve farmland biodiversity
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and (iii) maintaining an Ecological Focus Area (EFA) of at 
least 5 percent of the arable area of the holding for farms 
with an area larger than 15 hectares (excluding permanent 
grassland), i.e., field margins, hedges, trees, fallow land, 
landscape features, biotopes, buffer strips, afforested area. 
Indeed, set-aside originally introduced for supply control 
purposes could have important environmental benefits, espe-
cially where land was left fallow [12]. However, the litera-
ture review by [13] shows that the CAP greening measures 
could have mixed effects on ecosystem services, as they can 
lead to intensification on cultivated land.

In May 2020, the European Commission officially pre-
sented a “Farm to Fork” strategy as part of the European 
Green Deal initiative. This strategy aims to make “the entire 
food chain from production to consumption more sustainable 
and neutral in its impact on the environment”. Among the 
targets considered to reach these objectives, the strategy men-
tions a 50% reduction in the use of chemical pesticide and a 
reduction in fertilizer use of at least 20%, both by the year 
2030.

For the last CAP reform which will be implemented from 
2023, Member States are required to “contribute” to the 
Green Deal via national agricultural policies. For example, 
among Good Agricultural and Environmental Conditions 
(GAEC), GAEC9 stipulates that all farms should have at 
least 10% of their agricultural area devoted to non-produc-
tive features in order to improve farmland biodiversity [14].

2.2 � Related Literature

2.2.1 � Literature on the Impacts of Set‑aside Policies

By modifying the opportunity cost of farm land, a set-aside 
policy is expected to modify farmers’ production deci-
sions in terms of crop choice and input use. However, the 
impact of set-aside policies on input use and intensifica-
tion remains unclear: on the one hand, removing a propor-
tion of land from production might reduce input use and 
increase extensification [15, 16]. On the other hand, set-
aside might have adverse effects on water and soil quality if 
input use (fertilizer, pesticide) increases in order to balance 
the reduction in cultivated land. The impact of a set-aside 
policy therefore depends on the degree of use of the inten-
sive margin (i.e., intensification of agrochemical input on 
the same crop land) vs. the extensive margin (adapting the 
distribution of land to crops, some being more intensive 
in chemical inputs than others, but leaving input level per 
hectare unchanged) used by the farmer in his production 
decisions. See [16–22] for more details on slippage effects. 
Gorddard [23] explores the relationships between crop pro-
duction, land allocation, and input-use decisions, exploring 
the consequences of assuming production of multiple crops 

is non-joint but is subject to a constraint on total land area. 
His results illustrate that the effectiveness of environmental 
policies (aimed at modifying input use) may be affected 
by land allocation decisions. In the case of the CRP, early 
analysis found that contracts were targeted to reduce pro-
duction, rather than achieving environmental benefits 
[24]. Hendricks and Er [25] show that the government has 
adjusted CRP acreage over time in response to changes in 
market conditions but not to environmental impacts2. In 
the case of the new EFA policy implemented in the EU 
and aimed at preserving biodiversity, the intensity of the 
impact depends on the type of EFA (fallow, grassland), the 
specific environmental issue considered (water pollution, 
soil pollution, biodiversity loss), and site-specific environ-
mental conditions.

The impact of set-aside policies on the environment is 
not only associated with input intensification and its con-
sequences on nutrient load, but also on climate change and 
biodiversity, although such environmental dimensions are 
more difficult to directly connect to changes in input use. 
For example, [26] present an impact evaluation of a set-
aside policy in Finland, by combining a production model 
with area-based set-aside payments and estimates of mon-
etary benefits of reduced nutrient pollution. A cost–benefit 
analysis is then conducted on the nutrient load reductions 
attributable to CAP agri-environmental payments in Finland 
between 1996 and 2005. In any case, policy impacts of set-
aside are also relevant to the debate over land sparing versus 
land sharing (see, e.g., [27]).

Relying on the intensive margin in cropping systems 
is one of the unintended impacts of set-aside policy, as 
is the slippage effect that was observed in the CRP in the 
USA [22]. Both impacts can be explained by the increased 
output prices associated with reduced production on set-
aside land. In particular, input decisions may be modified 
following a change in the set-aside subsidy rate, if a) it 
is more profitable to rely on the extensive margin; and/
or b) with the same distribution of crops, it pays to inten-
sify production on a smaller proportion of land, using the 
intensive margin by increasing application rates of ferti-
lizer and pesticide by the same proportion on all crops. 
These two changes can be measured by a combination of 
elasticities: agrochemical input demand and intensity of 
agrochemical input use, both with respect to the set-aside 
subsidy rate.

2  The set-aside policy implemented in the EU is a little complex as 
farmers are allowed to plant bioenergy crops. In the USA, set-aside 
land, generally under the CRP program, is only allowed to grow trees 
or perennial grasses see [84]
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2.2.2 � Literature on Econometric Modelling of Corner 
Solutions

Although there have been major advances in the estimation 
of production technology, there remain some challenging 
econometric issues. One problem specifically relevant to 
agricultural land-use allocation in empirical studies is corner 
solutions. Corner solutions arise when it is optimal for the 
farmer not to grow a crop (or combination of crops). Using 
aggregate data on land allocation, for example at the regional 
level, we observe positive values for all (region-specific) 
crops, but this does not imply that all farmers grow all crops. 
When using individual farm-level data, we need to account 
for the fact that some farmers may choose not to grow some 
crops, thus possibly causing selection bias in the parameter 
estimates. For this reason, models that analyze the effects 
of agricultural policies should adopt an explicit methodol-
ogy that accommodates and explains the existence of corner 
solutions in the context of micro-level farm data.

Most of the literature on multi-crop estimations relies 
on aggregate data or does not deal explicitly with corner 
solutions that occur in land-use decisions. Guyomard et al. 
[28] estimate a quadratic profit function with several crop 
groups and inputs using French aggregate data but do not 
discuss the issue of corner solutions in production. Moro and 
Sckokai [29] employ a normalized quadratic multi-output 
profit function on Italian FADN (Farm Accounting Data 
Network) data but do not exploit the panel data structure of 
their (individual) data set. Moreover, although they recog-
nize the presence of possible sample selection when deal-
ing with multiple crop groups, they do not control for these 
sample selection effects explicitly or consistently.

The most common technique used to estimate a structural 
model subject to censored observations is Tobit estimation. 
This was proposed in the econometric literature by [30] 
and has been widely utilized in the empirical literature on 
demand estimations. Although the Tobit model is useful, it 
is an ad hoc modification of the regression model, allowing 
it to be used in cases where there are observations “piled up” 
at some limiting value (usually zero), and it has no convinc-
ing behavioral theory foundation [31]. The standard solu-
tion to the problem of a censored dependent variable is to 
estimate a Tobit model using maximum likelihood (ML) or 
the [32] two-step method.

The pioneering works of [33] and [34] offer an economic 
interpretation of corner solutions and a direct and appro-
priate method for specifying the econometric model. They 
explain that the set of producer choices can be analyzed 
employing the Kuhn–Tucker conditions associated with the 
cost minimization program under the usual technical con-
straints and nonnegativity constraints on input demand. The 
implied fully structural approach in [35] and [34] to estimate 

demand and take account of corner solutions is nonlinear 
simultaneous zero-censored equation models. When the 
number of equations is large, the subset of decision out-
comes in the system likely to occur at kink points increases, 
requiring multiple integration for ML estimation.

In response to the issue of dimensionality when estimat-
ing demand systems with binding nonnegativity constraints, 
many strategies are adopted in the literature. Alternative 
estimation methods to the ML procedure include the maxi-
mum entropy estimator [36, 37], the two-step Tobit system 
[38], generalized method of moments (GMM) techniques 
[39]. Yen et al. [2] propose a QML approach which they 
claim is more efficient for small- to medium-sized samples. 
Comparison with other estimation methods shows that the 
QML and SML (simulated maximum likelihood) proce-
dures produce remarkably similar demand parameter and 
elasticity estimates, whereas the results of [40]’s two-step 
estimator differ widely. Yen and Lin [41] propose a sample-
selection alternative with more flexible parameterization 
(than the Tobit system), using the [40] two-step estimator. 
This approach is used by [5] in the multiple selection case. 
However, the sample selection system presents more promi-
nent computational burdens than the Tobit system since the 
sample likelihood function contains probability integrals 
with dimensions as large as the number of selection equa-
tions for all sample observations.

Simulation-based estimation methods have been sug-
gested to overcome this problem of high-dimensional 
numerical integration in multivariate limited depend-
ent variable systems. These methods include simulated 
moments, simulated maximum likelihood, and simulated 
scores. The simulated ML approach is applied by [42] and 
[43]. Another way to overcome the computational issue is 
to use Bayesian methods. Millimet and Tchernis [44] use 
the Gibbs sampling technique with the data augmentation 
algorithm to solve both the dimensionality and coherency 
problems3 while [45] employ the two-step approach pro-
posed by [40] to take account of both censoring and unbal-
anced panel data structure. Platoni et al. [46] account also 
for the heteroscedastic structure of the error terms in the 
(second-step) estimation of the expectation-conditional 
maximization (ECM) model.

3  Coherency conditions in a structural econometric modeling frame-
work are conditions that ensure that the model is correctly specified 
from the theoretical point of view. For example, [85] show that a 
negative semi-definite parameter matrix is necessary and sufficient for 
the translog cost function to be concave. In most econometric models, 
estimating a cost function imposing the semi-negativity of the param-
eter matrix ensures that the coherency conditions to be respected.
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3 � The Model and Estimation Issues

3.1 � The Model

Consider a risk-neutral4 farmer using K variable inputs x and 
a fixed but assignable factor (land) to produce C different 
crops, where c is the crop index, c = 1, ...,C , pc is the price 
of crop c; yc is the output level of crop c, wk is the price of 
input k; lc is the land allocated to crop c and L is the total 
available land ( 

∑C

c=1
lc = L ). �c is the area-based (per hec-

tare) subsidy rate for crop c. To simplify notation, we con-
sider set-aside as a particular land use. Therefore, it is also 
indexed by c, although it is not a crop, technically speaking.

Maximizing profit over land and input choices, given the pre-
determined system of prices, subsidies, and total available land, 
will produce a unique set of solutions, provided that regularity 
conditions are satisfied for the profit function5. Following [47] 
and [28], the multi-crop profit function for a joint input technol-
ogy given the fixed factor allocation (land) may be written as:

where y, x, w, and � are C-dimension vectors and y ≤ F(x, L) 
represents the (multi-output) technological feasibility set.

Under partial decoupling of public payments to agricul-
ture, the equation above has to be modified, to accommodate 
the situation where only a proportion of area-based payments 
is crop-specific. Let � , � ∈ [0, 1] , denote the proportion of 
area-based subsidies that is decoupled from production, so 
that 100(1 − �) percent are still “coupled” and depend on the 
area allocated to production for each crop c.

Land set-aside as a particular land use can be divided 
into a compulsory part (set-aside obligation) and a voluntary 
component, defined as the fraction of land set-aside above 

(1)

Π(p,w, �, L) =maxy,x,l

{
C∑
c=1

pcyc −

K∑
k=1

wkxk +

C∑
c=1

�clc;

C∑
c=1

lc = L ; y ≤ F(x, L)

}
,

the minimum requirement of an agricultural policy. In our 
case, the area-based payment for set-aside is the same in 
both cases; we denote by G the land set-aside obligation, 
with unit payment g (same notation as in [28]). As a conse-
quence, land used for crops or voluntary set-aside is a frac-
tion of total farm land and is denoted L∗ = L − G.

Farmer profit therefore includes a fixed payment denotes 
FP, consisting of area-based subsidies not coupled with pro-
duction nor land use (proportional to � ) and the compulsory 
set-aside payment, gG.

Farmer’s profit then becomes

Following [5], the normalized quadratic profit function is 
written as:

where Π =
Π

wK

, pc =
pc

wK

,wk =
wk

wK

, �c =
�c

wK

 indicate, respec-
tively, normalized profit, normalized output price and nor-
malized subsidy rate, and input price wK is chosen as 
numeraire.

Differentiating the profit in (3) with respect to out-
put prices pc yields the output level of crop c (Hotelling 
Lemma):

Differentiating the profit in (3) with respect to input prices wk 
yields the variable input demand equation (Hotelling Lemma):

(2)

Π(p,w, �, L∗) = maxy,x,l{

C∑
c=1

pcyc −

K∑
k=1

wkxk

+ (1 − �) ∗

C∑
c=1

�clc + FP;

C∑
c=1

lc

= L∗ ; y ≤ F(x, L∗)}.

(3)

Π = �0 +

C∑
c=1

�cpc +

K−1∑
k=1

�kwk +

C∑
c=1

�c�c +
1

2

C∑
c=1

C∑
c�=1

�cc�pcpc�

+
1

2

K−1∑
k=1

K−1∑
k�=1

�kk�wkwk� +
1

2

C−1∑
c=1

C∑
c�=1

�cc��c�c�

+

K−1∑
k=1

C∑
c=1

�
pw

ck
pcwk +

C∑
c�=1

C∑
c=1

�
p�

cc�
pc��c +

K−1∑
k=1

C∑
c=1

�w�
ck
wk�c

+

C∑
c=1

�pL
∗

c
pcL

∗ +

C∑
c=1

��L
∗

c
�cL

∗ +

K−1∑
k=1

�wL
∗

k
wkL

∗
,

(4)

yc =
�Π

�pc
=�c +

C∑
c�=1
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L∗, ∀ k = 1, ...,K − 1.

4  Risk preferences are relevant to a discussion of agricultural pro-
duction, but we do not consider an extension of our framework to 
accommodate farmer risk attitudes. A dedicated structural approach 
would be necessary, but also particularly difficult to adapt to multi-
output production with selection, see [86] for an example. Moreover, 
the literature distinguishes two approaches relating to the modeling of 
pesticides: as « damage abatement inputs » or as « productive inputs 
». In this paper, we consider the second approach. Indeed, [87] com-
pared these two approaches and showed that our approach, in which 
all inputs are treated as productive inputs, does not lead to larger 
estimates of the value of the marginal product of pesticides as it was 
hypothesized in the literature.
5  We assume in this paper that farmers are rational profit-maximizing 
individuals. However, [88] discussed the fact that rationality assump-
tions can be challenged in the context of farmers’ decisions to adopt 
more sustainable practices (as in pesticide use decisions).
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Differentiating profit in (3) with respect to subsidy rates �c 
yields the land allocation equation:

Profit function properties imply that the profit function is (i) 
non-decreasing in output prices p, non-increasing in input 
prices w, (ii) homogeneous of degree 1 in prices (p, w), (iii) 
convex in prices (p, w), and (iv) continuous in prices (p, w). 
These properties imply some conditions to impose on the 
parameters. With the normalized form of the profit, the con-
dition of linear homogeneity is automatically satisfied. The 
convexity conditions imply that the Hessian matrix is sym-
metrical and positively semi-definite. Imposing convexity 
restrictions is equivalent to imposing positive semi-definite-
ness on the matrix of parameters.6

Another regularity condition is the land adding-up condi-
tion 

∑C

c=1
lc = L∗ , which implies the following conditions on 

the parameters:

The model to be estimated consists of the system of Eqs. 
(3, 4, 5, 6) after imposing convexity restrictions and land 
adding-up conditions 7–9. We let sj(�) denote the j-th struc-
tural equation in the system, depending on exogenous covar-
iates and a vector of parameters � , where the number of 
equations depends on the number of inputs, outputs and land 
use. In order to obtain precise results for policy analysis, we 
propose in this paper the estimation of this system of equa-
tions while explicitly dealing with corner solutions and the 
panel structure of our data. Contrary to other applications 
of land-use models in agriculture [3], the system of output, 
input and land equations depends only on observed prices 
and subsidies, and on total crop land. Other applications of 
land-use models consider input and output equations as an 
explicit function of land percentages for crops. We do not 
follow this approach here, as the demand for crop land is 
part of our structural system, which contains only exogenous 
covariates (more precisely, from the farmer’s point of view, 
assuming total crop land is fixed).

(6)

(1 − �) ∗ lc =
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��L
∗

c
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Imposing regularity conditions, as discussed above, is not 
the only issue when estimating a system of equations derived 
from profit maximization with farm-level data. Another 
concern is the existence of corner solutions, that is, zero 
land area and output level for some crops, and possibly zero 
expenditure on some inputs. As farmers rarely consider the 
same cropping system for every agricultural season because 
of agronomic and pest-management considerations, all pos-
sible crops are not planted every year by a particular farmer, 
implying that land and production variables are equal to 0 
in this case. It is beyond the scope of this paper to provide 
a structural representation of cropping rotations through a 
dynamic model, see, e.g., [5, 48, 49]. Nevertheless, we pro-
vide below an original solution to this problem by consid-
ering a multivariate selection problem and relaxing some 
assumptions underlying the usual multivariate Tobit model.

3.2 � Estimation Issues

3.2.1 � Corner Solutions

Estimating models with multivariate selection often implies 
a trade-off between computer-intensive numerical pro-
cedures and strong distributional assumptions to achieve 
parameter consistency and efficiency. For example, [2] dis-
cuss solutions based upon the [34] approach, which requires 
normality and homoscedasticity of structural error terms.

Our strategy is based on a multivariate version of the 
Tobit model for censored equations and, contrary to [5], 
we consider that prices and subsidies jointly determine the 
probability of a crop and its associated output level and land 
use (as would be the case in the original Tobit model). A 
drawback with the procedure described in [5] is that their 
estimator is consistent only if selection equations are uncor-
related, conditional on a the set of covariates. Although this 
condition can be tested in practice, this may limit the scope 
of the method. Furthermore, the correlation pattern between 
structural and selection equation is also restricted to a lin-
ear form, which may depend, however, on the period, as in 
[50]. In order to allow for correlation between all structural 
equations in the case of a multivariate Tobit model, one pos-
sibility is to consider the QML approach, based on pairwise 
joint probabilities of equations.7 This is a simple alternative 
to multiple integration, which consists of exploring potential 
correlation between all pairs of structural equations.

Let sij(�) denote observation i of the j-th structural equa-
tion, evaluated at parameter vector � . The residual of equa-
tion j is denoted hij(�) = Zij − sij(�) , where Zij is the depend-
ent variable in equation j.

6  Imposing positive semi-definiteness on a matrix B is equivalent 
to writing B = AA� where A is a lower triangular matrix of the same 
dimension as B.

7  A parametric version of this estimator has been proposed by [2] and 
applied to land-use decisions by [3].
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The bivariate likelihood for observation i is given by

where N is the total number of observations, and

Denote h∗
ij
(�) =

[
Zij − sij(�)

]
∕�j the standardized residual of 

equation j, where Zij is the dependent variable and �j the 
standard deviation of the residual in equation j. F is the 
cumulative distribution function and f is the density function 
of h∗

ij
(�).

Under the normality assumption, the individual contribu-
tion to the likelihood becomes

where Ψ(., ., .) and �(., ., .) are the bivariate cumulative 
density and density functions, respectively; �(.) and Φ(.) , 
respectively, denote the univariate density and cumulative 
density functions of the standard Normal distribution. Maxi-
mizing (10) with respect to � and the variance–covariance 
matrix yields consistent quasi-maximum likelihood (QML) 
estimates. As discussed in [4] and in [51], the QML estimator  
is consistent and asymptotically normal if and conditional 
mean and variance structure of the model are correctly 
specified, and if the log-likelihood function used for QML 
belongs to the generalized linear exponential family.8

3.2.2 � The Semi‑nonparametric Estimator

As discussed above, pairwise computation of distribution 
functions is much more straightforward than full-information 
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,

estimators such as maximum likelihood based on all (poten-
tially censored) structural equations. Although QML estima-
tion as described above is a convenient alternative to maxi-
mum likelihood under multivariate censoring, it has several 
drawbacks. First, efficiency of QML estimates may depend 
on the criterion used in practice (in the family of linear expo-
nential distributions, see [4]) in the maximization of the log-
likelihood. Second, as a corollary to the conditions above, 
[38] and [2] acknowledge that the QML estimator above is 
not robust to deviations from homoscedasticity assumptions. 
To deal with the first issue, an interesting alternative is a 
flexible estimation method, such as a semiparametric alter-
native to the parametric QML.9 Semiparametric QML esti-
mation of univariate Tobit-censored models was proposed as 
early as [52], and their asymptotic properties are discussed 
in, e.g., [6]. In semiparametric estimation, normal density 
and cumulative density functions are replaced in [2]’s QML 
objective by nonparametric approximations. The distribution 
of equation residuals is then left unrestricted and structural 
parameters � can be estimated jointly with nonparametric 
estimation of the univariate and bivariate distributions.

The semiparametric QML may also provide a solution to 
the second issue, because variance–covariance parameters 
can be considered nuisance parameters and be replaced by 
data-driven bandwidth parameters in, e.g., kernel approxima-
tion of distribution functions. By doing so, semiparametric 
estimation may significantly reduce the number of param-
eters to estimate, but it may be computer-intensive and have 
a lower convergence rate. Another alternative, which we con-
sider in this paper, is to consider semi-nonparametric estima-
tion instead.10 The approach behind our semi-nonparametric 
model with selection is to replace unknown joint distribu-
tions by a series approximation (see [53]), while providing 
a solution to the fact that such approximation may cause the 
number of terms to grow with the sample size [54].

This solution uses sieve estimation, i.e., replacing the 
infinite-dimensional space associated with the nonparamet-
ric functions by a flexible parametric one. Conditions for 
consistency and asymptotic normality of sieve ML estima-
tion have been provided by [55] and [1].

Inspecting the form of the QML estimator (11), we see that 
four functions need to be estimated: a) the bivariate cumu-
lative density function, F2(hij, hik) ; b) the bivariate density 

8  Or only to the linear exponential family if only the conditional 
mean is specified, see [4].

9  A more flexible estimator is in general less efficient if the restric-
tions implied by the less flexible estimator are valid, such as, e.g., 
normality or homoskedasticity.
10  Following [1], a model is called parametric if its parameters are in 
finite-dimensional spaces, nonparametric if its parameters are in infi-
nite-dimensional spaces, semiparametric” if its parameters of inter-
est are in finite-dimensional spaces and its nuisance parameters are 
in infinite-dimensional spaces, and semi-nonparametric if it contains 
both finite-dimensional and infinite-dimensional unknown parameters 
of interest.
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function, f2(hij, hik) ; c) the univariate conditional cumulative 
density function, F(hij|hik) ; d) the univariate density function, 
f (hik) . The bivariate density function can be computed from 
the derivative of an approximation to the bivariate cumu-
lative distribution function, obtained from a tensor-product 
spline, such tensor-product spline approximations being easy 
to compute from a B-spline representation [55].

An interesting aspect of B-splines is that they can be con-
structed under some shape and smoothness restrictions that 
are easy to impose, as well as their derivatives of any order, 
which provide us with a natural procedure for estimating 
probability and cumulative density functions:

•	 Compute the empirical cdfs in the univariate and bivari-
ate cases, for each selection regime;

•	 Approximate the univariate and bivariate cdfs for every 
selection regime by B-splines, imposing smoothness and 
non-decreasing approximations over the [0, 1] interval;

•	 Compute the derivative of the spline approximation to 
obtain the pdf;

•	 Combine joint and marginal distributions to obtain the 
conditional cdfs for each selection regime.

An important aspect of our semi-nonparametric procedure 
is that variance and covariance parameters are not esti-
mated jointly with structural parameters, but are replaced 
by data-driven dispersion measures. The latter are equivalent 
to bandwidth parameters in nonparametric estimation and 
correspond to normalization parameters in sieve (B splines) 
estimation. Hence, they are considered nuisance parameters 
and homoscedasticity or other restrictions on variances and 
covariances are completely avoided, as opposed to the para-
metric QML estimation.

3.2.3 � Panel Data

Equations (4), (5) and (6) in Sect. 3 have an implicit static 
form that can accommodate panel data, by simply adding 
a time index, t, to dependent and explanatory variables. 
This also applies to residuals from structural equations that 
become sijt(�) for farmer i, equation j and time period t).

To consider QML estimation, whether parametric or 
semi-nonparametric, an important condition is that sample 
observations are independently and identically distributed 
(i.i.d.). With panel data however, this is obviously not the 
case because unobserved individual effects are likely to be 
present. Model estimation procedures discussed above have 
therefore to be adapted to the case of panel data. Consider 
the total number of observations N =

∑n

i=1
Ti , where n is the 

number of individuals (cross-sectional units), and Ti denotes 
observations for cross-sectional unit i. In other words, unbal-
anced panels can be accommodated for, when Ti is different 
across cross sections.

To control for unobserved individual heterogeneity, pos-
sibly correlated with explanatory variables, we may consider 
a fixed-effect approach to the production model. However, as 
the above model is nonlinear, within-type estimators would 
not be consistent with a fixed number of time periods. We 
choose to control for such unobserved heterogeneity by 
implementing the Mundlak method (see [50]). Assume

where �ij is the individual effect in equation j, possibly cor-
related with explanatory variables in sijt(�) . Consider first 
the balanced panel data case, with Ti = T , ∀i . We further 
assume

where Xijt is the K-vector of explanatory variables in structural 
equation sij(�) , such that E(vij|Xijt) = 0 . Under this conditional 
moment condition, �ij can be replaced in the structural equa-
tion by its projection onto explanatory variables. The Mund-
lak approach corresponds to the special case of [56] with 
𝛾j1 = ⋯ = 𝛾jT = 𝛾j∕T , ∀j and is preferred in practice if the 
number of explanatory variables is large, because it inflates 
the number of parameters by K × T . Such conditioning is typi-
cally designed for discrete-choice models (Probit, Logit) and is 
naturally adapted to the Tobit framework. Because unobserved 
heterogeneity in structural and selection equations is likely to 
be correlated with explanatory variables, we do not consider 
random-effects estimation but only fixed-effects estimation, 
to control such possible source of bias in parameter estimates.

The Mundlak approach for fixed effects is easily adapted 
to the unbalanced panel-data case, with

where Ti is the individual-specific number of periods. With 
large N, we can consistently estimate parameters �j even 
when the panel data set is unbalanced.

When proceeding with estimation, we make the important 
assumption that, conditional on fixed effects �ij , the error 
terms are i.i.d., so that the QML framework for the paramet-
ric and the semi-nonparametric estimators applies.

4 � Data and Econometric Estimation Results

4.1 � Data

The empirical application is conducted on a sample of French 
farmers from the département of Meuse. The data were pro-
vided by the Centre d’Economie Rurale de La Meuse, an agri-
cultural extension service that provides farmers with assistance 

hijt(�) = Zijt − sijt(�) − �ij, i = 1, 2,… ,N,

�ij = Xij1�j1 +⋯ + XijT�jT + vij,

�ij =

(
1

Ti

Ti∑
t=1

Xijt

)
�j + vij,

371Unintended Consequences of Environmental Policies: the Case of Setaside and Agricultural…



1 3

in bookkeeping and auditing. The original sample consists 
of 2,356 farm-year observations on 638 farmers observed 
between 2006 and 2010. This sample represents about 21 per-
cent of the total number of farms in this département (2,975 
in 2010, of which about 2,100 are classified as medium- to 
large-sized farms, see [57]). We remove yearly observations 
corresponding to no-crop production (animal production only, 
or no agricultural production for a particular year) or no land 
use for any of the following: wheat, barley, rapeseed, diester 
and non-compulsory set-aside. The latter selection restricts the 
sample to consider only major groups of crops cultivated in the 
Meuse département, discarding specialty and some industrial 
crops that are much less represented in the region, and which 
are not always associated with CAP area-based payments. The 
final sample consists of 2,014 farm-year observations on 524 
farmers over five years. The final dataset represents about 56 
percent of specialized arable farms in the Meuse département 
in 2010 (927 farms within this category, according to [57]). An 
interesting feature of our data and the period considered is that, 
during that period, France operated a decoupling scheme with 
a hybrid status. Following the European CAP reform in 2003 
(Luxembourg Agreement, see [58]) decoupling was introduced 
with environmental cross-compliance among other measures, 
aimed at making farmers’ production decisions more market-
oriented [59]. Member States retained some flexibility in the 
choice between partial and full decoupling. For example, 
Spain, France and Portugal opted to maintain the maximum 
permitted amount of coupled payments (25%), in both the 
livestock and arable crop sectors. In the French case, the 2008 
CAP health check provided for an “à la carte” selection of the 
tools, allowing voluntary implementation to start by 2010 and 
end by 2012 at the latest [60]. In terms of the model notation 
in subsection 3.1, the proportion of area-based subsidies that 
is decoupled from production, � , is equal to 0.75. Another 
interesting feature of our sample is the higher variability in 
area-based unit payment rates over the 2006–2010 period, 
compared with the subsequent years. Such variability is nec-
essary to identify subsidy effects alongside price effects in the 
structural equations, as partial coupling was also necessary to 
identify crop-specific output price effects.

4.1.1 � Sample Description

The final dataset is unbalanced in the following way: farmers 
present from 2006 to 2010: 49.8 percent; farmers present four 
years out of five: 15.45 percent; three years out of five: 10.69 
percent; two years out of five: 7.82 percent; one year only: 7.63 
percent. In terms of yearly observations, 417 farmers were 

observed during year 2006, 420 in year 2007, 422 in year 2008, 
386 in 2009 and 369 in year 2010.11 The average total farm area 
is 197.9 ha, of which 121.41 ha of arable land (standard devia-
tion of 75.65 ha) and 74.9 for permanent grazing and temporary 
land for pasture. Average production cost is 263,777.82 Euros / 
year and total profit per farm is 56,783.74 Euros per year, about 
285.18 Euros per ha (standard deviation of 598.82). These sta-
tistics of dispersion indicate that farm diversity is limited, as far 
as size and economic performance are concerned. In terms of 
spatial location, farms are widespread over the whole Meuse 
département, as can be seen from Fig. 1, which represents the 
spatial distribution of sample farms in the cantons (an admin-
istrative unit, between the commune and the département). The 
total area covered by the sample is relatively limited (about 
6,200 square kilometers, about 2,400 sq. miles), so that dif-
ferences in climate and soil characteristics are fairly limited 
as well. Moreover, as fixed effect procedures are employed in 
the estimation, farm-specific or site-specific non-time-varying 
characteristics will be filtered out from the model.

Concerning crops and inputs, we use the major cropping 
systems in the Meuse département and select wheat, barley, 
rapeseed and diester, the last of which is used for biofuel 
production. Because wheat is, in the vast majority of cases, 
associated with barley, and farm-gate prices of both crops 
move in parallel, we combine them to form a composite 
cereal output. Land decisions are associated with these 
crops (cereals, rapeseed and diester) as well as voluntary 
set-aside, as discussed above (it should be recalled that set-
aside obligations under the CAP are already accounted for 
in the model, as total land L∗ considered in the estimation 
is net of the compulsory set-aside area). We consider only 
three inputs: seed, fertilizer and pesticide, which are consid-
ered the most crop-specific and therefore whose demand is 
more likely to be influenced by a change in cropping pattern 
(for our set of arable crops, as opposed to, e.g., labor and 
fuel).12 To obtain farm-specific input prices that vary over 
time, we proceed as follows. As database records contain 
only input expenditures and not input physical quantities 
nor unit prices, we use official yearly statistics on agricul-
tural input price indexes at the département level. We then 
convert to farm-specific price indexes using the Tornqvist 
formula, with 2004 as the baseline year.13 We then check for 
possible multicollinearity in input and output prices, with 

11  The imbalanced pattern is somewhat different to that of the original 
sample, where 39.50 percent of farmers were observed over the entire 
period, 21.31 percent over four years out of five, 9.56 percent over three 
years, 4.39 percent over two years and 7.99 percent over one year.

12  In our sample, fertilizer and pesticide account on average for, 
respectively, 9.49 and 8.25 percent of operating costs, compared with 
9.06 percent for wage labor, 4.18 percent for fuel and 3.73 percent for 
seed.
13  The Tornqvist price index of input j for farm i and year t is com-
puted as follows: log pijt = (wijt + wj0) log(pjt∕pj0) , where wijt and wj0 , 
respectively, denote the percentage cost of inputs j for farm i at year 
t and for baseline year 0 ; pjt and pj0 denote the unit input price of 
input j for year t and for baseline period 0, respectively.
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the condition number, computed every year and over the 
whole sample. The condition number is always less than 15, 
confirming that multicollinearity in input prices is limited.14 
Crop outputs are in tons, fertilizer input is in kg, and pesti-
cide input is computed from pesticide expenditure divided 
by its price index.

All prices and unit subsidies are normalized to the unit 
cost of seed so that in the estimation we consider only the 
other two inputs.15

Our sample covers the pre- and the post-2008 period, 
where compulsory set-aside was abandoned and industrial 
crops such as biofuels were allowed on set-aside land with 
the same subsidy rate as other arable crops (different from 
the agronomic set-aside subsidy rate). This concerns, in our 
case, rapeseed that can be produced for energy use or for the 
agrofood industry, with the same area-based subsidy rate 
after 2008. Our data at the farm and crop level allow us to 
account for the different cases, i.e., area under rapeseed for 
industrial use has a different area-based unit payment before 
and after 2008, while it remains at the same rate for rapeseed 
sold to the food industry. Because changes in use-specific 
area-based payments over the period are fully accounted for 
at the farm level when constructing our payment �c and area 
lc variables, we assume that the model parameters will not 
depend on such policy changes. Therefore, we do not include 

Fig. 1   Location of sample 
farms in cantons of the Meuse 
département. Note. Numbers for 
each canton represent the total 
number of farms in the sample

14  Note that the geographical area of our study is relatively limited, 
so that variability of input prices may seem to be artificially aug-
mented by the use of the Tornqvist price index. There is, however, 
an important aspect to consider, even with such limited geographical 
area: most farm production inputs have some degree of heterogene-
ity in their characteristics (quality, in a broad sense). Even chemical 
(mineral) fertilizer has a different combination of nitrogen, phospho-
rous, potash, urea, etc., and pesticide input is even more heteroge-
neous in its composition. This means that variability in input price 
reflects such differences in “quality” at the farm level. Moreover, 
there may be different unit prices paid by farmers, depending on 
quantity purchased from retailers, which are transmitted to percent-
ages of farm-level costs, leading to different price index levels even 
for similar input quantities.

15  In order to check how our results are sensitive to their choice of 
numeraire, we have estimated the model with alternative options for 
the numeraire, including, e.g., cereal output price (weighted average 
of wheat and barley) or pesticide price. Estimation results were not 
different in terms of parameter signs for price and subsidy effects, and 
only slight differences were found in the magnitude of elasticities.
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in the model a dummy variable for the pre- and post-2008 
period, as we assume parameters are neither period- nor 
policy-dependent. Moreover, as mentioned in the data sub-
section above, the eligibility condition for payments under 
CAP was a minimum arable area of 0.3 ha. No farmers in our 
sample failed to meet this criterion, so that all were eligible 
and actually received some form of area-based CAP pay-
ments every year from 2006 to 2010.

Table 2 presents descriptive statistics for the sample. 
Almost all farmers grow cereals (wheat and barley) while 
the respective proportions of positive land percentages for 
rapeseed, diester and land set-aside are 83%, 31% and 70% 
of the full sample. These descriptive statistics need to be 
interpreted with caution since some farmers may not grow 
a particular crop over the whole period.

4.1.2 � Intensity of Input Indicators

As discussed above, one reason for using detailed farm-level 
and crop-level production data is that input use (and there-
fore, environmental indicators) may differ across cropping 
systems, implying that farmers’ decisions including corner 
solutions should be modeled explicitly. Using the sample 
of farmers, we compute average environmental indicators 
for various cropping systems: cereals only, cereals-rapeseed, 

etc. IIk denotes the intensity of input k (k = fertilizer, pesti-
cide) demand on cultivated land, defined as

Descriptive statistics for our environmental indicators are 
presented in Table 3. Means and standard deviations are 
computed for a given combination of crops (e.g., cereals-
diester) over all corresponding observations across farmers 
and years. Crop combinations with fewer than 10 obser-
vations are discarded. Table 3 confirms that input use is 
strongly heterogeneous across cropping systems. This 
results in very different average environmental indicators 
and implies that accounting for farmers’ decisions over a 
whole cropping system (i.e., including decisions leading to 
corner solutions for some crops) is preferable in terms of 
policy impact evaluation. Cereal-only cropping systems (C) 
have a lower fertilizer and pesticide input use ( xF and xP ), 
and a lower input intensity indicator, except for fertilizer 
where IIF is slightly higher for cereals only than for cereal 
and rapeseed ( C + R only). The cereal-rapeseed ( C + R ) crop 
combination is associated with a fertilizer input intensity 
very close to cereal alone (C), while pesticide input inten-
sity is much higher in the ( C + R ) system than in C. This 
is presumably due to the fact that the total area of the cere-
als cropping system is smaller than the area of the cereals 
plus rapeseed cropping system, while intensities of input 
use for fertilizer are comparable. The difference in input 
intensity is more pronounced, especially for fertilizer, 
when diester is included in the crop combination ( C + D 
or C + R + D ). Interestingly, cropping systems that involve 
diester ( C + R + D ) have a lower fertilizer use intensity than 
C + D only, but a higher intensity of pesticide use (4.72 com-
pared with 1.82, 4.52 and 4.13).

(12)

IIk =
input k demand

cropland
=

xk

(lcereal + lrapeseed + ldiester)
=

xk

L − lsetaside
.

Table 2   Descriptive statistics

2014 observations. Price and subsidy variables (in Euros) are normal-
ized by the unit price of seed. Crop outputs are in tons, fertilizer input 
is in kg, and pesticide input is computed from pesticide expenditure 
divided by its price index. Cereal is the combination of wheat and 
barley crops. Land set-aside corresponds to the area above the non-
compulsory set-aside requirement (see text)

Variable Mean Std. dev. Proportion > 0

Cereal output (tons) 532.3851 342.0180 0.9985
Rapeseed output (tons) 88.4597 78.2572 0.8332
Diester output (tons) 11.0806 20.9001 0.3133
Fertilizer input (kg) 590.4984 200.7343 0.9911
Pesticide input 163.5981 118.3055 0.9916
Cereal area (ha) 84.5566 53.7241 0.9995
Rapeseed area (ha) 26.2255 5.4881 22.90
Diester area (ha) 3.4394 6.3397 0.3153
Land set-aside (ha) 4.1273 6.5696 0.7066
Cereal price 1.0207 0.3177
Rapeseed price 2.2857 0.5206
Diester price 1.2061 0.9199
Fertilizer price 0.2756 0.1274
Pesticide price 0.9552 0.0306
Cereal subsidy 5.4009 2.7268
Rapeseed subsidy 5.9490 1.3463
Diester subsidy 5.1049 2.7187
Land set-aside subsidy 8.6846 2.8985

Table 3   Environmental indicators, by crop combination

N denotes the number of observations. xF , xP , IIF and IIP , respec-
tively, denote input demand for fertilizer and pesticide, and intensity 
of input use for fertilizer and pesticide. Cropping systems are defined 
as combinations of cereals (C), rapeseed (R) and diester (D). Standard 
deviations are in parentheses

Indicator

Cropping system N xF xP IIF IIP

C only 312 270.77 34.52 17.48 1.82
(118.13) (35.40) (7.04) (1.06)

C + R only 1067 585.08 188.13 17.01 4.52
(111.64) (114.21) (6.43) (1.27)

C + D only 21 516.06 100.86 24.61 4.13
(122.38) (74.33) (7.05) (1.64)

C + R + D 610 767.75 189.44 22.79 4.72
(136.25) (110.05) (8.41) (1.37)
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4.2 � Empirical Results

4.2.1 � Relative Performance of Parametric 
and Semi‑nonparametric Methods

To evaluate the relative performance of the parametric and 
semi-nonparametric QML estimators with respect to our 
panel data sample, we compute goodness-of-fit measures 
for the continuous and discrete parts of the model. We first 
compute R 2 s on the full sample, for each structural equa-
tion, without accounting for the contribution of estimated 
fixed effects. Because such goodness-of-fit measures are 
difficult to interpret when the proportion of zero obser-
vations is large, we also produce R 2 s for each equation 
on the subset of positive observations only. Columns 2 
and 3 of Table 4 present computed R 2 s for the parametric 
and semi-nonparametric QML estimators. We note that 
the difference between R 2 s on the full sample or the sub-
sample of positive observations is noticeable mostly when 
the proportion of censored observations is higher (case 
of q rapeseed, q diester, l rapeseed, l diester and l set-
aside), with the R 2 s on the full sample being lower than 

the restricted version in 12 cases out of 27. Interestingly, 
the model fits data better with parametric PQML than with 
semi-nonparametric SNPQML on the full sample (6 cases 
out of 9), but this is the opposite on the restricted samples. 
The semi-nonparametric estimator performs better than 
PQML on subsamples with positive observations only.

To check for serial correlation in residuals estimated 
from PQML and SNPQML, we compute the heteroske-
dasticity-robust test statistic (HR) proposed by [61] in 
the context of a panel data model with fixed effects. Test 
results reported in Table 4 indicate that serial correlation 
is not present in 15 cases out of 18, with a 5-percent sig-
nificance level, so that the static specification is valid in a 
majority of structural equations.

Turning now to the goodness-of-fit measures for dis-
crete outcomes (last column of Table 4), it is more inter-
esting to focus on the equations with a significant proposi-
tion of zero observations (q rapeseed, q diester, l rapeseed, 
l diester and l set-aside). For these five equations, the pro-
portion of correct predictions (positive and negative out-
comes) is fairly similar for PQML and SNPQML, so that 
the gain associated with the latter is only minor.

Table 4   Goodness-of-fit 
measures for parametric and 
semi-nonparametric estimators

2014 observations. PQML and SNPQML, respectively, denote parametric and semi-nonparametric quasi-
maximum likelihood estimation. HR test statistic (p-value in parentheses) is Born and Breitung (2016)’s 
Heteroskedasticity-Robust test for serial correlation in panel data. The proportion of correct predictions is 
the sum of sensitivity (correctly predicted positive outcomes) and specificity (correctly predicted negative 
outcomes) measures. The proportion of positive outcomes (resp., negative) wrongly predicted as negative 
(resp., positive) outcomes is computed with respect to the number of positive (resp., negative) outcomes. 
The last column gives goodness-of-fit measurements designed for discrete outcomes computed from esti-
mated probabilities

Structural Equation Estimation Method R (sample)2 R2 (obs.> 0) HR Test Statistic Correct Pre-
dictions (per-
cent)

q cereal PQML 0.9157 0.9192 −0.90 (0.36) 99.85
SNPQML 0.9102 0.9144 0.92 (0.35) 99.85

q rapeseed PQML 0.7661 0.7369 0.46 (0.65) 83.32
SNPQML 0.7544 0.7346 0.30 (0.76) 83.12

q diester PQML 0.5093 0.3193 0.78 (0.43) 79.69
SNPQML 0.4101 0.4243 1.61 (0.10) 82.22

x ferti. PQML 0.5225 0.5445 0.61 (0.54) 99.26
SNPQML 0.4147 0.4331 0.71 (0.47) 99.60

x pest. PQML 0.8304 0.8376 2.47 (0.01) 99.16
SNPQML 0.8309 0.8383 2.72 (0.00) 99.16

l cereal PQML 0.9617 0.9607 0.25 (0.80) 99.95
SNPQML 0.9617 0.9616 1.31 (0.19) 99.95

l rapeseed PQML 0.8195 0.8001 1.00 (0.31) 83.42
SNPQML 0.8192 0.8075 0.83 (0.40) 83.42

l diester PQML 0.5288 0.3445 0.34 (0.73) 79.15
SNPQML 0.5123 0.4332 1.98 (0.05) 80.73

l set-aside PQML 0.1232 0.1337 −2.13 (0.03) 72.54
SNPQML 0.1248 0.1066 −1.75 (0.08) 77.26
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4.2.2 � Estimation Results

Results of the estimated elasticities for the parametric and 
semi-nonparametric estimator are reported in Tables 5 and 
6, respectively. The elasticity magnitude using SNPQML is 
similar to the estimates obtained using the PQML model, 
except for the impact of the set-aside subsidy, which is less 
significant in the output and land equations in the SNPQML 
estimation. Moreover, the own-price elasticity of fertilizer 
demand is no longer significant. Recall that Table 5 presents 
minus the elasticities of fertilizer and pesticide demand 
with respect to set-aside subsidy; most of them are not sig-
nificant, although their values are close to those estimated 
using the parametric model. The elasticities of fertilizer and 
pesticide demand with respect to set-aside subsidy are not 
significant, even though their values are very close to those 
estimated with the parametric model. To compare PQML 
and SNPQML model specifications, a feasible closeness 
specification test is proposed by [62], as it is based on like-
lihood or quasi-likelihood contributions that are directly 
available from our parametric and semi-nonparametric 
estimations. This test is useful to decide between two non-
nested models (e.g., the same subsets of parameter sets but 
different functional forms, see [63]). The Vuong specifi-
cation test statistic equals 1.9077 (p-value=0.0564), when 
testing the null that both specifications are equal (against 

the alternative that the parametric model is preferable to the 
semi-nonparametric one). We therefore conclude that we 
do not reject the hypothesis that both model specifications 
are equivalent.

To summarize our results in terms of comparison of the 
PQML and SNPQML estimators, the semi-nonparametric QML 
is less efficient than the parametric version even if the param-
eter estimates are fairly close. However, the semi-nonparametric 
estimator performs at least as well in terms of predicting output, 
input and land-use decisions, as well as in predicting the prob-
ability of corner solutions (discrete outcomes).

In the next section, we will discuss both estimators for 
the elasticity estimation results in terms of environmental 
impacts in subsections 5.1 and 5.2, but we will consider 
only the most efficient parametric PQML estimation for 
the simulation exercise in subsection 5.3.

5 � Environmental Impacts of Set‑aside 
Subsidy

The actual efficiency of set-aside policies for conserving the 
environment and protecting farmland biodiversity is widely 
debated. Some studies show that set-aside land improves 
biodiversity [7], while other studies find that set-aside 
policies are inefficient for conservation purposes [8]. Our 

Table 5   Parametric QML elasticity estimates with fixed effects

2014 observations. p, w and� , respectively, denote output prices, input prices and area-based subsidy rates, and fert. and pest. denote fertilizer 
and pesticide inputs. Robust standard errors are in parentheses. Dependent variables are in rows; price/subsidy in columns. Elasticities of inputs 
are computed with the minus sign
*, ** and ***, respectively, denote parameter significance at the 10, 5 and 1 percent level

p cereal p rapeseed p diester w fert. w pest. � cereal � rapeseed � diester � set-aside

p cereal 0.0096*** 0.0353*** −0.0707*** −0.0117*** 0.0120*** 0.0116*** 0.0239*** −0.0790*** 0.0259***
(0.0009) (0.0015) (0.0035) (0.0008) (0.0006) (0.0012) (0.0011) (0.0037) (0.0013)

p rapeseed 0.1418*** −0.3020*** −0.0555*** 0.0548*** 0.0280*** 0.0883*** −0.3356*** 0.1249***
(0.0042) (0.0048) (0.0010) (0.0014) (0.0034) (0.0009) (0.0059) (0.0020)

p diester 0.6714*** 0.1261*** −0.0958*** −0.0293*** −0.1760*** 0.7460*** −0.2987***
(0.0023) (0.0028) (0.0034) (0.0058) (0.0006) (0.0014) (0.0046)

w fert. 0.0507*** −0.0394 *** 0.0010 −0.0350*** 0.1200*** −0.0589***
(0.0013) (0.0026) (0.0014) (0.0012) (0.0030) (0.0018)

w pest. 0.3700*** 0.0498*** 0.0316*** −0.1071*** −0.0290***
(0.0032) (0.0037) (0.0037) (0.0020) (0.0026)

�cereal 0.0537*** 0.0022 −0.0448*** −0.0104***
(0.0017) (0.0027) (0.0044) (0.0015)

�rapeseed 0.1475*** −0.2180*** 0.0638***
(0.0011) (0.0014) (0.0011)

�diester 0.9046*** −0.3314***
0.0018 (0.0054)

�set-aside 0.1479***
(0.0044)
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purpose here is not to provide an assessment of direct envi-
ronmental consequences of set-aside policy implementation. 
Rather, we insist on the importance of an ex ante evaluation 
of land-use policies such as set-aside and greening of the 
CAP, in a context of increasing “social demand” for more 
sustainable agricultural practices.

In the broader context of the CAP reform and, more gener-
ally, of agricultural policies embedding environmental objec-
tives, our simulation experiment aims to document the imple-
mentation issues for tax policies on nonpoint source emissions 
such as from pesticide and fertilizer inputs. In the context of 
regulating nonpoint source pollution from agricultural sources, 
indirect tax-subsidy policy is sometimes advocated [64], such 
as subsidizing less input-intensive crops or alternative land use 
(e.g., land set-aside). To address the possibility that subsidizing 
set-aside could worsen the environmental effects associated 
with chemical inputs, we propose two environmental indica-
tors, which can be linked to a policy instrument such as a set-
aside subsidy.16 Note that, because we use only production 
data, these indicators will be “environmental effect proxies” 
and will tend to measure environmental “pressure” from pro-
duction rather than an actual impact on the ecosystem. The 

first indicator is the elasticity of input demand (fertilizer, pesti-
cide) with respect to the set-aside subsidy rate, which measures 
the sensitivity of farm-level input demand to a change in the 
unit set-aside subsidy rate, all else remaining equal. Assum-
ing total farm land is constant, this indicator is relevant at the 
farm level and depends indirectly on land set-aside and crop 
decisions. The drawback of using this indicator is that the 
intensive margin (i.e., increasing input intensity per unit of 
land) is relevant only if computed for the cropped area [65]. 
Therefore, we consider a second indicator based on intensity 
of input use per unit of cultivated land, which allows us to 
measure the intensification effect of changes in the set-aside 
subsidy17. Note that this environmental indicator, as a proxy 
based on input use data, cannot accommodate possibly non-
linear effects of cropping practices and cropping systems on 
the environment, which would require more detailed data et 
the plot level. Moreover, depending on the local ecosystem 
features, spatial spillover effects are also likely to exist between 

Table 6   Semi-nonparametric QML elasticity estimates with fixed effects

2014 observations. p, w and � , respectively, denote output prices, input prices and area-based subsidy rates, and fert. and pest. denote fertilizer 
and pesticide inputs. Robust standard errors are in parentheses. Dependent variables are in rows; price/subsidy in columns. Elasticities of inputs 
are computed with the minus sign
*, ** and ***, respectively, denote parameter significance at the 10, 5 and 1 percent level

p cereal p rapeseed p diester w fert. w pest. �cereal �rapeseed �diester �set-aside

p cereal 0.0100*** 0.0371*** −0.0760*** −0.0118 0.0128 0.0132 0.0235 −0.0773*** 0.0290**
(0.0011) (0.0046) (0.0118) (0.0128) (0.0105) (0.0101) (0.0183) (0.0163) (0.0103)

p rapeseed 0.1542*** −0.3288*** −0.0630 0.0598 0.0267 0.0937 −0.3406*** 0.1376***
(0.0402) (0.0633) (0.0563) (0.0563) (0.0527) (0.0987) (0.0491) (0.0320)

p diester 0.7126*** 0.1403 −0.1024 −0.0341 −0.1962 0.7444*** −0.3077**
(0.1891) (0.0908) (0.0656) (0.1093) (0.1638) (0.1957) (0.1556)

w fert. 0.0516 −0.0355 0.0085 −0.0403 0.1354 −0.0655**
(0.0563) (0.0604) (0.0193) (0.0776) (0.1119) (0.0292)

w pest. 0.3746*** 0.0552 0.0361 −0.1090* −0.0298
(0.1110) (0.0557) (0.0967) (0.0574) (0.0771)

�cereal 0.0717 −0.0075 −0.0343 −0.0059
(0.0452) (0.0223) (0.1430) (0.0369)

�rapeseed 0.1404 −0.2210 0.0790*
(0.1057) (0.1693) (0.0421)

�diester 0.8452*** −0.3266*
(0.1060) (0.1367)

�set-aside 0.1412**
(0.0954)

16  We make the distinction between the “environmental indicators” 
introduced above, which are defined in levels and ratios, and the “sen-
sitivity indicators” that are computed from them and are unit-free.

17  We remind here that pesticides are very heterogeneous with regard 
to their toxicity and that as shown in [81], quantity-based pesticide 
indicators could fail to take into account important qualitative toxicity 
characteristics of pesticides. Other indicators that consider quantities 
of active ingredients sold, spraying frequency and index of load could 
be used instead.
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land plots with intensification and another set of plots with 
land set-aside. Our analysis being at the farm level only, such 
environmental effects are not identified in our analysis. See, 
for example, [66] and [67].

We discuss below the results of the estimation of our first 
indicator, namely the chemical input demand elasticities, 
with respect to set-aside subsidy (subsection 5.1). Then, we 
present the measurement and the results of calculations of 
the second indicator namely the chemical input intensity 
elasticities with respect to the set-aside subsidy rate (sub-
section 5.2). Finally in subsection 5.3, we evaluate the envi-
ronmental impacts of a set-aside policy, obtained as prox-
ies from pesticide and fertilizer demand and input intensity 
elasticities with respect to land set-aside subsidy.

5.1 � Chemical Input Demand Elasticities 
with Respect to Set‑aside Subsidy

Elasticity estimates from parametric QML, presented in 
Table 5, show that the set-aside area is significantly sensitive 
to its unit set-aside subsidy (elasticity = 0.1479), an increase in 
the latter also implying an increase in output and planted area 
of rapeseed, as well as a minor increase in the cereal output and 
acreage. This means that, when the set-aside unit subsidy rate 
increases, farmers tend to intensify their production of these 
crops as they increase their set-aside area in parallel. This is 
confirmed by positive and significant elasticities of fertilizer 
and pesticide with respect to set-aside subsidy, equal to 0.0589 
and 0.029, respectively. In the case of diester, an increase in the 
set-aside subsidy implies a reduction in both output and area of 
this crop, with a stronger substitution effect than the increase in 
cereal and rapeseed output and land use discussed above. Fer-
tilizer demand increases with cereal and rapeseed prices (elas-
ticities of 0.0117 and 0.0555, respectively) and decreases with 
the price of diester (elasticity of −0.1261). Fertilizer demand 
also increases with rapeseed subsidy (0.0350) and decreases 
with diester subsidy (elasticity of −0.1200) and does not vary 
significantly with the price of cereals (elasticity of −0.0010). 
Finally, demand for pesticide increases with diester price (elas-
ticity of 0.0958) and decreases with the prices of cereals and 
rapeseed (elasticities of −0.0120 and −0.0548, respectively). 
Pesticide demand also increases with the subsidy for diester 
and decreases with the unit subsidy for cereals and rapeseed 
(elasticities of 0.0498 and -0.0316, respectively).

We compare our estimated elasticities with those found 
in the literature. Concerning the own-price elasticity of pes-
ticide demand, the meta-analysis by [68] concludes that the 
median own-price pesticide demand elasticities in Europe is 
equal to −0.30. More specifically, in the case of France, [69] 
find an elasticity equal to −0.77 (−1.25 to −0.28) and [70] 
find a value of −0.17 (−0.24 to −0.10). Using a simulation 
procedure to evaluate the magnitude of tax change (or price 
increase) necessary to result in a given quantity of pesticide, 

[71] find very low pesticide demand elasticity estimates, 
larger for specialized farms (between −0.026 and −0.049) 
than for diversified farms (between −0.011 and −0.023) in 
the short term. According to the literature review by [72], the 
own-price elasticity of pesticide is equal to −0.30 in the case 
of France. The value of our own price-elasticity of pesticide 
(−0.37) therefore falls within the values found in the literature 
for Europe and particularly for France. Our estimates show a 
lower value (−0.05) for the own-price elasticity of fertilizer 
demand than those in the literature for France: [70] (−0.50 
to −0.16), [73] (−0.278) and [5] (−0.371). Moreover, our 
elasticity estimates for fertilizer and pesticide demand with 
respect to set-aside subsidy (0.0589 and 0.029, respectively) 
can also be compared with the empirical literature, which, 
however, remains limited on the subject. Estimates provided 
in the European context are fairly heterogeneous in magni-
tude, ranging from 0.12 for [5], 0.13 for [74], to 1.52 for [26].

Several conclusions emerge from our results on the 
environmental impact of a set-aside policy. All else being 
equal, a set-aside subsidy has a positive impact on farm-
level fertilizer and pesticide demand: an increase in the set-
aside subsidy of 1 percent implies an increase of 0.0589 
percent in fertilizer demand and 0.029 percent in pesticide 
demand, respectively. However, the elasticity of chemical 
input demand with respect to the set-aside subsidy is cal-
culated for total land with no distinction between cultivated 
and set-aside lands. The next subsection presents our second 
indicator that explicitly accounts for chemical input use on 
cultivated land only.

5.2 � Chemical Input Intensity Elasticities 
with Respect to Set‑aside subsidy

The second indicator we consider here is defined as the elas-
ticity of chemical input quantity per unit of cultivated land 
with respect to the set-aside subsidy. This indicator accounts 
explicitly for land set-aside by considering chemical input 
use intensity per unit of cultivated land. It accounts for farm-
ers’ decisions about land set-aside following a change to the 
subsidy but is not dependent on crop distribution (only on 
total cultivated area). This indicator is calculated as follows:
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The first term �xk�s is the demand elasticity of input k with 
respect to the set-aside subsidy and measures how a varia-
tion of 1 percent in the set-aside subsidy affects the percent-
age demand for input k. The second term �lsetaside�s is the elas-
ticity of set-aside area with respect to the set-aside subsidy, 
which measures how a variation of 1 percent in the set-aside 
subsidy affects the percentage of the area set-aside. A posi-
tive �II�s means that an increase of 1 percent in the set-aside 
subsidy will increase input demand k by unit of cropped 
land, implying that an intensification effect is observed.

Table 7 presents the results for input intensity elasticity 
of fertilizers �IIf �s and pesticides �IIp�s with respect to the set-
aside subsidy for PQML and SNPQML specifications. These 
results show that input demand intensity elasticities with 
respect to a set-aside subsidy are positive and significant for 
both fertilizer (0.0645) and pesticide (0.0346) demand in the 
PQML model. This means that, when the set-aside subsidy 
increases, farmers tend to increase both their set-aside area 
lset−aside and their input use (fertilizer and pesticide); to com-
pensate for the loss due to a reduced crop area, farmers 
intensify their production by increasing their chemical input 
demand per hectare of crop area. In our case, this means that 
increasing the set-aside subsidy has an impact on agrochemi-
cal input intensification, which could have a negative impact 
on the environment (in terms, for example, of water contami-
nation and biodiversity loss). Comparing the input elastici-
ties for fertilizer and pesticide, the value of �IIf �s is always 
higher than �IIp�s . Fertilizer is usually considered a risk-
increasing input, since it jointly increases the expected crop 
yield and its variance. In contrast, previous results in the 
literature regarding the direction of risk effects of pesticides 
are ambiguous. Möhring et al. [75] show that the indicator 
of pesticide choice affects the magnitude and sign of esti-
mated risk effects.

5.3 � Set‑aside Policy Simulation

According to the new rules following the current CAP reform 
2014–2020, farmers are required to implement greening 
measures or lose up to 30 percent of their basic payment 
scheme income. The greening rules cover three areas: crop 
diversification, ecological focus areas and non-intensification 
measures to maintain permanent grassland.

As the results of our elasticity estimation show, an increase 
in the set-aside subsidy could imply an increased demand for 
fertilizer and pesticide inputs. This means that a set-aside 
policy introduced as an EFA in order to preserve biodiversity 
could have some potential adverse environmental impacts 
due to intensification at the farm level. We use our elastic-
ity estimates to simulate the impacts of a public policy that 
imposes a 5-percent increase in the set-aside area on demand 
for fertilizer and pesticide. To do this, from our elasticity of 
set-aside area with respect to its subsidy, we calculate the 
subsidy increase required to achieve a 5-percent increase in 
the set-aside area. This value is chosen with reference to the 
2014–2020 CAP, which also contains such a requirement but 
with a major difference, the lack of area-based subsidy asso-
ciated with land set-aside.

Let us start with the elasticity of set-aside area, �ls�s , with 
respect to set-aside subsidy, �s on crop s:

If we assume that �ls
ls

= 0.05 (5 percent), we can calculate the 
corresponding (equivalent) variation in the set-aside subsidy 
as

We then use this variation of the set-aside subsidy above and 
the fertilizer and pesticide demand elasticities with respect 
to the set-aside subsidy ( �f �s and �p�s , respectively) to calcu-
late the corresponding fertilizer and pesticide demand vari-

ations, denoted 
�xf

xf
 and 

�xP

xP
 , respectively. We finally use 

these input demand variations and fertilizer and pesticide 
own-price elasticities ( �xf wf

 and �xpwp
 , respectively) to cal-

culate the corresponding fertilizer and pesticide “net” price 

variations ( 
�wf

wf

 and 
�wp

wp

).

Strictly speaking, output and input market prices are exog-
enous (because farmers are price takers), but the final prices 
to the farmer are “net of tax”, that is, they incorporate the unit 
tax. As a result, price variations only concern the part of the 
final price associated with the policy instrument (the tax).

(14)�ls�s =
�ls

��s
×
�s

ls
=

�ls

ls
∕
��s

�s
.

��s

�s
=

0.05

�ls�s

.

Table 7   Elasticities of fertilizer and pesticide intensity with respect to 
unit set-aside subsidy

�lsetaside�s denotes the elasticity of set-aside area with respect to the set-
aside subsidy.  �IIf �s  and  �IIp�s  denote, respectively, the elasticity of 
fertilizer and pesticide intensity with respect to the set-aside subsidy. 
PQML and SNPQML, respectively, denote parametric and semi-non-
parametric quasi-maximum likelihood estimations. Robust standard 
errors are in parentheses (computed with the Delta method for input 
intensity elasticities)
*, ** and ***, respectively, denote parameter significance at the 10, 5 
and 1 percent level

�IIf �s �IIp�s

PQML 0.0645*** 0.0346***
(0.0018) (0.0026)

SNPQML 0.0709** 0.0352
(0.0294) (0.0772)
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For this simulation, we use elasticities calculated from 
the parametric PQML model with fixed effects (Table 5). 
This choice is motivated by more efficient estimates (with 
respect to the semi-nonparametric model, as discussed 
above), with most elasticities significant at the 1 per-
cent level. The results of this exercise are summarized in 
Table 8. Confidence intervals obtained from robust stand-
ard errors of parameter estimates are presented in brackets 
for the key expressions in this table.

We find that, in order to obtain a 5-percent increase 
in the set-aside area, we need to increase the set-aside 
subsidy rate by 33.81 percent. Using fertilizer and pes-
ticide elasticities with respect to set-aside subsidy, our 
simulations show that an increase of the set-aside subsidy 
by 33.81 percent implies an increase in fertilizer demand 
ranging from 1.87 to 2.11 percent, and for pesticide, an 
increase in demand ranging from 0.81 to 1.15 percent 
(columns 3 and 4 of Table 8). This could have potentially 
adverse effects on the environment including, e.g., nitro-
gen runoff and ground water pollution. Using own price 
elasticities of fertilizer and pesticide demand, we can cal-
culate the tax level necessary to offset such increase in 
fertilizer and pesticide demand. Our simulations show that 
such tax rates would range from 36.9 to 41.63 percent 
for fertilizer, and from 2.18 to 3.12 percent for pesticide 
(changes in input prices from the last two columns of 
Table 8). In line with most empirical papers dealing with 
elasticities of input use in agriculture (see, e.g., [68]), our 
results show that it requires a substantial tax level on pes-
ticide and fertilizer to yield a significant reduction in input 
use: a tax on fertilizer between 36.9 and 41.63 percent 
to offset an increase in demand of between 1.87 to 2.11 
percent and a tax on pesticide use between 2.18 and 3.12 
percent to offset an increase in demand of between 0.81 
and 1.15 percent. Note, however, that this result holds if 
a “homogeneous” value-added tax is applied. Average tax 
levels might be lower and the tax might be more efficient 
(in reducing potential environmental risks from pesticides) 
if tax levels are adjusted for heterogeneous pesticide prop-
erties, see [76] and [77]. These results are also in line with 

those of [78], who considers a theoretical framework with 
a fiscal scheme consisting of both a tax on nitrogen appli-
cation and a subsidy on land with cover crops. This paper 
shows that such a scheme is efficient in improving water 
quality and that it has the potential to balance the budget 
dedicated to the public policy.

6 � Conclusion

Like any policy modifying marginal benefits of land, set-
aside policies imply changes to crop choices and produc-
tion practices, whose effects and intensity depend on various 
factors. These policies may even increase crop yield since 
farmers tend to use low-yield soils to meet set-aside require-
ments. As a consequence, average cultivated land quality 
may increase, implying as well an increase in aggregate 
crop yield per hectare. Such an effect may also be obtained 
because of input intensification with potentially adverse 
impacts on the environment, which would conflict with the 
initial objectives of the policy. To investigate these potential 
effects due to input intensification, this paper evaluates the 
effect of a set-aside policy, based on changes in agricultural 
practices and land use, for a sample of French farmers in the 
Meuse Département between 2006 and 2010.

We first derive fertilizer and pesticide input demand in 
the case of multiple crops, from a structural multi-output 
production model, estimated with both a parametric and a 
semi-nonparametric QML procedure, to account for mul-
tiple corner solutions. We use the most efficient estimator, 
the parametric QML, to compute elasticities with respect to 
the set-aside subsidy for two indicators: pesticide and ferti-
lizer demand, and pesticide and fertilizer demand intensity 
per unit of cultivated land. We find that a policy targeting a 
5-percent increase in the set-aside area results in an increase 
in fertilizer (resp. pesticide) demand from 1.87 to 2.11 (resp. 
0.81 to 1.15) percent. Such policy would therefore be asso-
ciated with chemical input intensification, with potentially 
adverse environmental effects in terms of biodiversity loss 
and water pollution. To offset such an intensive-margin 

Table 8   Simulation results of a 
5-percent increase in set-aside 
area

��s

�s
 denotes the variation of set-aside subsidy in percent. 

�xf

xf
 and 

�xP

xP
 denote, respectively, the fertilizer and 

pesticide demand variation in percent, 
�wf

wf

 and 
�wp

wp

 , respectively, denote the price of fertilizer and pesti-

cide variation in percent. 95 percent confidence intervals obtained from standard errors of parameter esti-
mates are presented in brackets. PQML denotes parametric quasi-maximum likelihood estimation

(1) (2) (3) (4) (5)
��s

�s

�xf

xf

�xP

xP

�wf

wf

�wp

wp

PQML 0.3381 0.0199 0.0098 0.3927 0.0265
[0.0187;0.0211] [0.0081;0.0115] [0.3690;0.4163] [0.0218;0.0312]
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effect, taxes ranging from 36.9 to 41.63 (resp. 2.18 to 3.12) 
percent on fertilizer (resp. pesticide) would be necessary. 
Environmental effects are likely to be more harmful if the 
input demand intensity indicator increases for a reduced 
(cultivated) area. Note, however, that this indicator meas-
ures only the environmental pressure as a potential impact 
from input use, and not the actual environmental impact, 
which is likely to depend on a variety of factors (soil type, 
slope, climate, distance to surface or groundwater, and the 
characteristics of the local ecosystem.).

Because it is a nonpoint source pollution issue, only sec-
ond-best outcomes may be achieved, using, e.g., indirect 
taxation (pesticide and fertilizer sales, output level, land use, 
etc.). Policies consisting of taxing chemical inputs, along-
side subsidizing land set-aside, are often advocated as fea-
sible second-best policies, because the first-best policy of 
taxing environmental damage would be prohibitively costly 
to implement (monitoring and management costs to the 
environmental regulator, valuing environmental damages, 
etc.). Taxing fertilizer and pesticide use to correct for mar-
ket failures (externalities including water contamination and 
human poisoning) is generally considered a cost-effective 
policy in theory (as opposed to command-and-control poli-
cies), provided implementation costs are limited and the tax 
level does not deviate excessively from the optimal (first-
best) level. Note also that reducing pesticide use through 
a tax scheme may be beneficial to the farmer in the long 
run, because of a potential reduction in, e.g., resistance of 
plant pests. Although relevant in principle, accommodating 
such extension would require additional information at the 
plot or the farm level on the benefits of such tax in terms of 
pest resistance reduction, in a way similar to our discussion 
above on a differentiated, risk-specific pesticide tax (see the 
end of Sect. 5.3).

Revenue streams generated by fertilizer and pesticide 
taxes can be earmarked to subsidize more sustainable agri-
cultural practices [79]. This implies that in principle, con-
sidering a policy consisting in complementing an input tax 
with a subsidy on set-aside would correspond to the ear-
marking strategy above. However, the objective of the tax 
simulation considered here is to offset the increase in input 
demand following intensification, to illustrate the magnitude 
of the tax on fertilizer and pesticide as equivalent policies. 
In other words, the level of the input tax required to offset 
the negative consequences of a set-aside policy can also 
be interpreted as the tax level that would be necessary to 
reduce fertilizer and pesticide use by the same amount (as 
the increase in demand in the first place). We do not discuss 
the relative advantages of tax vs. area-based subsidies as 
policy instruments, which can be found, e.g., in [80], with 
a discussion on alternative policy instruments that can be 
considered to correct for market failures associated with 
agricultural pollution.

Our analysis could be extended in several directions. First, 
the model could be improved by incorporating other policy 
instruments, for example, in the case of the recent European 
Common Agricultural Policy reform, the number of crops in 
rotation and the proportion of grassland area. Another exten-
sion would involve linking our production model to observed 
farm-level environmental variables, such as water quality and 
biodiversity. Second, crop rotations may be considered in an 
extended framework where previous crop decisions could 
be accounted for in current production decisions. As crop 
rotations may impose restrictions on future farmer choices 
in subsequent years, such extension may provide interesting 
insights as to the potential impact of policies designed to 
modify agricultural land use decisions. A further difficulty 
however is that plot-level data are necessary, to fully cap-
ture the benefits associated with crop rotations on a set of 
land plots. Third, concerning our indicators capturing envi-
ronmental pressure from cropping practices and land use, 
we could consider other pesticide use indicators [81] or the 
application of different weights to each crop when comput-
ing these indicators. Based on “technical” parameters, the 
extended indicators could then better reflect heterogeneous 
environmental risks associated with each crop.

From an econometric viewpoint, several extensions could 
also be considered, starting with the correction of possi-
ble errors-in-variables (EIV) bias when deflating the price 
system by the price of seed as numeraire, as proposed by 
[82]. Furthermore, to obtain results that do not vary with 
the choice of numeraire, an extension would be to consider 
a symmetric normalized quadratic profit function, as in [83], 
however with an additional computational cost.18 This is left 
for future research.
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