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Abstract
We develop a time series model to forecast weekly peak power demand for three main states of Australia for a yearly time-
scale, and show the crucial role of environmental factors in improving the forecasts. More precisely, we construct a seasonal 
autoregressive integrated moving average (SARIMA) model and reinforce it by employing the exogenous environmental vari-
ables including, maximum temperature, minimum temperature, and solar exposure. The estimated hybrid SARIMA-regression 
model exhibits an excellent mean absolute percentage error (MAPE) of 3.41% . Moreover, our analysis demonstrates the 
importance of the environmental factors by showing a remarkable improvement of 46.3% in MAPE for the hybrid model 
over the crude SARIMA model which merely includes the power demand variables. In order to illustrate the efficacy of our 
model, we compare our outcome with the state-of-the-art machine learning methods in forecasting. The results reveal that 
our model outperforms the latter approach.

Keywords Electricity power demand forecasting · Environmental factors · SARIMA-regression Model

1 Introduction

Electrical energy is a vital resource to drive industries [1]. 
Thus, energy demand forecasting is essential to the eco-
nomic and socioeconomic aspects of modern society. Accu-
rate forecasts ensure that utilities can meet energy demand 
and avoid undesirable events in the network such as black-
outs and load shedding. While underestimation is undesir-
able, overestimation leads to wasted resources. In spite of 
recent advances in storage technologies, demand forecasting 
models are still critical in power planning [2].

In general, there are four main timescales (or, forecast 
horizons) for power demand modeling [3]: 

 (i) Long-term load forecasting (LTLF) is used for expan-
sion planning of the network;

 (ii) Medium-term load forecasting (MTLF) is used for 
operational planning;

 (iii) Short-term load forecasting (STLF) is used for day 
to day planning and dispatch cost minimization;

 (iv) Very short-term load forecasting (VSTLF) on the 
scale of seconds to minutes allows the network to 
respond to the flow of demand.

Australia is a vast and environmentally diverse continent 
with climate zones ranging from equatorial to temperate. It 
is thus important to understand how the dynamics of power 
demand varies across different regions.

In this paper, we develop a seasonal autoregressive inte-
grated moving average (SARIMA) model to forecast peak 
weekly demand in the medium-term (i.e., MTLF). The 
demand data are from three main Australian states consist-
ing of: New South Wales (NSW), Victoria (VIC), and South 
Australia (SA). To investigate the impact of the environmen-
tal factors on the power demand, we hybridize the SARIMA 
model with a linear regression model by employing the 

 * Ali Eshragh 
 ali.eshragh@newcastle.edu.au

 Benjamin Ganim 
 Benjamin.Ganim@uon.edu.au

 Terry Perkins 
 Terry.Perkins@uon.edu.au

 Kasun Bandara 
 Kasun.Bandara@unimelb.edu.au

1 School of Information and Physical Sciences, The University 
of Newcastle, NSW, Newcastle, Australia

2 School of Computing and Information Systems Melbourne 
Centre for Data Science, University of Melbourne, VIC, 
Melbourne, Australia

/ Published online: 27 November 2021

Environmental Modeling & Assessment (2022) 27:1–11

http://orcid.org/0000-0002-0874-1626
http://crossmark.crossref.org/dialog/?doi=10.1007/s10666-021-09806-1&domain=pdf


1 3

exogenous environmental variables including, maximum 
temperature, minimum temperature, and solar exposure. 
Our results reveal that the latter hybrid model improves the 
accuracy of forecasts by an average factor of 46.3% over the 
three states. Furthermore, to demonstrate the efficacy of the 
hybrid model, its outputs are compared with the state-of-
the-art machine learning methods in forecasting. The results 
reveal that the former hybrid model outperforms the latter 
methods.

The structure of this paper is organized as follows: Sec-
tion 2 provides a review of the literature and establishes the 
motivation for using a SARIMA-regression model. Section 3 
discusses the data resources and aggregation, and visualizes 
the obtained time series. Section 4 explains the details of the 
statistical procedure to fit a SARIMA model to the weekly 
peak power demand data. In Sect. 5, we employ secondary 
environmental time series to construct a hybrid SARIMA-
regression model. Section 6 discusses the quality of 52-week 
forecasts and compare the outcome with the state-of-the-art 
machine learning methods in forecasting. Finally, Sect. 7 
presents a final discussion of our findings, and provides con-
clusions and directions for future research.

2  Literature Review and Motivation

Energy demand is an amalgamation of millions of individual 
demand requirements from consumers, varying with time, 
weather, population growth, electricity price and many other 
economic factors (e.g., see [4] and [5]). The time depend-
ency of the demand along with its inherent seasonality to 
weather patterns across a yearly timescale would suggest 
time series methods to study the dynamics of the demand.

Box and Jenkins [6] introduced their celebrated SARIMA 
model for analyzing those non-stationary time series dis-
playing seasonal effects in their behavior. Each SARIMA 
model is a linearly transformed time series constructed 
by differencing the original time series at proper lags. A 
hybrid SARIMA-regression approach could be effective, if 
the time covariance of the series is well captured by the 
SARIMA component and the remaining mean value of trends 
is captured by the exogenous independent variables (e.g., 
see [2, 7]). Although it has been more than 40 years since 
such model were developed, due to their simplicity and 
vast practicality, they continue to be widely used in theory 
and practice, particularly effectively in electricity demand 
forecasting.

Crude SARIMA as well as hybrid SARIMA-regression 
models have formed the basis of many power forecasting 
models with a focus on STLF to MTLF timescale (i.e., look-
ing days to weeks ahead) in several countries, as Nigeria [8], 
Iraq [5], Malaysia [9], South Africa [2], and Thailand [10]. 
Focusing on a metric of peak demand ensures that demand 

can be met when the electricity network is under maximum 
duress. Ghalehkhondabi et al. [11] studied the peak monthly 
demand in Northern India by using two different time series 
methods including “SARIMA” and “exponential smoothing” 
models. The authors showed that the SARIMA model out-
performed the exponential smoothing model on their data. 
In Australia, Amaral et al. [12] developed a smooth transi-
tion periodic autoregressive model for the New South Wales 
power demand, and As’ad [13] predicted the peak demand 
for New South Wales at a daily resolution. For a more com-
prehensive overview of such techniques in power demand 
modeling and forecasting, see [11].

In time series forecasting, global forecasting methods 
(GFM) that simultaneously learns from a collection of time 
series, are becoming a strong alternative to the state-of-the-
art univariate statistical forecasting method such as SARIMA 
[14, 15]. In GFMs, a unified model is built using a set of 
related time series that enables the model to exploit key 
structures, behaviors, and patterns common within a group 
of time series. In fact, more recently, deep learning-based 
GFMs have shown promising results in forecasting competi-
tions and real-world applications (e.g., see [14–18]).

While artificial neural networks (ANN) are increasing 
in popularity, Kandananond [10] compared ANN, multiple 
linear regression (MLR) and SARIMA models for electric-
ity demand forecasting in Thailand. Although they did not 
find a statistically significant difference between the three 
methods, MLR and SARIMA were simpler to compute, and 
the coefficients were more easily interpreted.

In this paper, we develop a hybrid SARIMA-regression 
model to forecast the weekly peak power demand in Aus-
tralia over an MTLF timescale, that is one year horizon (52 
weeks). The main contribution of this work is to demon-
strate the crucial role of novel environmental variables in 
the dynamics of the demand. The quality of forecasts are 
compared with the state-of-the-art machine learning tech-
niques. The results show that our model not only outper-
forms the others, but also can more easily be computed and 
interpreted.

We conclude this section by noting that as electricity 
energy is still difficult to store, it is critical that the system 
can meet peak demand [4]. To the best of our knowledge, 
this work is the first attempt to investigate the impact of 
environmental factors on predicting the aggregated weekly 
peak demand in an MTLF timescale study.

3  Data: Resources, Aggregation 
and Visualizing

The power demand data for three major states of Australia, 
consisting of New South Wales (NSW), Victoria (VIC), 
and South Australia (SA), are obtained from the Australian 
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Energy Market Operator [19]. They are measured in mega-
watts (MW). The secondary environmental time series data 
are acquired from the Australian Bureau of Meteorology 
[20]. We use the data from those weather stations in close 
proximity to the primary population center for each state. 
These major population centers are Sydney, Melbourne, and 
Adelaide for NSW, VIC, and SA, respectively. Table 1 lists 
the details of those weather stations.

While the power demand data are given at 15-minute 
intervals, the environmental data are recorded weekly. So the 
former are aggregated by finding the peak demand for each 
day and then aggregating on a weekly basis. This aggregated 
value will be referred to as the weekly peak demand (WPD). 
The weekly data from the first week of January 2011 to the 
last week of December 2016 (i.e., six years) are used as the 
training data for modeling and estimating the parameters. 
Following the MTLF timescale, the data from the first week 
of January 2017 to the last week of December 2017 (i.e., 
52 weeks) are used as the test data to check the accuracy of 
forecasts generated by the model.

The three secondary environmental time series used in 
this work are “maximum temperature”, “minimum tempera-
ture”, and “solar exposure”, denoted by ���t , ���t and ���t , 
respectively. Solar exposure is defined as the amount of solar 
energy falling on a flat one meter square surface, parallel to 
the ground and exposed to direct sunlight.

Figure 1 displays the time series of WPD from 2014 
to 2016 (inclusive). Previous years show similar seasonal 
trends. Visual inspection of these graphs reveals that the 
seasonal trends may vary between the states.

Remark 1 All data analysis and graphing are conducted in 
R using the packages “astsa”1, “forecast”2, and “tseries”3,.

4  Crude SARIMA Model: WPD Time Series

We start this section by introducing a formal definition of a 
SARIMA model.

Definition 1 Shumway and Stoffer [21] A time series 
{xt; t = 0, 1,…} is ������(p, d, q) × (P,D,Q)S , if

where {wt; t = 0, 1,…} is a Gaussian white noise series, B is 
the backshift operator (i.e., Bkxt = xt−k ), and

The autoregressive order p, moving average order q, sea-
sonal autoregressive order P, seasonal moving average order 
Q, differencing orders d and D, seasonal lag S, autoregres-
sive coefficients �i , moving average coefficients �i , seasonal 
autoregressive coefficients Φi , seasonal moving average 
coefficients Θi , and the intercept � are unknown parameters 
and should be estimated.

Box and Jenkins [6] showed that if a time series was non-
stationary due to a trend in the mean, it could be detrended 
and converted to a stationary time series by differencing at 
appropriate lag(s). Perhaps, this is the main contribution of 
the SARIMA model in theory and practice.

Intuitively, “stationarity” means that the statistical prop-
erties of a time series do not vary over time. More precisely, 
a time series is stationary, if the mean function is constant 
(with respect to time), and the autocovariance function for 
two observations of the series depends only on the time dif-
ference, the so-called lag, between two observation points, 
not the actual times. A common statistical test to investigate 
such property for a given time series is the “Kwiatkowski-
Phillips-Schmidt-Shin” (KPSS) test with the following 
hypotheses [22]:

After implementing the KPSS test on the aggregated WPD 
data for the three states NSW, VIC and SA, it is revealed that 
the p values of all of them are less than 0.01, implying that 
the null hypothesis is rejected at a significance level of 1% . 
Thus, all three WPD time series are not stationary. However, 
we estimate an appropriate differencing orders d and D and 
the seasonality lag S for each time series to convert them 
to a stationary time series. The outcomes of the KPSS test 
on before and after differenced time series are provided in 
Table 2.

To assist in choosing the order parameters for the model, 
including p, q, P, and Q, the autocorrelation and partial 
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{
H0 ∶ The time series is stationary.

HA ∶ The time series is not stationary.

Table 1  Australian Bureau of Meteorology weather stations

State Site BoM Site Number

NSW Sydney Airport 066037
VIC Melbourne Airport 086282
SA Brisbane Weather Station 040913

1 cran.r- proje ct. org/ web/ packa ges/ astsa/ index. html
2 cran.r- proje ct. org/ web/ packa ges/ forec ast/ index. html
3 cran.r- proje ct. org/ web/ packa ges/ tseri es/ index. html
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autocorrelation plots are applied. They would come up with 
a few options for the orders. Ultimately, the best model (i.e., 
set of orders) is selected by finding the set achieving the mini-
mum AICc (corrected Akaike information criterion) [23]. 
AICc-based model choice enables us to balance the model 
complexity with the model ability to extract information from 

the training data [24]. Furthermore, we restrict the maximum 
sum of orders (i.e., p + q + P + Q ) to five to balance the model 
accuracy with complexity. As a final check, all coefficient 
p-values were assessed to be significant. The final fitted models 
and the estimated parameters along with their corresponding 
p-values are presented in Tables 3 and 4, respectively.

Fig. 1  Time series of the aggre-
gated WPD for NSW, VIC, and 
SA over all of the training data. 
For brevity and clarity other 
graphs in this report will only 
show the last three years of 
training data

Table 2  The KPSS test p-values for time series before and after dif-
ferencing along with the estimated values of d, D, and S 

State Before After

NSW < 0.01 0.10 ( d = 1 , D = 1 and S = 52)
VIC < 0.01 0.10 ( d = 0 , D = 1 and S = 52)
SA < 0.01 0.10 ( d = 0 , D = 1 and S = 52)

Table 3  Estimated the SARIMA 
model orders

State p d q P D Q

NSW 1 1 3 1 1 1
VIC 2 0 0 1 1 0
SA 1 0 0 0 1 0

4 A. Eshragh et al.
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5  Hybrid SARIMA‑Regression Model: 
Environmental Influence

In order to construct an appropriate hybrid SARIMA-
regression model, we first need to realize the relationship 
between the primary time series WPD and the three envi-
ronmental time series, including maximum temperature 
( ���t ), minimum temperature ( ���t ), and solar exposure 
( ���t ). Figure 1 demonstrates that all three WPD time 
series possess a strong seasonal component, appearing 
to vary with the location. Analogously, Fig. 2 displays a 

similar temporal and spatial variation for the secondary 
environmental time series (to save space, only the NSW 
environmental time series are displayed). This observation 

Table 4  The estimates of 
SARIMA parameters for the 
crude model with their p-values 
in brackets underneath

State AR1 AR2 MA1 MA2 MA3 SAR1 SMA1

NSW −0.81 (0.00) 0.24 (0.02) −0.79 (0.00) −0.26 (0.00) −0.43 (0.00) −0.32 (0.00)
VIC 0.25 (0.00) 0.15 (0.00) −0.54 (0.00)
SA 0.24 (0.00)

Fig. 2  Maximum temperature, 
minimum temperature and solar 
exposure time series for NSW 
from 2014 to 2016 (inclusive)

Table 5  The KPSS test p-values for the environmental time series 
data

Environmental 
Variable

NSW VIC SA

���
t

0.12 0.06 0.05
���

t
0.05 0.05 0.04

���
t

0.08 0.04 0.04
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implies that there could potentially be a significant relation-
ship between the primary and secondary time series.

Since the inference theory for the hybrid SARIMA-regression  
models with stationary regressor variables is completely 

different form that with non-stationarity variables, we need to 
test the stationarity of the environmental time series data at the 
outset. Therefore, the KPSS test is implemented on them and 
the corresponding p-values are reported in Table 5. This table 

Fig. 3  Scatter plot for the NSW data showing the presence of quadratic trends between WPD and the environmental variables

6 A. Eshragh et al.
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indicates that all three environmental time series over the three 
states are stationary at a significance level of 1% . Indeed, this 
outcome is visually supported by Fig. 2.

To investigate possible relationships between these exog-
enous environmental time series and the primary WPD time 
series, scatter plots are utilized. Figure 3 displays the scatter 
plots for NSW. This figure suggests that while the maximum 
and minimum temperatures have a strong quadratic relation-
ship with the WPD data, such relationship may not be as 
strong for the solar exposure.

These observations would suggest 27 combinations of 
the environmental variables (none, linear, and quadratic for 
each variable) for the “regression” component of the hybrid 
model. Once again, AICc is used to find the best combina-
tion, taking into account the secondary time series data.

The significance of each coefficient of the AICc chosen 
model was assessed and the final selected combinations are 
presented in Table 6. This table shows that, while NSW and 
VIC require the full group of regression variables, surpris-
ingly, SA does not seem to obtain sufficient benefit from the 
solar exposure time series. The estimates of model param-
eters with their corresponding p-values are presented in 
Tables 7 and 8.

Model Validation. The estimated models are checked 
for statistical validity by analyzing the residuals. Fig-
ure  4 shows the autocorrelation function (ACF) as 
well as QQ-plot for the residuals from the fitted hybrid 

SARIMA-regression model to the NSW WPD data. Clearly, 
the residuals have no autocorrelation at any lag, and the 
vast majority of the QQ-plot lies well within the 95% 
significance area (i.e., shaded gray). Similar results are 
observed for the other two states.

6  Medium‑term Load Forecasting

The two crude SARIMA and hybrid SARIMA-regression 
models constructed in Sects. 4 and 5 are used to predict the 
WPD for all three states over 52 weeks in 2017. The results 
are displayed in Fig. 5. In this figure, the black, red, blue 
and green plots are actual demands, forecasts generated by 
the SARIMA model, forecasts generated by the SARIMA-
regression model, and the 99% confidence boundary for 
WPD, respectively.

It is readily seen that the SARIMA-regression model per-
forms significantly better than the SARIMA model. A more 
solid comparison can be carried out by finding the follow-
ing two popular measures to assess the effectiveness of the 
forecasts.

Definition 2 Willmott and Matsuura [25] The mean absolute 
error (MAE) is defined as:

where ft , xt and h are the forecast values, actual values, and 
prediction horizon, respectively. Analogously, the mean 
absolute percentage error (MAPE) is given by

MAE =

∑h

t=1
∣ ft − xt ∣

h
,

MAPE =

∑h

t=1

���
ft−xt

xt

���
h

× 100%.

Table 6  Selected combination of environmental variables based on 
the minimum value of AICc for each state

State Schematic structure of the regression component

NSW ���
t
+ ���

2

t
+ ���

t
+ ���

2

t
+ ���

t
+ ���

2

t

VIC ���
t
+ ���

2

t
+ ���

t
+ ���

2

t
+ ���

t
+ ���

2

t

SA ���
t
+ ���

2

t
+ ���

t
+ ���

2

t

Table 7  The estimates of 
SARIMA parameters for 
the hybrid model with their 
p-values in brackets underneath

State AR1 AR2 MA1 MA2 SAR1 SMA1

NSW −0.90 (0.00) 0.16 (0.07) −0.74 (0.00) −0.54 (0.00)
VIC 0.48 (0.00) 0.30 (0.00) −0.46 (0.00)
SA 0.39 (0.00) 0.13 (0.03)

Table 8  The estimates of regression parameters for the hybrid model with their p-values in brackets underneath (coefficients are rounded to one 
decimal places for brevity)

State ���
t ���

2

t
���

t ���
2

t
���

t ���
2

t

NSW −770.8 (0.00) 2.4 (0.00) −497.3 (0.00) 2.6 (0.00) −61.6 (0.03) 0.27 (0.01)
VIC −328.2 (0.00) 1.2 (0.00) −167.7 (0.00) 1.2 (0.00) −83.6 (0.00) 0.3 (0.00)
SA −156.3 (0.00) 0.5 (0.00) −82.7 (0.00) 0.5 (0.00)
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Tables 9 and 10 display MAE and MAPE for the two 
estimated models and show the percentage improvement by 
employing the exogenous environmental time series into the 
model. The MAE and MAPE suggest an average 46.6% and 
46.3% improvement in the accuracy of forecasts when the 
environmental factors are included in the model, respectively. 
These observations highly support the importance of environ-
mental factors in forecasting Australian peak power demand.

Machine learning approach.  In order to compare the per-
formance of our proposed models with other methods, we 

apply the state-of-the-art machine learning approach to fore-
cast WPD. More precisely, we use recurrent neural networks 
(RNN)-based GFM proposed by [26]. Table 12 summarizes 
the optimal hyper-parameter values used in our experiments. 
According to [26], these optimal hyper-parameters are deter-
mined by a sequential model-based algorithm configuration 
(SMAC), a variant of Bayesian optimization proposed by 
[27]. Furthermore, this framework uses COntinuous COin 
Betting (COCOB) optimization algorithm proposed by [28] 
that does not require tuning of the network learning rate 
(See Table 11).

Fig. 4  ACF and QQ plots for 
the residuals from the fitted 
hybrid SARIMA-regression 
model for NSW

8 A. Eshragh et al.
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Fig. 5  Comparison of the forecasts for the SARIMA and SARIMA-regression models to the actual WPD data for 2017

9The Importance of Environmental Factors in Forecasting Australian Power Demand
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The MAE and MAPE of forecasts generated by this 
method are reported in Table 12. We observe that the hybrid 
SARIMA-regression model thoroughly outperforms the 
GFM benchmark.

Remark 2 Note that while the SARIMA-regression model 
outperforms the RNN method, the former is simpler to com-
pute and the coefficients are more easily interpreted. In prac-
tical applications, easily compared model coefficients and 

specifications are highly desirable. It is also noteworthy to 
mention that an unrolled RNN in time resembles to a nonlin-
ear approximation of ARMA models, which can be expressed 
as a NARMA(p,q) model. Here, p denotes the order of lags 
in the autoregressive model and q denotes the order of error 
terms in the moving average model. For more detailed com-
parisons between RNN and ARIMA models, we refer to [14]

7  Discussion and Conclusion

To the best of our knowledge, this work is the first attempt 
to investigate the crucial role of environmental factors in 
the dynamics of the Australian electricity power demand. 
More precisely, we developed a SARIMA-regression 
model for the weekly power demand in three major states 
of Australia, and empirically demonstrated the significant 
influence of environmental factors on predictions over a 
medium-term load forecasting timescale (i.e., 52 weeks). 
The results revealed that while the SARIMA-regression 
model generated, on average, an MAPE of 3.41% over all 
states, the environmental factors could improve the accu-
racy of forecasts by a factor of 46.3% . Such an excellent 
MAPE is comparable with the other methods listed in 
Sect. 2. However, a direct comparison might not be fair 
(in favor of our model) due to the lack of other MTLF 
studies in the literature of Australian weekly peak power 
demand. This highlights the potential explanatory influ-
ence and impact environmental variables may have on 
power demand. Furthermore, we compared our model with 
the state-of-the-art machine learning methods in forecast-
ing and demonstrate the superiority of the former model.

The weather regression variables used within this 
work are historical data and provided without forecast-
ing. This was done to maximize the predictive value of 
the regressors to highlight their importance to predicting 
power demand. To move the model towards practical use 
future work could forecast the weather variables and use 
the predictions for the SARIMA regression. While this is 
expected to reduce the accuracy of the prediction, obser-
vation shows the weather variables are strongly seasonal 
and stationary and so should maintain the majority of their 
predictive power.

An alternative to using environmental data derived 
from a single weather station would be to take the data 
from several sites across each state with different charac-
teristics, and then use a weighted average by population. 
This method may help decision makers to identify a trend 
in demand that could improve the modeling of WPD. A 
practical drawback of this method is that many weather 
stations do not report complete data. Hence, the regression 
system will have to adjust the missing values which may 
bring more errors into the model.

Table 9  Comparison of MAE for the SARIMA and SARIMA-regression  
models

State SARIMA SARIMA-regression Improvement 
(%)

NSW 3962 1643 58.5
VIC 2225 1372 38.3
SA 885 504 43.0

Table 10  Comparison of MAPE for the SARIMA and SARIMA-
regression models

State SARIMA SARIMA-regression Improvement 
(%)

NSW 5.98 2.48 58.6
VIC 5.49 3.37 38.6
SA 7.48 4.38 41.7

Table 11  The hyper-parameter values used to train the GFM-based 
RNN

Model Parameter Optimal 
parameter 
value

RNN cell dimension 24
Mini-batch size 1
Epoch size 3
Maximum epochs 38
Hidden layers 2
Gaussian noise injection 2 × 10

−4

Random-normal initializer 2 × 10
−4

L2-regularization weight 6 × 10
−4

Table 12  The MAE and MAPE 
for the RNN-based GFM

State MAE MAPE

NSW 3497 5.07
VIC 2194 5.30
SA 950 7.81

10 A. Eshragh et al.
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Our model provides a scaffold for future work in improv-
ing the accuracy and utility of forecasts. Incorporating addi-
tional environmental explanatory factors such as humidity 
and wind direction/strength could further improve the model 
and, consequently, the accuracy of forecasts.

Acknowledgements The authors thank the Advisory Editor and 
two anonymous reviewers for their invaluable comments that helped 
improve the previous version of this paper.

Author Contributions All four authors have had significant contribu-
tions in preparing this paper, including the design of the work, the 
acquisition, analysis, and interpretation of the data, drafting and revis-
ing the paper.

Funding The authors declare no funding was used in support of this 
research.

Data Availability All data are available online as provided in [19] and 
[20].

Declarations 

Conflicts of Interest The authors declare no competing interests.

References

 1. Soliman A., & Al-Kandari A. (2010). Electrical load forecasting. 
Elsevier publishing.

 2. Chikobvu, D., & Sigauke, C. (2012). Regression-SARIMA model-
ling of daily peak electricity demand in South Africa. Journal of 
Energy in South Africa, 23(3), 23–30.

 3. Hernandez, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-
Esguevillas, A. J., Lloret, J., & Massana, J. (2014). A survey on 
electric power demand forecasting: Future trends in smart grids, 
microgrids and smart buildings. IEEE Communications Surveys 
and Tutorials, 16(3), 1460–1495.

 4. Zhu, S., Wang, J., Zhao, W., & Wang, J. (2011). A seasonal hybrid 
procedure for electricity demand forecasting in China. Applied 
Energy, 88(11), 3807–3815.

 5. Kareem, Y. H., & Majeed, A. R. (2006). Sulaimany governorate 
using SARIMA. Building, (April 2003):1–5.

 6. Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. 
(2015). Time series analysis: Forecasting and control. Wiley.

 7. Abolghasemi, M., Hurley, J., Eshragh, A., & Fahimnia, B. (2020). 
Demand forecasting in the presence of systematic events: Cases in 
capturing sales promotions. International Journal of Production 
Economics, 230,.

 8. Mati, A. A., Gajoga, B. G., Jimoh, B., Adegobye, A., & Dajab, D. 
D. (2009). Electricity demand forecasting in Nigeria using time 
series model. The Pacific Journal of Science and Technology, 
10(2), 479–85.

 9. Mohamed, N., Ahmad, M. H., & Ismail, Z. (2010). Double sea-
sonal ARIMA model for forecasting load demand. Matematika, 
26, 217–31.

 10. Kandananond, K. (2011). Forecasting electricity demand in 
Thailand with an artificial neural network approach. Energies, 4, 
1246–1257.

 11. Ghalehkhondabi, I., Ardjmand, E., Weckman, G.R., & Young, 
W.A. (2017). An overview of energy demand forecasting methods 
published in 2005–2015, Energy Systems.

 12. Amaral, L. F., Souza, R. C., & Stevenson, M. (2008). A smooth 
transition periodic autoregressive (STPAR) model for short-term 
load forecasting. International Journal of Forecasting, 24(4), 
603–615.

 13. As’ad, M. (2012). Finding the best ARIMA model to forecast 
daily peak electricity demand. Proceedings of the Fifth Annual 
ASEARC Conerence. University of Wollongong.

 14. Bandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across 
time series databases using recurrent neural networks on groups of 
similar series: A clustering approach. Expert Systems with Appli-
cations, 140, 112896.

 15. Smyl, S. (2020). A hybrid method of exponential smoothing and 
recurrent neural networks for time series forecasting. Interna-
tional Journal of Forecasting, 36(1), 75–85.

 16. Bandara, K., Bergmeir, C., & Hewamalage, H. (2020). LSTM-
MSNet: Leveraging forecasts on sets of related time series with 
multiple seasonal patterns. IEEE Transactions on Neural Networks 
and Learning Systems. https:// doi. org/ 10. 1109/ TNNLS. 2020. 
29857 20

 17. Bandara, K., Bergmeir, C., Campbell, S., Scott, D., & Lubman, D. 
(2020). Towards accurate predictions and causal ‘What-if’ analy-
ses for planning and policy-making: A case study in emergency 
medical services demand, presented at the International Joint 
Conference on Neural Networks (presented), Glasgow.

 18. Salinas, D., Flunkert, V., Gasthaus, J., & Januschowski, T. (2019). 
DeepAR: Probabilistic forecasting with autoregressive recurrent 
networks. International Journal of Forecasting.

 19. Australian Energy Market Operator. www. aemo. com. au/ Elect ricity/ 
 Natio nal- Elect ricity- Market- NEM/ Data- dashb oard# aggre gated- data.  
Accessed on 27 Nov 2021.

 20. Australian Bureau of Meteorology. www. bom. gov. au/ clima te/ data/ 
index. shtml. Accessed on 27 Nov 2021.

 21. Shumway, R. H., & Stoffer, D. S. (2011). Time series analysis and 
its applications with R examples. New York: Springer.

 22. Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). 
Testing the null hypothesis of stationarity against the alternative 
of a unit root. Journal of Econometrics, 54(1–3), 159–178.

 23. Hurvich, C. M., & Tsai, C.-L. (1989). Regression and time series 
model selection in small samples. Biometrika, 76(2), 297.

 24. Boroojeni, K. G., Amini, M. H., Bahrami, S., Iyengar, S. S., Sarwat, 
A. I., & Karabasoglu, O. (2017). A novel multi-time-scale modeling 
for electric power demand forecasting: From short-term to medium-
term horizon. Electric Power Systems Research, 142, 58–73.

 25. Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean 
absolute error (MAE) over the root mean square error (RMSE) in 
assessing average model performance. Climate Research, 30(1), 
79–82.

 26. Hewamalage, H., Bergmeir, C., & Bandara, K. (2020). Recurrent 
neural networks for time series forecasting: Current status and 
future directions. International Journal of Forecasting.

 27. Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Sequential 
model-based optimization for general algorithm configuration. In 
Proceedings of the 5th International Conference on Learning and 
Intelligent Optimization (pp. 507–523). Rome, Italy. https:// doi. 
org/ 10. 1007/ 978-3- 642- 25566-3_ 40

 28. Orabona, F., & Tommasi, T. (2017). Training deep networks with-
out learning rates through coin betting. In Proceedings of the 31st 
International Conference on Neural Information Processing Sys-
tems (pp. 2157–2167). Long Beach, California, USA.

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

11The Importance of Environmental Factors in Forecasting Australian Power Demand

https://doi.org/10.1109/TNNLS.2020.2985720
https://doi.org/10.1109/TNNLS.2020.2985720
https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Data-dashboard#aggregated-data
https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Data-dashboard#aggregated-data
https://www.bom.gov.au/climate/data/index.shtml
https://www.bom.gov.au/climate/data/index.shtml
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40

	The Importance of Environmental Factors in Forecasting Australian Power Demand
	Abstract
	1 Introduction
	2 Literature Review and Motivation
	3 Data: Resources, Aggregation and Visualizing
	4 Crude SARIMA Model: WPD Time Series
	5 Hybrid SARIMA-Regression Model: Environmental Influence
	6 Medium-term Load Forecasting
	7 Discussion and Conclusion
	Acknowledgements 
	References


