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Abstract
Air pollution data are large-scale datasets that can be analyzed in low scales by clustering to recognize the pattern of pollution 
and have simpler and more comprehensible interpretations. So, this study aims to cluster the days of the year 2017 according to 
the hourly  O3 and  PM10 amounts collected from four stations of Tabriz by using spatiotemporal mixture model–based cluster-
ing (STMC). Besides, mixture model–based clustering with temporal dimension (TMC) and mixture model–based clustering 
without considering spatiotemporal dimensions (MC) were utilized to compare with STMC. To evaluate the efficiency of 
these three models, and obtain the optimal number of clusters in each model, BIC and ICL criteria were used. According to 
BIC and ICL, STMC outperforms TMC and MC. Three clusters for  O3 and four clusters for  PM10 were selected as the optimal 
number of clusters to fit STMC models. Regarding  PM10, the average concentration was the highest in cluster 4. Regarding 
 O3, all summer days were in cluster 3, and the average concentration of this cluster was the highest. Cluster 2 had the lowest 
concentration with a high difference from clusters 1 and 3, and its average temperature was the lowest. Autumn days make 
up about 84% of this cluster. The clustering of polluted and clean days into separate groups and observing the effect of mete-
orological factors on the amount of concentration in each cluster clearly prove the efficiency of the model. Results of STMC 
showed that the efficiency of clustering in air pollution data increases by considering both spatiotemporal dimensions.
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1 Introduction

Nowadays, air pollution is one of the world's most serious 
environmental issues [1]. Every year, the presence of diverse 
sources of pollution and airborne particles kills millions of 
people around the world. According to the World Health 

Organization (WHO), about 92% of the world’s population 
lives in polluted areas, and of the total deaths in the world, 
11.6% of them are due to air pollution exposure [2].

The amount of air pollution is increased by several 
causes, including a lack of strategic planning in urbani-
zation concerns, the use of private cars instead of public 
transportation, and the development of diverse industrial 
sectors near cities [3, 4]. Furthermore, meteorological 
parameters such as temperature, wind speed and direction, 
relative humidity, and rainfall have an impact on air qual-
ity [4–6]. As a citation, several studies have reported the 
potential impact of meteorological factors on the ambient 
air quality [4, 7–10].

Iran, as a developing country, is no exception to the 
world’s present air pollution problems. As a result, 
hundreds of Iranians died of air pollution in 2017 [11]. 
According to the studies, Tabriz has been identified as one 
of Iran’s most polluted cities [2, 12, 13].

Tabriz’s Air Quality Monitoring Stations (AQMS), 
which is part of the Environmental Protection Organi-
zation, has established nine (spatial) stations in the city. 
These stations take hourly (temporal) measurements of air 
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pollution concentrations, resulting in massive volumes of 
spatiotemporal data. This recorded information should be 
analyzed to monitor and control the pollution level and 
finally take appropriate actions. Traditional approaches are 
unable to process and interpret massive data with spati-
otemporal dependencies due to their complexity. Appro-
priate data mining approaches are required to analyze this 
heterogeneous data and derive valuable information.

Clustering is one of the most important statistical 
approaches in data mining since it examines enormous 
datasets such as pollution levels in the air. Clustering is the 
process of grouping objects in datasets that have similar 
features together. In other words, it is a data function that 
divides observations into subgroups based on their similar-
ity and identifies the data pattern. Clusters can be conveni-
ently studied and interpreted due to clustering’s ability to 
reduce data size. As a result, in air pollution data with 
a large amount, clustering can recognize the pattern and 
provide more clear interpretation by lowering the amount 
of the data. The effects of meteorological factors on pollut-
ant concentrations inside each cluster can be studied using 
obtained clusters of air pollution data.

Many studies have used clustering techniques to ana-
lyze spatial and temporal data. Some have used cluster 
analysis without considering the temporal dependency; 
they clustered the observed sites to identify the spatial 
pattern [14–17]. Some have considered the data as a set of 
time series in different places [14, 16, 18, 19], which did 
not consider the spatial nature of data. Some of them have 
also done clustering regardless of the spatial and temporal 
nature of data [20–22]. Models appeared to have insuf-
ficient accuracy and validity due to considering only one 
dimension (time or place) or none of them.

Recently, a new model-based clustering method for spa-
tiotemporal data has been introduced by Cheam et al. [1], 
which considers both spatial and temporal dimensions for 
fitting a mixture model for spatiotemporal data. Changes 
in time and space were considered simultaneously in this 
method. Thus, we can cluster the days of the year according 
to the spatiotemporal information of pollutant concentrations.

Many studies have been conducted in Tabriz to investi-
gate the level of air pollution concentration and its relation-
ship with meteorological factors [23–26]. However, we did 
not find any study that clusters the pollutant concentrations 
according to the spatial and temporal dimensions and justifies 
extracted clusters with meteorological factors in Tabriz so far.

Therefore, the purpose of this study was to cluster the 
days of 2017 according to the hourly concentrations of  O3 
and  PM10 collected from four stations of Tabriz using the 
mixture model–based clustering for spatiotemporal data and 
assessing the association of meteorological factors and con-
centration within detected clusters.

2  Method

2.1  Data

Tabriz is the capital of East Azerbaijan in Iran, and it is one 
of the country’s largest and most industrialized cities. Tabriz 
has a population of almost 1.8 million people and a land area 
of 320 square kilometers [24], according to the most recent 
census in 2017. Tabriz has four seasons and is semi-arid in 
terms of climate, so that it is rainy and moderate in spring, 
hot and dry in summer, rainy in autumn, and cold and snowy 
in winter. The ambient temperature reaches 30–35 °C on hot 
summer days and − 10 to − 20 °C on cold winter days [27]. 
Furthermore, the average yearly wind speed is 1.65 m per 
second [24, 28]. In 2017, the average temperature was around 
13.32 °C, with the lowest and highest temperatures of (− 5, 
39.40 °C), average relative humidity of 20.32%, and average 
wind speed of 7.02 km per hour, according to Tabriz Mete-
orological Organization reports.

Based on the information received from AQMS, the 
recorded hourly data on the pollutant concentrations in 2017 
were more accurate and complete than in other recent years. 
As a result, the pollutant data collected in 2017 was selected 
to assess and analyze.

PM10 (particulate matter with an aerodynamic diameter 
less than 10 μm) and  O3 (surface ozone) concentrations 
were measured at each station using beta attenuation and 
UV spectrophotometry, respectively. Table 1 shows the geo-
graphical coordinates of four quality monitoring stations in 
Tabriz (see Table 1).

Air quality information usually contains inaccurate, 
missing, and outlier data. As a result, the available informa-
tion was examined for outliers and missing data. The outlier 
and inaccurate data were removed by the z-score method 
before inputing the missing data, estimating the parameters, 
and data mining [2, 29, 30]. As a result, the hourly concen-
trations of monitoring stations were compared to time trend 
data from the same stations and data from nearby moni-
toring stations. First, the original data were converted into 
z-scores (with mean = 0 and SD = 1) based on the following 
settings: (1) having |z| > 4(|zt > 4|) , (2) the difference from 
the prior value being greater than 9

(
zt − zt−1 > 9

)
 , (3) the 

ratio of the z-score value to its centered moving average of 
order 3(MA3) being greater than 2(zt∕MA3

(
zt
)
> 2) , and (4) 

the difference between the singular monitoring air quality 
station and the prior value ( zt − zt−1 ) being at least twice 
greater than the difference between the city’s monitoring 
air quality station’s averaged increment ( city(zt − zt−1) ) and 
the prior value [(zt − zt−1)∕city(zt − zt−1)] > 2 , and then the 
outlier data were deleted from the original data.

According to WHO guidelines, there must be at least 
50% valid information of 1 year and the desired station for 
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statistical analysis, so the information for January to Decem-
ber 2017, which had at least 50% of the complete data, was 
selected (250 days). According to the instructions mentioned 
for the valid data in AQMS,  PM10 and  O3 data of four moni-
toring stations were considered in this research (Abrasan, 
Baghshamal, Rahahan, and Rastekoche). It should be noted 
that only the hourly information of 4 out of 9 stations was 
available. Of the total data available for pollutants  (PM10, 
 O3), the percentage of missing data was (11.88%, 0.6%) for 
Abrasan, (3.3%, 3.22%) for Baghshamal, (2.22%, 1.68%) for 
Rahahan, and (2.38%, 1.58%) for Rastekoche. The missing 
data were inputed using the linear interpolation method [31] 
with R (4.0.2) software (package: imputeTS version 3.1) 
to improve the accuracy and validity of the results. Hourly 
concentrations of each pollutant  (PM10,  O3) are used to com-
pute the diurnal concentration. The acquired diurnal data are 
then utilized to assess the variations in air pollution in each 
cluster. Meteorological data for Tabriz was gathered from 
https:// en. tutie mpo. net in 2017.

2.2  Statistical Analysis

The spatiotemporal air pollution data were clustered by fit-
ting a mixture model–based that took into account the spa-
tiotemporal dimensions (STMC). To fit the model, spatial 
(geographical coordinates of data recording stations) and 
temporal (day and hour of recorded data) information were 
taken into account, an optimal number of clusters was deter-
mined using the Bayesian Information Criterion (BIC) [32] 
and Integrated Completed Likelihood criterion (ICL) [33], 
and the model parameters were estimated using the EM 
algorithm. Finally, each observation was categorized into 
an appropriate cluster.

STMC was compared to temporal mixture model–based 
clustering that only considered the temporal dimension 
(TMC) and mixture model–based clustering that did not con-
sider the spatiotemporal dimensions (MC) to see how well it 
performed. BIC and ICL are the criteria used to compare the 
fitted models. The TMC and MC models were fitted in the 
same manner as the STMC models, except for a difference 
in considering the dimensions.

The nonparametric Mann–Kendall test (MK) [2, 34–36] 
was calculated to investigate the relationship between 

meteorological factors and pollutant concentrations  (PM10 
and  O3) within the detected clusters.

R (4.0.2) software with “SpaTimeClus” (version 1.0) and 
“mclust” (version 5.4.6) packages were used for statistical 
analysis. The following is a brief explanation of STMC.

2.2.1  Mixture models for Spatiotemporal Data

Mixture model–based clustering is a broad family of algo-
rithms designed for modeling an unknown distribution as 
a mixture of simpler distributions, sometimes called basis 
distribution [37, 38]. In this method, unlike other cluster-
ing methods that cluster the data based on some similarity 
measures, a Gaussian statistical distribution was considered 
for data. Thus, the purpose of model-based clustering is to 
estimate the parameters of the statistical distribution and 
hidden variables, considered as a cluster label of the data 
[37, 39]. Moreover, this model is applicable to a variety of 
data kinds such as continuous, ordinal, categorical, mixed, 
and functional.

Extension of mixture model–based clustering for spatiotem-
poral data was introduced in 2017 by Cheam et al. [1], which 
is a generalization for mixture model–based clustering consid-
ering only the temporal dimension [40]. Besides, the STMC 
method considers the variations in time and space simultane-
ously. Suppose each observation xi =

{
xijt

} t = 1,… , T

j = 1,… , J
 , as 

spatiotemporal data, including J × T observations on the pre-
determined temporal framework m =

(
m1,… ,mT

)
 and the 

spatial framework s =
(
s1,… , sJ

)
 . Therefore, xijt ∈ ℝ is the 

observation i at location j and time t. For spatial coordinates, 
location j is a two-dimensional vector sj =

(
vj,wj

)
.

The density function of the cth element (or cluster) for 
the spatiotemporal model is as follows:

so that �c =
(
ac, �ch, �

2

ch
, h = 1,… ,H

)
 is a set of param-

eters of the element cth, Mt =

(
1,mt,… ,m

�

t

)
 the polynomial 

vector with Q-degree of Mt , �ch =
(
�ch0,… , �ch�

)�

 is the 

(1)

fc
(
xi|�c

)
=
∏ J

j = 1

∏ T

t = 1

∑H

h=1
Υcjth

(
ac
)

×�

(
xijt|

[
Mt −Mt−1

]�
�ch + xij(t−1), �

2

ch

)

Table 1  Geographical 
coordinates of air quality 
monitoring station

Latitude Longitude Station

Second Minute Degree Second Minute Degree

12 19 46 36 03 38 Abresan
47 13 46 36 03 38 Baghshomal
52 14 46 12 04 38 Rahahn
23 17 46 12 04 38 Rastekoche
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coefficient vector of the hth regression model for the cth ele-
ment, and �

(
.|�, �2

)
 is the univariate Gaussian distribution 

density with mean � and variance �2 . The weight of this mix-
ture, �cjth , depends on both dimensions (time and space) via a 
logistic function. In the expectation and maximization steps of 
EM algorithm, the parameters of the model, which includes 

�c =

(
ac, �ch, �

2

ch
, h = 1,… , 5

)
 , were estimated. In this 

study, each xijt represents the hourly concentration of the 
desired pollutant, i.e.,, observation i in time t (T = 24 h per day 
for n = 250 days) and location j (J = 4 stations).

2.2.2  Model Selection

Suppose M represents a set of selectable models with the 
optimal number of clusters. Each model M ∈ M is defined 
by three elements. C number of elements (number of clus-
ters), H number of regressions of each element, and Q 
degree of polynomial regression. Therefore, for model M 
we have

so, M is obtained by applying the maximum number of each 
element. Thus, assuming Cmin = Hmin = Qmin = 1 , the num-
ber of selectable models is as follows:

The selection of the best model based on BIC and ICL 
criteria, calculated for all models of M. Therefore, in this 
study, suitable elements for selecting the best models in 
STMC, TMC, and MC, based on the mentioned criteria, 
is obtained. Finally, each model with a suitable number of 
clusters is analyzed.

3  Results

Table 2 presents the information criteria and the number of 
free parameters for  PM10 and  O3 concentrations in all models 
(see Table 2). BIC for STMC was the highest in both pollut-
ants. The number of free parameters of STMC in both pollut-
ants was less than the other models. Since STMC had a better 

(2)M = (C.H.Q);C.H.Q ∈ ℕ
∗.

(3)Models(M) = Cmax × Hmax ×Qmax

fitting on  PM10 and  O3 concentrations which is spatiotemporal 
data, it was selected as the final model. The number of optimal 
clusters in STMC was four for  PM10 and three for  O3.

3.1  Description of Clusters Obtained from STMC

Figure 1 shows the scatter plot of the diurnal average con-
centrations of  PM10 (right) and  O3 (left), where each repre-
sentative dot corresponds to the day profile of pollutant meas-
urements for a cluster (see Fig. 1). Also, Table 3 presents 
descriptive information on the detected clusters and mete-
orological factors (see Table 3). It is important to note that 
the number of available days for analyzing the concentration 
variations of pollutants in each season was spring 93 days, 
summer 31 days, autumn 90 days, and winter 36 days.

3.1.1  Description of Clusters Obtained for  O3 Pollutant

In clustering  O3 concentrations based on BIC and ICL cri-
teria, STMC with three clusters was selected as the best 
model.  O3 contains three clusters with average concen-
trations of low (cluster2), moderate (cluster1), and high 
(cluster3).  O3-cluster1 encompasses 102 days which is the 
most member days.

Spring forms approximately 60% of this cluster, and 
the rest of the members are in  O3-cluster3. The average 
concentration for spring in  O3-cluster3 (65.51 �g∕m3 ) 
is higher than  O3-cluster1 (55.87 �g∕m3 ).  O3-cluster2 
includes approximately 85% of autumn days (59 days), 
and the rest of the members are in  O3-cluster1. Although 
 O3-cluster1 encompasses less number of autumn days 
(22 days), the average concentration of  O3-cluster1 (48.39 
�g∕m3 ) members is higher than  O3-cluster2 (18.68 �g∕m3 ) 
members. Additionally, most winter days (22 days) are in 
 O3-cluster1.

3.1.2  Description of Clusters Obtained for  PM10 Pollutant

In clustering PM10 concentrations based on BIC and ICL 
criteria, STMC with four clusters was selected as the best 
model. PM10-cluster4 has the highest number of days 
(90 days) and the highest average concentration (78.77 

Table 2  Goodness-of-fit 
criteria, number of free 
parameters, and number of 
clusters for the analyzed 
pollutants in each clustering 
model

Number of 
clusters

Number of free 
parameters

ICL BIC pollutant Clustering model

9 134  − 197,991.8  − 195,164.4 O3 MC
9 134  − 210,927.6  − 207,898.5 PM10

4 139  − 91,726.87  − 91,722.5 O3 TMC
5 114  − 91,625.41  − 91,618.1 PM10

3 122  − 91,677.84  − 91,670.71 O3 STMC
4 107  − 90,530.45  − 90,525.04 PM10
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1 3

�g∕m3 ). PM10-cluster1 and PM10-cluster2 were almost 
the same in member days (70 and 69 days, respectively), 
whereas the average concentration of PM10-cluster1 (49.69 
�g∕m3 ) was higher than the average concentration of PM10-
cluster2 (43.81 �g∕m3 ). PM10-cluster3 (41.87 �g∕m3 ) con-
tained the lowest member days (21 days), and its average 
concentration was close to PM10-cluster2.

Spring days were present in all clusters, and this sea-
son’s highest and lowest average concentrations belonged 
to PM10-cluster4 and PM10-cluster2, respectively. It is 
important to note that regarding the spring, PM10-cluster1 
and PM10-cluster3 had moderate average concentrations 
and were close in values. However, PM10-cluster3 had a 

slightly lower average concentration than PM10-cluster1. 
Summer days were present in PM10-clusters 1, 2, and 4, 
but PM10-cluster1 included only 2 days which can be 
disregarded.

Additionally, PM10-cluster4 had a higher average con-
centration than PM10-cluster2. Autumn days were seen in 
PM10-cluster2 (approximately 60%) and PM10-cluster4 
(approximately 37%). PM10-cluster4 containing low mem-
ber days exhibited a higher average concentration than 
PM10-cluster2. Regarding winter, PM10-cluster1 included 
50% of days and PM10-cluster4 30% of them. Furthermore, 
PM10-cluster4 had a higher average concentration than 
PM10-cluster1.
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Fig. 1  Scatter plot of the diurnal average concentration of  PM10 (right) and  O3 (left) clusters in STMC model

Table 3  Descriptive statistics for  PM10 and  O3 clusters obtained from STMC

Descriptive statistics Pollutant

Cluster of  PM10 Cluster of  O3

C1 C2 C3 C4 C1 C2 C3

Average concentration of all stations ( �g∕m3 Spring 46.19 37.53 41.23 75.78 55.87 25.34 65.51
Summer 38.05 55.28 – 94.45 47.21 – 68.64
Autumn 52.28 41.39 – 77.03 32.92 18.51 47.19
Winter 56.45 48.67 45.67 69.19 25.34 18.98 50.81

Average concentration of all stations ( �g∕m3) 49.69 43.81 41.87 78.77 48.39 18.68 63.85
Standard Deviation ( �g∕m3) 14.06 15 24.37 25.21 16.64 8.36 10.82
Range ( �g∕m3) 127.82 103.89 124.20 168.40 64.36 43.27 52.9
Minimum ( �g∕m3) 9.86 4.99 5.63 26.71 15.64 2.81 32.51
Maximum ( �g∕m3) 137.68 108.88 129.83 195.11 80 46.09 85.41
Number of days 70 69 21 90 102 70 78
Average temperature ( ◦C) 12.44 13.67 11.26 15.33 13.67 6.68 20.21
Average relative humidity ( %) 47.80 49.54 50.81 44.29 46.94 58.19 37.79
Average total rainfall/snowmelt (mm) 0.94 1 1.73 0.27 1.45 0.22 0.41
Average visibility (km) 9.19 9.61 9.60 10.08 9.48 8 11.08
Average wind speed (km/h) 12.40 11.67 14.84 13.87 12.43 10.64 15.69
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3.2  Analysis of the Correlation Between Pollutant 
Concentrations and Meteorological Factors 
Within Clusters in STMC

The MK test to assess the correlation between meteorological 
factors and the concentrations of  PM10 and  O3 was calculated, 
shown in Table 4 (see Table 4).

According to the MK’s test results, all clusters presented 
a statistically significant correlation between the average 
concentration of O3 and meteorological factors, except 
O3-cluster2 for rainfall. The relationship between the aver-
age concentration of O3 and temperature in all clusters was 
positive and weak to moderate with a very high statistical 
significance (p-value < 0.05); in respect of relative humid-
ity, it was negative and moderate with a very high statistical 
significance (p-value < 0.05). Moreover, all clusters showed 
a positive and weak relationship between the average con-
centration of O3 and wind speed.

The MK’s test results for PM10 revealed a statistically 
significant correlation between average concentration and 
meteorological factors (temperature and relative humid-
ity) in PM10-cluster2 and PM10-cluster3. The relationship 
between temperature and average concentration in PM10-
cluster2 was positive and weak to moderate, with a very 
high statistical significance (p-value < 0.05), but it was neg-
ative and weak about relative humidity. The relationship 
between temperature and average concentration in PM10-
cluster3 was positive and moderate to strong whereas the 
relationship between temperature and relative humidity 
was negative and moderate to strong. Furthermore, in 
PM10-cluster1, PM10-cluster2, and PM10-cluster3, the 
relationship between rainfall and average concentration 
was negative and weak. It is important to note that there 
was no statistically significant correlation between PM10 
and wind speed.

4  Discussion

The goal of our study was to apply a mixture model–based 
clustering method for clustering the days according to hourly 
concentrations of  PM10 and  O3 over the 1 year in Tabriz. 
This method does not consider the type of data and can be 
used for various types such as continuous, ordinal, categori-
cal, mixed, and functional. Spatial and temporal information 
is always available in the air pollution datasets, which is a 
type of functional data. Therefore, the mixture model–based 
clustering method is a proper choice for analyzing this func-
tional data with spatial and temporal dependencies.

STMC with spatial and temporal dependencies, TMC 
with temporal dependency, and MC lacking in both depend-
encies were fitted to data to assess the applicability of sta-
tistical models for our data. BIC, ICL, and number of free 
parameters were calculated for these models. The results 
showed that the STMC compared to TMC and MC had a 
better fitting on spatiotemporal data of  PM10 and  O3. The 
following is a review of various pollutant clustering studies 
in which none of the dependencies (spatial and temporal) are 
simultaneously considered.

Jin et al. [41] demonstrated the application of the k-means 
clustering method to identify  O3 spatial regimes (or clusters) 
over California’s San Joaquin Valley. Clusters show the days 
having the same  O3 geographical distribution. In terms of 
concentration, of a total of six recognized regimes, two cor-
responded to low-O3-cluster, three to moderate-O3-cluster, 
and one to high-O3-cluster. Moreover, meteorological meas-
urements were used to describe  O3 spatial distributions and 
their correlation to those in San Francisco Basin.

Pandey et al. [42] demonstrated the spatial and temporal 
variability of  PM1.0,  PM2.5,  PM10,  NO2, and  SO2 in India 
using the average linkage clustering approach. Clusters 
including monitoring sites represent similar behavior in 

Table 4  Mann–Kendall correlation coefficient between meteorological parameters and  PM10 and  O3 clusters

** Correlation significant is 0.01 level; *correlation significant is 0.05 level

Meteorological parameters Cluster of  PM10 Cluster of  O3

C1 C2 C3 C4 C1 C2 C3

Average temperature ( ◦C)  − 0.101
0.218

0.288**
0.000

0.536*
0.001

0.085
0.235

0.322**
0.000

0.299**
0.000

0.318**
0.000

Average relative humidity(%)  − 0.004
0.964

 − 0.233**
0.005

-0.404*
0.011

 − 0.055
0.447

 − 0.345**
0.000

 − 0.401**
0.000

 − 0.357**
0.000

Average total rainfall and/or 
snowmelt (mm)

 − 0.196*
0.039

 − 0.219*
0.022

 − 0.183
0.260

 − 0.220**
0.003

 − 0.224**
0.003

0.057
0.558

 − 0.251**
0.006

Average visibility (km)  − 0.253**
0.003

0.086
0.312

 − 0.135
0.446

 − 0.208*
0.014

0.301**
0.000

0.276**
0.001

0.211*
0.010

Average wind speed (km/h)  − 0.230**
0.005

 − 0.037
0.652

0.091
0.566

 − 0.001
0.992

0.280**
0.000

0.281**
0.001

0.213**
0.001
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terms of pollutant dispersions and spatial variations. Accord-
ing to the results, concentrations of all varieties of  PM10 
were highest in the winter and lowest in the wet season at 
all sites.

Huang et al. [43] investigated the characteristics of  PM2.5 
in China using a hierarchical clustering approach. According 
to the results,  PM2.5 information, collected from 13 moni-
toring sites, was arranged in 3 clusters. One of the most 
important findings was that the temporal distribution of 
 PM2.5 demonstrated that winter had the highest concentra-
tion, and fall has a higher concentration value than spring, 
and the lowest concentration belongs to summer. In terms of 
spatial distribution, three out of 13 monitoring sites exhib-
ited the highest concentration of  PM2.5.

In a study conducted in northern China [44], cluster anal-
ysis was used to reveal the spatial and temporal distribution 
of  PM2.5,  SO2,  NO2, CO, and  O3 pollutants. Pearson’s cor-
relation coefficient was used to investigate the relationship 
between pollutant concentrations with each other. Hierar-
chical cluster analysis was used in this study to categorize 
nine cities into various groups based on a monthly average 
of the above pollutants in each city. Using cluster analy-
sis, nine cities were divided into four clusters based on the 
monthly average of pollutants. According to the clustering 
analysis, air pollution was mainly associated with industrial 
city structures and geographical and socioeconomic factors.

Many studies on the relationship between pollutant con-
centrations and meteorological factors have been conducted. 
They indicate that the hourly, daily, monthly, and seasonal 
variations of air pollutants in a residential area can be caused 
by meteorological factors such as atmospheric temperature, 
relative humidity, wind speed, solar radiation intensity, and so 
on. The amount of pollutant concentration will be affected by 
changing the above elements during the seasons [2, 45, 46].

Among the meteorological factors, atmospheric stabil-
ity and wind speed have the most influence on atmospheric 
dispersion and decreasing air pollution [30, 34]. The inten-
sification of air pollution in Tabriz can be attributed to the 
temperature inversions and calm conditions.

Geographical characteristics, meteorological variables, 
and residential buildings in the direction of the wind enter-
ing the city all contribute to the city’s current situation. It 
should be mentioned that the data show a fluctuating varia-
tion in  PM10 and  O3 concentrations in Tabriz from 2006 to 
2017 [25].

Based on the results of this study, days with similar 
average temperature, relative humidity, and rainfall are 
grouped in a cluster.  O3-cluster3 with the highest tempera-
ture and lowest relative humidity has the hottest days of the 
year, while the coldest days belong to  O3-cluster2 with the 
lowest temperature and highest relative humidity. There-
fore, based on the average concentration of each cluster 
and the MK test, the effect of meteorological factors can 

be observed so that concentration has a direct and posi-
tive relationship with temperature and has an inverse and 
negative relationship with relative humidity and rain. In 
the following, the reasons for increasing and decreasing  O3 
concentration on hot and cold days of the year are briefly 
indicated.

Based on most conducted studies, there was a clear and 
logical trend in the monthly and seasonal variations of  O3 
concentration. The highest and lowest values of  O3 concen-
tration were reported in summer and winter, respectively, 
according to the variation pattern. This highest value may 
be due to increased atmospheric temperature, increased 
intensity of sunlight, long days, and long sunny hours in hot 
seasons, all of which increase photochemical reactions and 
 O3 production, whereas the lowest value is related to reduced 
daylight (sunlight time), lower temperature, and sunshine 
duration [2, 45, 47].  O3 generation is also influenced by sev-
eral processes and activities such as transport, deposition, 
and NOx titration. The increase in  O3 concentration in the 
warm seasons is directly related to the increment degree of 
temperature that is one of the main parameters in controlling 
the  O3 formation [48, 49].

According to the results of this study,  PM10-cluster4 had 
the highest temperature.  PM10-cluster3 and  PM10-cluster2 
had lower temperatures, higher rainfall, and higher wind 
speed. It is important to note that  PM10-cluster3 and 
 PM10-cluster2 were close in values with slight differences. In 
the following, the effect of meteorological factors on  PM10 
concentration in different seasons is summarized.

Because of the Asian dust phenomenon,  PM10 concen-
trations may rise in the spring and summer [36, 50]. Fur-
thermore, the concentration of  PM10 rises during warmer 
seasons due to high ambient temperatures and low relative 
humidity. Moreover, the correlation between  PM10 concen-
tration with temperature and relative humidity is positive 
and negative, respectively [8].

The studies on the relationship between  PM10 and 
rainfall show that the washout effects of rainfall reduce 
 PM10 concentrations in the atmosphere. Rainfall and rela-
tive humidity eventually have a negative correlation with 
 PM10 [51].

According to the results of the analysis of the aver-
age concentrations of  O3 and  PM10 in each cluster, the 
relationship between meteorological factors and average 
concentration in each cluster, and the member days of sea-
sons in individual clusters, it is possible to conclude that 
the clustering method used in this study has good fitness, 
and the results were interpretable. Finally, model-based 
clustering provides a strong basis and shows excellent effi-
ciency in analyzing data with spatiotemporal dimensions. 
Using the above approach on datasets with spatial and 
temporal information produces more reliable and accu-
rate results [1].
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5  Conclusion

Data mining methods are very applicable in evaluating 
air pollution data, and the results play a significant role in 
managing and preventing the accumulation of pollutants. 
Clustering, one of the data mining approaches, reduces the 
amount of data examined while revealing hidden informa-
tion. As a result, analyzing individual clusters with a small 
amount of data decreases the errors in the results. In this 
study, the STMC using spatiotemporal dimensions classify 
the days in Tabriz, 2017, based on their  PM10 and  O3 con-
centrations. The results demonstrated that considering the 
dimensions of the data in the analysis could increase the 
efficacy of the clustering in our spatiotemporal air pollution 
data. The findings of STMC's examination of the obtained 
clusters in terms of available meteorological parameters sug-
gested that the clustering was acceptable and meaningful.

6  Limitation

This study may have some limitations:

• Over the year 2017, there were insufficient measurements 
of pollutant concentrations in the winter and summer. 
This insufficiency was evident in the data collected in 
January, February, July, and September.

• Due to the different sources for pollutant production in 
each region, geographical conditions and meteorological 
factors that influence on the pollutant level variations, it 
was impossible to directly compare with the results of the 
other studies.
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