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Abstract

In this study, non-homogeneous Poisson processes (NHPP) are used to analyze climate data. The data were collected over a
certain period time and consist of the yearly average precipitation, yearly average temperature and yearly average maximum
temperature for some regions of the world. Different existing parametric forms depending on time and on unknown param-
eters are assumed for the intensity/rate function A(), t > 0 of the NHPP. In the present context, the Poisson events of interest
are the numbers of years that a climate variable measurement has exceeded a given threshold of interest. The threshold cor-
responds to the overall average measurements of each climate variable taking into account here. Two versions of the NHPP
model are considered in the study, one version without including change points and one version including a change point.
The parameters included in the model are estimated under a Bayesian approach using standard Markov chain Monte Carlo
(MCMC) methods such as the Gibbs sampling and Metropolis—Hastings algorithms. The models are applied to climate data
from Kazakhstan and Uzbekistan, in Central Asia and from the USA obtained over several years.

Keywords Temperature and precipitation data - Threshold exceedances - Bayesian inference - Change-point - MCMC methods

1 Introduction

Changes in climate either at global or at local level are moni-
tored by following the behavior of climate variables such as
precipitation volume and temperature as well as ocean levels,
among others, paying special attention to the occurrence of
events that deviate from the expected behavior (for instance,
precipitation volume and/or temperature that are either
higher or lower than the average value). The changes in cli-
mate have been observed throughout the world since the end
of the nineteenth century (see, for instance, [1] and https://
climate.nasa.gov/evidence/). It is possible to observe a sig-
nificant increase in the average world temperature specially
since the 1950s (see https://climate.nasa.gov/evidence/).
For instance, nowadays we have an increase of 1.5 degrees
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Celsius in the average world temperature when compared to
the pre-industrial era [1]. Additionally, climate events that
deviate from the expected behavior are registered more and
more frequently around the globe. One of the possible rea-
sons for these changes could be the increase in the human
made emissions into the atmosphere of carbon dioxide and
other pollutants (see, for instance, https://www.ncdc.noaa.
gov/monitoring-references/fag/indicators.php).

In addition to impacting the occurrence of climate events
deviating from the average behavior, climate change has also
a serious impact on ecosystems around the world, some of
them very fragile. For instance, [2] presents several works
studying the impact of climate change on forests in the
USA. In [3], it is presented the effects of climate change on
marine systems, and [4] introduces a review describing the
impacts of the climate change in British Columbia diver-
sity. In particular, changes in the temperature and/or pre-
cipitation patterns may have serious consequences in food
production. Too little/much rain, high/low temperature and
dry spells at the wrong time may affect crop production and
meat production. Additionally, we may have economic and
human consequences due to the possible forest fires which
might reach households and cause economical losses and
risk human lives.
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Therefore, due to its serious consequences on the lives of
the planet, it is very important to study climate change and
the occurrence of climate events deviating from the expected
behavior. Going in this direction, many statistical models
are introduced in the literature dealing in some way with the
problems related to this change. Among these models, [5]
introduces a stochastic model, assuming different scenarios,
which is used to estimate, for example, the probabilities of
daily changes in precipitation. In another study, [6] considers
stochastic differential models to study climate change prob-
lems and [7] presents a non-parametric renewal model for
modeling daily precipitation data. A Markov model is also
used by [8] to analyze precipitation data and [9] provides
an overview of stochastic climate theory from the point of
view of applied mathematics. Many other statistical models
to infer the years that climatic anomalies occur are also pre-
sented in the literature [10-13].

Despite the existence of a very large number of papers
using different statistical models introduced in the literature
in recent years to study the climate changes, other statisti-
cal modeling alternatives may be of interest in the study
of changes in precipitation and temperature patterns. Thus,
as the main goal of this study, we consider statistical mod-
els in the presence of change-points assumed as unknown
parameters that should be estimated from the climate data to
accurately detect these changes. The presence of one or more
change points is very common in time series data derived
from many areas of application, for instance, epidemiol-
ogy, finance, environment, medicine and many others, see,
for instance, [14—18], among others. In general, we have
change-points when either there is an intervention on the
experiment whose results are being recorded or when there
is an occurrence of a natural event, related to the data, that
abruptly changes the behavior of the time series. This change
in behavior may occur to any type of continuous or discrete
data. In the case of discrete measurements a common type
of change is in the counting of the occurrence of events, for
instance, changes in the occurrence of threshold exceedances
and number of hospitalizations, among others.

In addition to estimating specific change points, we may
also be interested in the number of times a climate variable
deviates from its average behavior over a fixed period of
time. The change-points, as pointed out above, can be esti-
mated by considering models in the presence of parameters
denoting the change-points. If our interest is the number
of times the average annual amount of precipitation and
temperature exceeds their corresponding mean values over
a given time interval, a natural choice for statistical mod-
eling is given by counting processes and in particular non-
homogeneous Poisson processes (NHPP). Even though in
the NHPP formulation an assumption of independent inter-
occurrence times is implicit, this type of model has provided
good approximation for many problems, of similar nature
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as those considered here, that were studied in the past while
allowing to calculate specific quantities of interest such as
the probability of the number of occurrences in a given time
interval.

NHPP have been used to study problems in several areas
where problems of similar nature as those considered here
are analyzed, see, for instance, in reliability theory [19-21],
counting marine species [22], air pollution [14, 16], com-
munity noise pollution [23], in medicine [15], among many
other areas. One common feature of those models is the
assumption of several forms for the rate function associ-
ated with the NHPP. These rate functions may dependent
not only on time, but also on some parameters that need to
be estimated.

Different approaches have been considered in order to
estimate the parameters of the proposed models including
the location of the change-point. Many works, presented in
the literature, consider this point especially under a Bayesian
approach. This inference approach has some computational
advantages when compared with standard maximum likeli-
hood methods especially when dealing with non-homogeneous
Poisson processes and, in particular, in the presence of
change-points since the likelihood function may have a very
complex form. Other advantage of the Bayesian approach is
that we could incorporate prior opinions of experts leading
to more accurate inference.

Bayesian inference for either homogeneous or non-
homogeneous Poisson processes has been discussed by
many authors such as [21, 24-27]. Those processes have
also been used to obtain inference for change-point models
[25, 28-30]. Raftery and Akman [31] consider a Bayesian
analysis for homogeneous Poisson processes in the pres-
ence of a change-point. Ruggeri and Sivaganesan [32] and
[33] consider a Bayesian analysis dealing with a random
number of change-points. In the former work, NHPPs with
the so-called power law processes (PLP) as rate function is
considered and in the latter a stepwise constant rate func-
tion is used.

Within the Bayesian framework the estimation of the
parameters may be performed using MCMC methods
[34-36]. We follow this path when we develop a Bayes-
ian analysis assuming different parametric structures for the
rates in non-homogeneous Poisson processes either in the
presence or in the absence of change-points for the climate
time series considered here. The OpenBugs software [37] is
used to simulate the MCMC samples.

The paper is organized as follows. Section 2 introduces
the methodology where the NHPP models are presented in
two situations: models with and without change-points. In
Sect. 3 we give the results assuming different climate data
sets. Section 4 presents some discussion on the obtained
results and concluding remarks. Finally, an Appendix
is included after the list of references where we give the
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OpenBugs code used to generate the samples to estimate the
parameters of interest as well as the data sets used in each
of the applications.

2 Methodology
2.1 Non-Homogeneous Poisson Models

As mentioned before NHPP are used in many applications
where, as in the present work, occurrences of events are
of interest. Here, we use this type of model to estimate
the probability that a climate variable (in the present case,
either precipitation or temperature) exceeds a predetermined
threshold a given number of times in a time interval of inter-
est. The threshold, to which the climate variable measure-
ment is compared, is the overall average measurement of the
variable of interest taking into account the entire observed
period indicated by [0, T], T > 0.

Hence, let M, > O record the number of times the climate
variable is above the threshold (represented by the overall
average of the measurements) in the time interval [0, ?),
t € [0, T]. We assume that M = {M, : t > 0} follows a non-
homogeneous Poisson process with rate and mean functions
given, respectively, by A(¢) > 0 and,

t
m(t) = / As)ds, t>0. €))
0

Recall that the rate function A(¢) dictates the behavior of
the Poisson process.

Different parametric forms may be considered for the
rate function. Due to the nature of the questions asked when
using NHPP models, these functions may be borrowed from
studies made in reliability theory. Hence, if 0 is the vec-
tor of parameters present in the rate and mean functions,
then in order to explicitly indicate this dependence, we will
use, in the description of the models, A(¢ | 8) and m(z | 6) to
denote the rate and mean functions, respectively. Note that
m(t | 8) denotes the expected number of events registered by
M, up to time ¢. The characterization of a non-homogeneous
Poisson process of this type is specified by the functional
form of m(t | 8), or equivalently, of its intensity function
At | 0), given by the first derivative of m(t | ), that is,
At | 0) = dm(t | 0)/dt. For the analysis of climate data, it
is interesting to have a rate function A(# | 6),¢ > 0 showing
different behaviors as decreasing or increasing depending
of time.

Different formulations of NHPP could be used in the
climate data analysis as well as other types of analysis.
One of these formulations, usually used in software reli-
ability studies and denoted as NHPP-I, assumes that the
mean value function is given by m(t) = aF(t) where F(t)

is the cumulative function of a specified probability distri-
bution and « is a unknown parameter that should be esti-
mated [21]. Another formulation, also used in software reli-
ability studies and denoted as NHPP-II, is given by taking
m(t) = —log(l — F(t)) where F(¢) is the cumulative function
of a probability distribution also usually used in reliability
and reliability software applications [38, 39].

For the climate data, we consider five parametric
structures: the power law process (PLP) [40, 41]; the
Musa—Okumoto process (MOP) [42]; the Goel-Okumoto
process (GOP) [43]; a generalized form of Goel-Okumoto
(GGOP); and the exponentiated-Weibull (GPLP) [21, 44,
45] which generalizes de PLP model. The PLP, MOP and
GPLP models are defined as special cases of the mean
function m(¢r) = —log(1 — F(¢)), that is, in the class NHPP-
II, where F(¢) is the cumulative function of a Weibull dis-
tribution [46] given by F(f) = exp{—(t/0)*},t > O for the
PLP, the cumulative function of a Lomax or Pareto type II
distribution [47, 48] given by F@©) =1 — (1 —t/a)",t > 0
for the MOP and F(¢) = {1 — exp[—(¢t/0)*]}?,t > 0 the
cumulative distribution of an exponentiated-Weibull dis-
tribution for the GPLP that generalizes de PLP process.
The GOP and the GGOP are obtained from formulation
of the mean value function given by m(t) = aF(¢) where
F(t) is the cumulative function of an exponential distri-
bution, that is, F(t) = 1 — exp(—pf) for the GOP model
and F(¢) = 1 —exp(—pt") the cumulative distribution of a
Weibull distribution for the GGOP model. Thus, the mean
value functions, considered in the present work, are given
by,

mp;p(t | 0) =(t/0)", where 6 = (a,0);a,6 > 0,

myop(t | @) =plog(l +t/a), where 6 = (a, f);a, f > 0,

meop(t | 6) =a[l — exp(—pt)], where 6 = (a, f);a, f > 0,
Meeop(t | 0) =a[l —exp(—pt")], where 0 = (a, B, y);a, B,y > 0,
meprp(t | 0) = —log[1l — Fy(?)], where 0 = (a, f,0);a, f, 0 > 0,

()

with Fgy(t) = 1 — exp[—(t/ 0)*1?. The corresponding inten-
sity/rate functions A(¢ | 8) = dm(t | 8)/dt for the mean func-
tions (2) are given by,

App(t] 8) =(a/o)(t/0)*", where 6 = (a,0);a,06 > 0,
Ayop(t | 0) =B/(t + @), where 6 = (a, f):a, f > 0,
Agop(t | 0) =ap exp(—pt), where 6 = (a, f);a, p > 0,
Agcop(t | 0) =apyt’ ™ exp(—pt), where 0 = (a, B,7)a, B,y > 0,
Acprp(t ] 0) =G(@)/[1 — Fgy ()], where 6 = (a, f,0);a, f,0 > 0,
3)
where G(1) = afo~" {1 — exp[—(1/o)*1}/~exp[~(1/0)*1(t/
)%~ !and where Fpy,(¢) is defined as in (2).
The intensity functions given by (3) define the hazard
rates of the time between occurrence of events in the respec-
tive models. The several expressions for the rate functions
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cover a wide range of forms of behavior of the occurrences
of the events of interest in function of time. For instance,
the intensity function Ap;p(f | 8) presents different behav-
iors depending on the value of a. These behaviors could
be constant, decreasing or increasing depending on whether
a =1,a < lora> 1, respectively. The intensity functions
Ayop(t | 0) and Agp(t | 0) presents a decreasing behavior as
functions of t and A550p(f | 0) describes the situation where
the intensity increases slightly at the beginning and then
begins to decrease with t. Moreover, for the rate A;p;p(f | 0)
we observe that: if « > 1 and af > 1, A(¢) is an increasing
function of t; if @« < 1 and @f < 1, A(¢) is a decreasing func-
tion of t; if @ > 1 and af < 1, A(¢) has a bathtub form; if
a < land aff > 1, A(?) is unimodal.

Two versions of the models will be considered depending
on the rate function used. In one version we assume that no
change-points are present and in the other we assume the
presence of a change-point. Since the Bayesian point of view
will be used to estimate the parameters and the OpenBugs
software will be used to program the MCMC algorithm, we
only need to specify the likelihood function of the model as
well as the prior distributions of the parameters involved. We
start with the likelihood function.

In order to specify the likelihood function, we need to
describe the information actually used in it. In the pre-
sent case, this information consists of the years where
exceedances of the corresponding threshold for each data
set occurred. Hence, let n be the number of observed
times where these events of interest occurred in the time
interval [0, T, T>0 and let 0<t;, <t, <...<t, <T
denote these times. Thus, the set of observed values is
Dy =A{nt;,...,1,;T}.

The likelihood functions of the two versions of the mod-
els considered here are given as follows.

2.2 Likelihood Function Without the Presence
of Change-Points

Suppose that there are no change-points, then the likelihood
function of the model is given by [49],

L© | Dy) = l]‘[ At | 0)] expl-m(T | 6)]. @)
i=1

2.3 Likelihood Function in the Presence
of a Change-Point

When we have a single change-point 7 making a transition
between two NHPP models of the same type but with differ-
ent parameters, the intensity function of the overall process
is given by [14],
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_JAtlopif0<t<T,
A16) = { At | 6y)if 1> 7, )

where A(% | 9j),j = 1,2 are the intensity functions related
to the intensity functions defined in (2) and 6,,j = 1,2 are
the parameters associated to the NHPP before and after the
change-point. The corresponding mean value functions
m(t | 0]-),/' = 1,2, are given by,

om0 =m(t|6)if0<r <1,
m(tla)_{m(r|91)+m(t|92)—m(1|02)ift27. (6)

Hence, if n exceedances occurred in the time interval
[0, T] with the occurrence time given by D, then we may
rewrite this set as D = {n;t, ..., INSIN 415 - ,t,;T} where
4, k=1,2,...,n1is the time of occurrence of the kth event
(in the present case is the kth exceedances of the climate
threshold), 7 is the change-point, and N, is the number of
times the event occurred before the change-point. Therefore,
when one change-point is allowed the likelihood function of
the model is given by,

N‘r
LO | Dy) = [H AGt; | 90] exp[-m(z | 0,)]
i=1

xl IT 21 92)] expl—m(T | 6,) + m(z | 6,)].

i=N,+1
(N
As a special case, for PLP model in the presence of a
change-point, the intensity function (5) is given by,

At 0) =(a;/o))t/o)M T if0<t <,

0ol ; ®)
At ] 0) =(ay/0r)(t/0) 7 ift > 7,
with the corresponding mean value function given by,
m(t|0)=(t/o)"if0<t <,
®

m(t | 0) =(r/o) + (t/0)) — (t/0,) if t > 7.

In a similar way, we obtain the rate and mean functions
for the MOP, GOP, GGOP and GPLP models in the presence
of one change-point. Hence, we may consider a Bayesian
approach entirely based on the marginal posterior densities.
However, deriving analytical expressions for these densities
is infeasible, mainly due to the complexity of the associated
log-likelihood function. In our case, we used Markov chain
Monte Carlo (MCMC) method based on Gibbs sampling
algorithms to simulate samples for the joint posterior distri-
butions of interest [34, 35]. A brief description of the Gibbs
sampling algorithm is presented as follows:

— Suppose z(0 | y) a joint posterior distribution, where
0 =(6,,...,0,), on which we want to obtain inferences.
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— For this, we simulate random quantities of complete con-
ditional distributions z(0; | y,6;), 0, = (0}, ..., 0;_1),

H(H-l)’ ""gk)' 0 0
— Consider the initial (arbitrary) values © = (05 ). 9; ).
o 0O,
U
— Generate 6" from 7z, |y, o 0(0)),

b

W
{ o),

— Generate 6" from 70, |y, 91 e

— Generate 0]((1) from 7 (6, | y, 051), ey 0];1_))1).

~ Replace the initial values by 9 = (6\", 6", ..., "),

— The values 9%2),952), ,9]({2), for z sufficiently large,
converge to a random quantity value with distribution

70| y).

For each generated sample, a chain with N = 200, 000 values
was generated for each component of the parameter vec-
tor of the model, considering a burn-in period of 5% of the
chain’s size. To obtain pseudo-independent samples from
the joint posterior distribution, one out every 100 gener-
ated values was kept, resulting in chains of size 2,000 for
each parameter. We assumed independent uniform U(a, b)
or Gamma(c, d) prior distributions for the parameters of
the proposed models, considering all data sets taken into
account, where the hyperparameters a, b, ¢ and d are known
and Gamma(c, d) denotes a gamma distribution with mean
c/d and variance c/d>.

The discrimination of the models was made by compar-
ing plots of the empirical accumulated number of climate
violations with the estimated mean value functions versus
time of occurrence. The Bayesian analysis for all models was
made using the OpenBugs software [37]. Convergence of
the Gibbs sampling algorithm was monitored by usual time
series plots for the simulated samples. In the selection of the
best model we also used the deviance information criterion
(DIC) [50] which is an approximation for the Bayes factor
(smaller values of DIC indicate better models). However, the

results were very similar for all assumed models. That makes
it difficult to choose the best model using this criterion.

3 Results

The data sets considered in the present work are the yearly
averaged amount of rainfall (in mm) from 1879 to 2002
(T = 124) and the yearly average of the maximum tempera-
tures (in degrees Celsius - °C) collected from 1915 to 2003
(T = 88) in a climate station in Almaty, Kazakhstan [51]; the
yearly maximum temperature averages collected from 1894
to 2003 (T = 110) reported at a climate station in Tashkent,
Uzbekistan; and the yearly average temperature (in degrees
Fahrenheit - °F) collected from 1895 to 2019 (T = 125) in
the USA (https://www.ncdc.noaa.gov/cag/).

The threshold considered in each case is the correspond-
ing overall average measurement. For instance, the thresh-
old for the rainfall data from Kazakhstan is the average of
the 124 values belonging to this data set, and in the case
of temperature, it is the average of the corresponding 88
measurements.

In the next three subsections we present the application of
the NHPP model considered in the earlier sections to each
of these data sets.

3.1 Kazakhstan Climate Data

In a first instance, we consider data from Almaty, Kazakh-
stan. Hence, we have the yearly precipitation averages (in
mm) from 1879 to 2002 (given an observation period of
T = 124 years) and the yearly average of the maximum
temperatures (in °C) measured from 1915 to 2003 (given
an observation period of 7 = 88 years) in a climate station
in Almaty, Kazakhstan [51]. Figure 1 shows the plots of
these two time series. The plot on the left corresponds to

Temperature (Max Avg.)
1
1

Fig.1 Yearly average precipita- 8-
tion and averages of the maxi-
mum temperatures in Almaty,
Kazakhstan
o
S
g
<
S 8]
s
a
O
e
o
o
<4
Yol
g
r T T T T T 1
1879 1900 1920 1940 1961 1982 2002
Years

T T T 1
1959 1974 1988 2003

Years

r T T
1915 1930 1944
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the yearly precipitation averages and that on the right cor-
responds to the yearly averages of maximum temperatures.

The overall precipitation average for the period of 124
years (1879 to 2002) is equal to 50.88 (data set in Table 5,
in Appendix 1), and the overall average of averages of the
maximum temperatures for the period of 88 years (1915 to
2003) is equal to 14.939 (data set in Table 6, in Appendix 1).
Taking this into account, it is possible to observe an increase
in trend, which is above average, in the precipitation as well
as temperature data after the years 1920 and 1950, respec-
tively. That could indicate a possible presence of a change-
point in the time series since after those years a change in
the behavior of the data may be observed.

3.1.1 Yearly Rainfall Averages

Since the overall precipitation average for the period of 124
years is equal to 50.88, we assume for this data analysis a
threshold for the precipitation average equal to 51. That gives
us n = 57 exceedances, that is, there were 57 years where
precipitation averages were above 51 during the follow-up
period of T = 124 years.

Under the NHPP setting, we assume that, in the case
where no change-points are present, the prior distributions
of the parameters appearing in the rate functions given by
(2) are the following,

— PLP: @ ~ U(0,5);0 ~ U(0, 10000).

— MO:a ~ Gamma (0.01,0.01); ~ Gamma (0.01,0.01).

— GO:a ~ Gamma (0.01,0.01); ~ Gamma (0.01,0.01).

- GGO: a ~ Gamma (0.01,0.01);8 ~ Gamma (0.01,0.01);
y ~ U(0,5).

- GPLP: a~ Gamma (0.1,0.1);6 ~ Gamma (0.1,0.1);
p ~ U0, 100).

Observe that we are using non-informative prior distribu-
tions for the parameters of the proposed models. Estimation
of the parameters was performed using a sample of size 1000
taken every 100th simulated Gibbs sample after a burn-in
period of 11000 iterations.

Table 1 shows the posterior means, standard deviations
and 95% credible intervals for the parameters of each model
considering the yearly precipitation averages from Kazakh-
stan where the threshold 51 was used.

From Table 1, we have that assuming a squared error loss
function, the Bayesian estimator is given by the posterior
estimated mean which is equal to 42.53 (or year 43 which
corresponds to the year 1921), but considering the posterior
estimated median (32.63), this change-point occurred earlier,
in year 33 corresponding to the year 1911.

In Fig. 2, leftmost figure, we have the plots of the accu-
mulated average precipitation exceedances (values above the

@ Springer

Table 1 Posterior summaries (Kazakhstan precipitation averages
data)

Model Par.  Post. Mean  Std. Dev.  95% Cred. Int.
Lower Upper
PLP a 1.376 0.173 1.069  1.718
c 6.795 2.542 2832 1235
GPLP a 1.153 0.202 0.784  1.565
p 2.465 3.411 0.263  11.19
c 5.862 3.044 1.305  12.79
MOP a 201.6 91.03 73.71  417.6
p 115.7 44.20 53.66  224.2
GOP a 239.9 101.8 109.4 4952
p 0.003 0.001 0.001  0.005
GGOP a 168.2 81.94 73.06  378.2
p 0.002 0.001 0.001  0.002
y 1.470 0.193 1.116  1.844
PLP change-point 1.354 0.821 0498  3.611
a, 1.307 0.208 0.799  1.604
o, 5.082 2217 1.293  9.396
o, 6.012 2.653 0.593  9.861
T 42.63 36.01 1.714  120.0

threshold 51) as well as the estimated mean value function
assuming each one of the five proposed rate functions and
when no change-points are present. It is possible to observe
that the best fitted model is given by the PLP. Even though the
GPLP model has three parameters and good convergence of
the MCMC algorithm, it has not produced a better fit for this
data set. Note that this model possibly has some identifiability
problems, and for practical use it is necessary very informa-
tive prior distributions based on opinion of climate experts.

Also in Fig. 2, middle figure, we have the plots of the
empirical mean value function m(f) and the estimated using
the PLP model (the best fitted model when no change-points
are present) when a change-point is allowed and when we
assume the following prior distributions: a; ~ U((1.3,1);
o; ~ U(0,10)and = ~ U(1,124),j = 1, 2. Observe that when
specifying the prior distributions in the case of one change-
point, we use some prior information obtained from the
Bayesian estimators assuming PLP model without the pres-
ence of change-points, especially for the parameters a; and
@,, i.e., we use a Bayesian empirical analysis [52]. Figure 2
also shows the histogram of the generated Gibbs samples for
the change-point 7 assuming the PLP model in the presence
of a change-point (rightmost figure).

Table 1 also shows the posterior summaries of inter-
est for the PLP model in the presence of a change-point.
With the obtained Bayesian estimate for the change-point
T = 42.63, that is, 7 = 43 which corresponds to the year
1921, from (8) we have m(t) = (1/5.082)'3>* if t < 43, and



Climate Change: Use of NonHomogeneous Poisson Processes for Climate Data in Presence of a...

391

o o
— Empiric & - — Empiric

— PLP-CP

Accumulated Violation Preciptation
Accumulated Violation Preciptation
4
L

Frequency

1
124 0 21 41

T
103

T T
62 83
Years

T 1 r T T T T T 1
103 124 0 20 40 60 80 100 120

© PLP Preciptation

Fig.2 Accumulated precipitation exceedances (empirical and fitted m(f)) and histogram of the generated Gibbs samples for 7 in the case of the

PLP model using the Kazakhstan precipitation data

m(t) = (43/5.082)13% 4 (1/6.012)1307 — (43/6.012)'3%7 if
t> 43,

3.1.2 Yearly Maximum Temperature Averages

When we consider the temperature data, we have seen that
the overall average for the period of 88 years is 14.939.
Hence, we take 15 as the threshold of the Kazakhstan tem-
perature data. Using this threshold, there were n = 43 years
where exceedances occurred, that is, there were 43 years
with values above the threshold 15 in the follow-up period
of T = 88 years.

Consider now the NHPP formulation with parametric
forms for the intensity function given by (2). In the present
case, we use the same prior distributions (9) assumed for the
Kazakhstan’s precipitation data as well as the same MCMC
simulation procedure.

Table 2 shows the posterior means, standard deviations
and 95% credible intervals for the parameters of each model
taking into account the yearly averages of the maximum
temperatures and the threshold 15.

In Fig. 3, leftmost figure, we have the plots of the accu-
mulated exceedances of averages of the maximum tempera-
tures (values above the threshold 15) and the estimated mean
value functions assuming each one of the five proposed mod-
els and with no change-points present.

Looking at Fig. 3, it is observed that the best fitted model,
when no change-points are allowed, is again given by the
PLP model. Also in Fig. 3, middle figure, we have the plots
of the empirical m(f) and the fitted by a PLP in the presence
of a change-point when we use the following prior distribu-
tions:a; ~ U(1.3,1);6; ~ U(0,10)and 7 ~ U(1,88),j = 1,2.

The posterior summaries of interest for the PLP model
in the presence of a change-point are also shown in Table 2.
The estimated change-point = = 33 (approximation for

the estimated value 32.56) corresponds to the year 1948.
Hence, from (8), we have m(t) = (¢/3.884)!%% if t > 33 and
m(t) = (33/3.884)1% + (1/6.24)1407 — (33/6.24)!397  if
t> 33

Figure 3 also shows the histogram of the simulated Gibbs
samples for the change-point = (rightmost plot) assuming the
PLP model with one change-point. Moreover, from Table 2,
we observe that assuming a squared error loss function the
Bayesian estimator of the change-point, given by the poste-
rior mean, is equal to 32.56, but considering the posterior
median (23.505), this estimated change-point occurred early
in the year 23 corresponding to the year 1938. Hence, the

Table 2 Posterior summaries (Kazakhstan maximum temperature

averages data)

Model Par. Post. Mean Std. Dev. 95% Cred. Int.
Lower Upper

PLP a 1.342 0.193 1.001  1.771
c 5.597 2.236 2.022  10.66

GPLP a 1.129 0.267 0.671 1.711
p 2.686 6.493 0.139  14.40

c 4.251 2.927 0413  11.18

MOP a 151.3 82.39 46.13 3699
p 90.90 40.74 37.74  199.8

GOP a 191.9 91.55 78.85 419.2
g 0.004 0.002 0.001  0.008

GGOP a 160.0 103.2 60.00 4539
) 0.002 0.001 0.001  0.004

y 1.383 0.199 1.001  1.767

PLP change-point 1.090 0.386 0.455 2.038
a, 1.407 0.217 0.927  1.740

o} 3.884 2.121 0.697  9.031

0, 6.240 2.542 0.997  9.904

T 32.56 24.70 1.895 83.74
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Fig.3 Accumulated maximum temperature average exceedances (empirical and fitted m(#)) and histogram of the simulated Gibbs samples for ¢

in the case of the PLP model using and Kazakhstan temperature data

changes in the climate variable corresponding to temperature
have been observed for quite a while.

3.2 Uzbekistan Maximum Temperature Data

We consider now the Uzbekistan’s temperature (°C) data
(data set in Table 7, in Appendix 1). Hence, we have the
yearly averages of the maximum temperatures collected
from 1894 to 2003 (giving an observed period of 7 = 110
years) in a climate station in Tashkent, Uzbekistan, another
country in Central Asia [51]. Figure 4 shows the plot of this
time series.

25

Temperature (Avg. Max.)
22
1

20

18

T T T 1
1948 1967 1985 2003

Years

I T T
1894 1912 1930

Fig.4 Yearly average of the maximum temperature averages in Tash-
kent, Uzbekistan

@ Springer

The overall average for the period of 110 years is 20.7395.
Thus, we assume in the application of the model a threshold
equal to 21. That gives us n = 50 exceedances, that is, there
were 50 years in which the average of the maximum tem-
perature averages is above 21 during the follow-up period
of T = 110 years.

Hence, under the NHPP formulation we consider the
parametric forms for the intensity function given by (2) and
the prior distributions given in (9). Table 3 shows the poste-
rior means, standard deviations and 95% credible intervals
for the parameters of each model considering the yearly

Table 3 Posterior summaries (Uzbekistan maximum temperature

averages data)

Model Par. Post. Mean Std. Dev. 95% Cred. Int.
Lower Upper
PLP a 1.550 0.199 1.195  1.969
c 9.073 3.013 4256 15.64
GPLP a 1.354 0.268 0.903  2.002
p 1.627 2.673 0.140  7.330
c 8.18 4.137 2.033  18.70
MOP a 209.3 96.61 7246 4493
p 114.7 45.80 51.62 2303
GOP a 247.1 113.3 107.6  555.2
p 0.002 0.001 0.001  0.005
GGOP a 146.0 66.91 66.72 3154
) 0.001 0.001 0.000  0.002
y 1.661 0.236 1.218  2.255
PLP change-point 1.264 0.412 0.571  2.289
a, 2.103 0.458 1.207  2.831
o} 6.752 4.229 1.607 17.35
0, 18.12 7.486 3.685 29.46
T 43.20 25.88 2462 9894
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averages of the maximum temperature averages when the
threshold equals to 21. The same MCMC scheme considered
in Sect. 3.1 is used here as well.

Figure 5, leftmost figure, shows the plots of the accumu-
lated maximum temperature averages exceedances (values
above the threshold 21) and the estimated mean value func-
tions assuming each of the five proposed forms for the rate
function and when no change-points are present.

It is possible to observe, by looking at Fig. 5, that, in the
case of no change-points, the best fit is again given by the
PLP model. Figure 5 also shows, middle figure, the plots
of the empirical and fitted m(#) when the PLP model in the
presence of a change-point is used and when the following
prior distributions considered: a; ~ U(1.5, 1);aj ~ U(0,30)
andz ~ U(1,110),j = 1,2.

From Table 3, we may observe that assuming a squared
error loss function, the Bayesian estimator for the change-
point, given by the posterior mean, is equal to 43.20 corre-
sponding to a change-point z = 43. Using this change-point,
from (8) we have that, m(f) = (¢/6.752)!%%* if t < 43 and
m(f) = (43/6.752)!264 + (1/18.12)>19 — (43/18.12)>193 if
t>43.

3.3 US Climate Data

Now, consider the USA yearly average temperatures (°F)
data from 1895 to 2019 giving an observed period of
T = 125 years. The overall of the 125 consecutive years
measurements is 52.16 (data set given in Table 8, in the
Appendix 1). The data published in August 2020 (see https://
www.ncdc.noaa.gov/cag/) are presented in Fig. 6.

Looking at that Fig. 6 we may also see that, apparently,
from the year 1982 there is an increasing trend in the values
of the average temperature until the year 2019.

& - — Empiric B - — Empiric
— PLP — PLP-CP

GPLP
— MO
— GO

GOG

Accumulated Violation Temperature
Accumulated Violation Temperature
2
L

54 55 56

Temperature (Avg. Max.)
52

51
1

50

T T T 1
1957 1978 1998 2019

Years

T T T
1895 1916 1936

Fig.6 Yearly average temperatures in USA from 1895 to 2019

Considering the five rate functions, described in Sect. 2, in
the model without the presence of change-points, we assume
the same prior distributions (9) for the parameters of the
models, except for the parameter y of the GGOP model where
we assume a prior y ~ U(0, 100) instead of y ~ U(0, 5). The
same MCMC scheme used for the climate data of Kazakhstan
using the OpenBugs software is applied to the present data
set. Since the mean temperature during the observed period
is 52.16, for the present data set, we take 52 as the threshold
value. That gives n = 60 exceedances, that is, there were 60
years in which the temperature averages were above 52 dur-
ing the follow-up period of T = 125 years.

Frequency
T

* PLP Temperature

Fig.5 Accumulated maximum temperature average exceedances (empirical and fitted m(#)) and the histogram of the generated Gibbs samples

for = (PLP in the presence of a change-point) for Uzbekistan’s data
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Table 4 Posterior summaries (USA yearly temperature averages)

Model Par.  Post. Mean  Std. Dev.  95% Cred. Int.
Lower Upper

PLP a 1.730 0.219 1.327  2.190
c 11.95 3.581 5494  19.84

GPLP a 1.436 0.240 1.021  1.945
p 3.114 4316 0.319  12.76

c 10.46 4.257 3723 19.79

MOP a 241.5 96.82 1024 4763
p 139.4 49.80 68.23 2634

GOP a 291.5 130.3 126.2 6353
p 0.002 0.001 0.001  0.004

GGOP a 98.25 24.35 73.04 169.9
p 0.001 0.001 0.000  0.002

4 2.043 0.191 1.639 2414

PLP change-point 1.646 0.617 0.544  3.256
a, 1.978 0.417 1.199  2.709

o, 11.50 5.318 3.592  25.56

0, 16.51 7.514 3243 29.20

T 54.67 36.36 2477 1165

Table 4 shows the posterior means, standard deviations

and 95% credible intervals for the parameters of each model
when we take into account the temperature averages in USA
with a threshold equals to 52.

Figure 7, leftmost figure, shows the plots of the accu-
mulated average precipitation exceedances (values above
the threshold 52) and the estimated mean value functions
assuming each one of the five proposed models when no
change-points are allowed.

Looking at the leftmost plots in Fig. 7, we may see that
the best fit is again given by the PLP. In the same Fig. 7,
middle figure, we have the plots of the empirical m(f) and

N o — Empiric © - — Empiric
— PLP — PLP-CP
GPLP

— Mo

— Go

Accumulated Violation Temperature
kt
L

Accumulated Violation Temperature
3
L

fitted by a PLP model in the presence of a change-point
where the following prior distributions were assumed:
a; ~ U(1.7,1);0; ~ U(0,30)and = ~ U(1, 124),j = 1, 2.

In Table 4 we also have the posterior summaries of inter-
est for the PLP model in the presence of a change-point.
The estimated change-point = = 55 (approximation to the
Bayesian estimate 7 = 54.67) corresponds to the year 1949.
Hence, from (8), we have that m(¢) = (t/11.5)%% if t < 55
and m(f) = (55/11.5)1%46 + (1/16.51)!978 — (55/16.51)!978
if £ > 55.

In Fig. 7, rightmost figure, we also have the histogram of
the generated Gibbs samples for the change-point 7 assum-
ing the PLP model in the presence of a change-point. In this
case, the posterior mean equal to 54.67 (or year 55) is close
to the posterior median which is 56.38.

4 Discussion and Concluding Remarks

The use of the methodology based in NHPP in the pres-
ence of one change-point considered in this study could be
applied to any climate data to detect the year in which a pos-
sible change in climate might have occurred. The proposed
methodology also could be generalized for situations with
more than one change-point. However, we do not take that
into account. One reason for not doing so is that changes in
climate are, in general, a very slow process and the occur-
rence of a comparatively new change-point detection may
be considered a rare event to occur in the future, during the
period of time considered in the present work. However, this
might be a subject of a future study if an extended data set is
obtained. The Bayesian inferences of interest (point estima-
tors and credible intervals for the parameters of the models)
are obtained using MCMC simulation methods where exist-
ing free software like the OpenBugs may be used with few

Frequency

T T 1
62 83 104 125 0 20 40 60 80 100 120

© PLP Temperature

Fig.7 Accumulated temperature average violations (empirical and fitted m(t)) for USA and histogram of the simulated Gibbs samples for = (PLP

in the presence of a change-point)
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computational costs. Important results were obtained from
the data analysis indicating significative climate changes in
the applications considered in the study. They are listed as
follows.

In the first application, i.e., where the rainfall data from
Kazakhstan (1879 to 2002) are used, there are 11 years
before the estimated change-point (year 43 corresponding
to the year 1921) and 46 years after, with precipitation aver-
ages above the overall average. This might be considered
as an indication that the average rain has been increasing
after the year 1921. Moreover, in the second application,
i.e., where the temperature data from Kazakhstan (1915 to
2003) are used we have that: there are 13 years before the
estimated change-point (year 33 which corresponds to the
year 1948) and 30 years after, with maximum temperature
averages above the overall average, an indication that the
average maximum temperature has been increasing after the
year 1948.

In the third application, i.e., when the temperature data
from Uzbekistan (1894 to 2003) are used, we have that:
there are 11 years before the estimated change-point (year 43
which corresponds to the year 1936) and 99 years after, with

That is also an indication that the average maximum tem-
perature has been increasing after the year 1936.

Finally, when average temperature data from USA (1895
to 2019) are used, we have the following: there are 18 years
before the estimated change-point (year 55 which corre-
sponds to the year 1949) and 106 years after the estimated
change-point with average temperatures above the overall
average, also an indication that the average temperature has
been increasing after the year 1949.

Another possible way of studying the type of prob-
lems considered here, is to use the so-called Hawkes pro-
cess. In this case, the intensity function ruling the occur-
rences of events that we are trying to study is given by
A@) =f*()/(1 = F*(t)),t > 0, where f*(-) and F*(-) are the
density and distribution functions of the occurrence times
conditioned to the past occurrences times. This type of mod-
els may be useful in the cases where exceedances may occur
in small clusters. However, this paths is not followed here
and is the subject of future studies. For a review regarding
the Hawkes process see, for instance, [53].

maximum temperature averages above the overall average. Appendix 1
}T)?fcliepiaﬁgﬁ ﬁvnggkﬁ;g 355000  42.5000 572500  60.6667 322500  40.1667  36.6667 79.4417  50.0833
(Almaty) from the year 1879 384167  53.5833 464167  50.0333  48.8833 453417 377750  57.9750 673917
10 2002 47.0083 652250 405917  50.8333  70.3333  70.1583 459750  45.8250  56.3000
489750  63.3417 607167 353167 27.5750 579667 427083  37.3083  *
33.5625  48.6000 253750 312250  35.1750  51.8455 663250  42.8000  57.3250
48.6417 386333 429500 377917  62.9083  40.1333  45.1167  42.3583  43.2500
333917 643833 467250  39.8417 502917 389417 487167 57.4417  56.7250
652500 437333  29.1083  47.9250 593500  68.7750 487833  53.5500  41.0667
546333 550500 56.1167 527417  39.5583 462500 51.6750  81.5333  57.6000
549000 573750 457417  67.9500  59.0333 464250  64.1500  40.3833  42.4083
747750 477000  42.0833  69.4833 612750  40.7500  40.9000  52.9833  45.4333
527750 73.1333  56.8667 597000  43.5750  47.9417 451500  63.1917 573667
69.3500  59.4333  51.0833 547500  30.0833  59.5000 587500  56.0000  40.6667
547273 459167 655000 59.8333  50.1667  50.8333  69.0000
E::H?unﬁéﬁ;ngfrzfly 210250  12.9455 152750 141111 154800  13.5833 152083  14.1583  14.4583
Kazakhstan (Almaty) from the 157667 146417 150833  13.7333 134917  13.8583  13.8917  14.8417  14.5000
year 1915 to 2003 128583 13.3000 13.8917  13.0667 152583 152583  15.8667 167000  14.5333
147250 151167 146500 147083 150583  15.0833  13.7000 145083  13.8417
135167 149167 129833 153500 153417 142667 14.1833  13.8250  13.7750
151500 153250 159167 137667 156500  14.6083 143167 146333  12.9083
147667 159667 13.6083 154250  14.0333 157500 145583  16.0500  15.6000
153833 157083  15.1167 155333 167250  13.9500 147818  15.1917 152167
151083 148250 159750 160667 16.1917 144333 152750 149909  14.7417
172500 157583  16.6167 168750 16.6333 164583  15.4333
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Table7 A3. Average yearly

i fmporatirs in 2024 2111 2052 2036 1839 2191 1995 2053 2114 1971 2067
Usbekistan (Tashkent) from the 1987 2039 1912 2013 2132 2274 1934 2082 2087 2136 2332
year 1894 to 2003 2085 2239 2038 2105 2076 1893 21.87 2033 2042 2124 2027
2048 1903 1891 1917 19.15 1965 1993 1844 1938 2047 1953
2073 2124 2166 2227 2059 1965 2172 1996 21.04 2143 2113
1879 1965 1958 2013 2019 1928 21.84 2085 19.17 2053  19.79
1985 2154 2097 2171 1975 2126 2168 2092 2078 1872  21.42
2218 1863 2138 1985 2147 2070 2156 2107 2112 2147 2133
2045 2223 1976 2145 2178 2122 2215 2102 2155 2128 2166
1987 2125 2225 2150 21.89 2164 2061 2244 2261 2283 2288
I:flfefmﬁri' iﬁﬁrsa[fir{f;rge 5034 5199 5156 5143 5101 5277 5187 5159 5062 5116  51.00
year 1895 10 2019 5173 5148 5208 5143 5242 5203 5023 5154 5184 5145 5085
5006 5187 5155 5107 5380 5203 51.64 5059 5252 5195  52.15
5192 5085 5198 53.54 5173 5299 5410 5190 5215 5155  53.18
5326 5189 5266 5184 5207 5183 5175 5295 5192 5161 5202
5139 5112 5227 5337 5333 5169 5234 5204 5193 5210 5144
5187 5190 5226 5167 5169 5149 5176 5132 5150 5161 5166
5137 5229 5226 5150 5147 5255 5104 5088 5239 5312 5135
51.88 5197 5130 5332 5333 5263 5184 5351 53.16 5260 5126
5287 5265 5188 5220 5423 5388 5327 5369 5321 5326  53.09
53.64 5425 5365 5229 5239 5298  53.18 5528 5243 5254 5440

Appendix 2

OpenBugs code (PLP with a change point)

model

{

C <- 1000

for (i in 1:N)

{
zeros[il<- 0
philil<- -log(L[i])+C
zeros[i] ~ dpois(philil)

log(lambdali]) <- log(alphalJ[il])-log(sigmalJ[ill)

+(alphalJ[ill-1)*(log(t[i) -log(sigmalJ[il])

Llil<-lambdalil*m
Jlil <- 1+step(t[i]-tau-0.5)

Rodrigues for a review of the manuscript and important comments
that led to the great improvement of the article.

Author Contributions Jorge Alberto Achcar and Ricardo Puziol de
Oliveira contributed to revision, writing, analysis and methodology.

Funding Not applicable.

Data Availability See Appendix 1.

Code Availability See Appendix 2.

Declarations

}
m <- exp(-(pow((tau/sigma[1]),alphal1])+pow((T/sigmal2]),alpha(2])
-pow((tau/sigmal2]),alphal2]))/N)

# Prior distributions

tau ~ dunif(1,T)

sigma[2] ~ dunif(0,10)
alpha[1] ~ dgamma(1.3,1)
alpha[2] ~ dgamma(1.3,1)
sigma[1] ~ dunif(0,10)

}
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