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Abstract
In this study, non-homogeneous Poisson processes (NHPP) are used to analyze climate data. The data were collected over a 
certain period time and consist of the yearly average precipitation, yearly average temperature and yearly average maximum 
temperature for some regions of the world. Different existing parametric forms depending on time and on unknown param-
eters are assumed for the intensity/rate function �(t), t ≥ 0 of the NHPP. In the present context, the Poisson events of interest 
are the numbers of years that a climate variable measurement has exceeded a given threshold of interest. The threshold cor-
responds to the overall average measurements of each climate variable taking into account here. Two versions of the NHPP 
model are considered in the study, one version without including change points and one version including a change point. 
The parameters included in the model are estimated under a Bayesian approach using standard Markov chain Monte Carlo 
(MCMC) methods such as the Gibbs sampling and Metropolis–Hastings algorithms. The models are applied to climate data 
from Kazakhstan and Uzbekistan, in Central Asia and from the USA obtained over several years.
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1 Introduction

Changes in climate either at global or at local level are moni-
tored by following the behavior of climate variables such as 
precipitation volume and temperature as well as ocean levels, 
among others, paying special attention to the occurrence of 
events that deviate from the expected behavior (for instance, 
precipitation volume and/or temperature that are either 
higher or lower than the average value). The changes in cli-
mate have been observed throughout the world since the end 
of the nineteenth century (see, for instance, [1] and https:// 
clima te. nasa. gov/ evide nce/). It is possible to observe a sig-
nificant increase in the average world temperature specially 
since the 1950s (see https:// clima te. nasa. gov/ evide nce/). 
For instance, nowadays we have an increase of 1.5 degrees 

Celsius in the average world temperature when compared to 
the pre-industrial era [1]. Additionally, climate events that 
deviate from the expected behavior are registered more and 
more frequently around the globe. One of the possible rea-
sons for these changes could be the increase in the human 
made emissions into the atmosphere of carbon dioxide and 
other pollutants (see, for instance, https:// www. ncdc. noaa.  
gov/ monit oring- refer ences/ faq/ indic ators. php).

In addition to impacting the occurrence of climate events 
deviating from the average behavior, climate change has also 
a serious impact on ecosystems around the world, some of 
them very fragile. For instance, [2] presents several works 
studying the impact of climate change on forests in the 
USA. In [3], it is presented the effects of climate change on 
marine systems, and [4] introduces a review describing the 
impacts of the climate change in British Columbia diver-
sity. In particular, changes in the temperature and/or pre-
cipitation patterns may have serious consequences in food 
production. Too little/much rain, high/low temperature and 
dry spells at the wrong time may affect crop production and 
meat production. Additionally, we may have economic and 
human consequences due to the possible forest fires which 
might reach households and cause economical losses and 
risk human lives.
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Therefore, due to its serious consequences on the lives of 
the planet, it is very important to study climate change and 
the occurrence of climate events deviating from the expected 
behavior. Going in this direction, many statistical models 
are introduced in the literature dealing in some way with the 
problems related to this change. Among these models, [5] 
introduces a stochastic model, assuming different scenarios, 
which is used to estimate, for example, the probabilities of 
daily changes in precipitation. In another study, [6] considers 
stochastic differential models to study climate change prob-
lems and [7] presents a non-parametric renewal model for 
modeling daily precipitation data. A Markov model is also 
used by [8] to analyze precipitation data and [9] provides 
an overview of stochastic climate theory from the point of 
view of applied mathematics. Many other statistical models 
to infer the years that climatic anomalies occur are also pre-
sented in the literature [10–13].

Despite the existence of a very large number of papers 
using different statistical models introduced in the literature 
in recent years to study the climate changes, other statisti-
cal modeling alternatives may be of interest in the study 
of changes in precipitation and temperature patterns. Thus, 
as the main goal of this study, we consider statistical mod-
els in the presence of change-points assumed as unknown 
parameters that should be estimated from the climate data to 
accurately detect these changes. The presence of one or more 
change points is very common in time series data derived 
from many areas of application, for instance, epidemiol-
ogy, finance, environment, medicine and many others, see, 
for instance, [14–18], among others. In general, we have 
change-points when either there is an intervention on the 
experiment whose results are being recorded or when there 
is an occurrence of a natural event, related to the data, that 
abruptly changes the behavior of the time series. This change 
in behavior may occur to any type of continuous or discrete 
data. In the case of discrete measurements a common type 
of change is in the counting of the occurrence of events, for 
instance, changes in the occurrence of threshold exceedances 
and number of hospitalizations, among others.

In addition to estimating specific change points, we may 
also be interested in the number of times a climate variable 
deviates from its average behavior over a fixed period of 
time. The change-points, as pointed out above, can be esti-
mated by considering models in the presence of parameters 
denoting the change-points. If our interest is the number 
of times the average annual amount of precipitation and 
temperature exceeds their corresponding mean values over 
a given time interval, a natural choice for statistical mod-
eling is given by counting processes and in particular non-
homogeneous Poisson processes (NHPP). Even though in 
the NHPP formulation an assumption of independent inter-
occurrence times is implicit, this type of model has provided 
good approximation for many problems, of similar nature 

as those considered here, that were studied in the past while 
allowing to calculate specific quantities of interest such as 
the probability of the number of occurrences in a given time 
interval.

NHPP have been used to study problems in several areas 
where problems of similar nature as those considered here 
are analyzed, see, for instance, in reliability theory [19–21], 
counting marine species [22], air pollution [14, 16], com-
munity noise pollution [23], in medicine [15], among many 
other areas. One common feature of those models is the 
assumption of several forms for the rate function associ-
ated with the NHPP. These rate functions may dependent 
not only on time, but also on some parameters that need to 
be estimated.

Different approaches have been considered in order to 
estimate the parameters of the proposed models including 
the location of the change-point. Many works, presented in 
the literature, consider this point especially under a Bayesian 
approach. This inference approach has some computational  
advantages when compared with standard maximum likeli-
hood methods especially when dealing with non-homogeneous  
Poisson processes and, in particular, in the presence of  
change-points since the likelihood function may have a very 
complex form. Other advantage of the Bayesian approach is 
that we could incorporate prior opinions of experts leading 
to more accurate inference.

Bayesian inference for either homogeneous or non-
homogeneous Poisson processes has been discussed by 
many authors such as [21, 24–27]. Those processes have 
also been used to obtain inference for change-point models 
[25, 28–30]. Raftery and Akman [31] consider a Bayesian 
analysis for homogeneous Poisson processes in the pres-
ence of a change-point. Ruggeri and Sivaganesan [32] and 
[33] consider a Bayesian analysis dealing with a random 
number of change-points. In the former work, NHPPs with 
the so-called power law processes (PLP) as rate function is 
considered and in the latter a stepwise constant rate func-
tion is used.

Within the Bayesian framework the estimation of the 
parameters may be performed using MCMC methods 
[34–36]. We follow this path when we develop a Bayes-
ian analysis assuming different parametric structures for the 
rates in non-homogeneous Poisson processes either in the 
presence or in the absence of change-points for the climate 
time series considered here. The OpenBugs software [37] is 
used to simulate the MCMC samples.

The paper is organized as follows. Section 2 introduces 
the methodology where the NHPP models are presented in 
two situations: models with and without change-points. In 
Sect. 3 we give the results assuming different climate data 
sets. Section 4 presents some discussion on the obtained 
results and concluding remarks. Finally, an Appendix 
is included after the list of references where we give the 
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OpenBugs code used to generate the samples to estimate the 
parameters of interest as well as the data sets used in each 
of the applications.

2  Methodology

2.1  Non‑Homogeneous Poisson Models

As mentioned before NHPP are used in many applications 
where, as in the present work, occurrences of events are 
of interest. Here, we use this type of model to estimate 
the probability that a climate variable (in the present case, 
either precipitation or temperature) exceeds a predetermined 
threshold a given number of times in a time interval of inter-
est. The threshold, to which the climate variable measure-
ment is compared, is the overall average measurement of the 
variable of interest taking into account the entire observed 
period indicated by [0, T], T ≥ 0.

Hence, let Mt ≥ 0 record the number of times the climate 
variable is above the threshold (represented by the overall 
average of the measurements) in the time interval [0,  t), 
t ∈ [0, T] . We assume that M = {Mt ∶ t ≥ 0} follows a non-
homogeneous Poisson process with rate and mean functions 
given, respectively, by 𝜆(t) > 0 and,

Recall that the rate function �(t) dictates the behavior of 
the Poisson process.

Different parametric forms may be considered for the 
rate function. Due to the nature of the questions asked when 
using NHPP models, these functions may be borrowed from 
studies made in reliability theory. Hence, if � is the vec-
tor of parameters present in the rate and mean functions, 
then in order to explicitly indicate this dependence, we will 
use, in the description of the models, �(t ∣ �) and m(t ∣ �) to 
denote the rate and mean functions, respectively. Note that 
m(t ∣ �) denotes the expected number of events registered by 
Mt up to time t. The characterization of a non-homogeneous 
Poisson process of this type is specified by the functional 
form of m(t ∣ �) , or equivalently, of its intensity function 
�(t ∣ �) , given by the first derivative of m(t ∣ �) , that is, 
�(t ∣ �) = dm(t ∣ �)∕dt . For the analysis of climate data, it 
is interesting to have a rate function �(t ∣ �), t ≥ 0 showing 
different behaviors as decreasing or increasing depending 
of time.

Different formulations of NHPP could be used in the 
climate data analysis as well as other types of analysis. 
One of these formulations, usually used in software reli-
ability studies and denoted as NHPP-I, assumes that the 
mean value function is given by m(t) = �F(t) where F(t) 

(1)m(t) =
�

t

0

�(s) ds, t ≥ 0.

is the cumulative function of a specified probability distri-
bution and � is a unknown parameter that should be esti-
mated [21]. Another formulation, also used in software reli-
ability studies and denoted as NHPP-II, is given by taking 
m(t) = − log(1 − F(t)) where F(t) is the cumulative function 
of a probability distribution also usually used in reliability 
and reliability software applications [38, 39].

For the climate data, we consider five parametric  
structures: the power law process (PLP) [40, 41]; the 
Musa–Okumoto process (MOP) [42]; the Goel–Okumoto 
process (GOP) [43]; a generalized form of Goel–Okumoto 
(GGOP); and the exponentiated-Weibull (GPLP) [21, 44, 
45] which generalizes de PLP model. The PLP, MOP and 
GPLP models are defined as special cases of the mean  
function m(t) = − log(1 − F(t)) , that is, in the class NHPP-
II, where F(t) is the cumulative function of a Weibull dis-
tribution [46] given by F(t) = exp{−(t∕𝜎)𝛼}, t > 0 for the 
PLP, the cumulative function of a Lomax or Pareto type II 
distribution [47, 48] given by F(t) = 1 − (1 − t∕𝛼)−𝛽 , t > 0 
for the MOP and F(t) = {1 − exp[−(t∕𝜎)𝛼]}𝛽 , t > 0 the 
cumulative distribution of an exponentiated-Weibull dis-
tribution for the GPLP that generalizes de PLP process. 
The GOP and the GGOP are obtained from formulation 
of the mean value function given by m(t) = �F(t) where 
F(t) is the cumulative function of an exponential distri-
bution, that is, F(t) = 1 − exp(−�t) for the GOP model 
and F(t) = 1 − exp(−�t� ) the cumulative distribution of a 
Weibull distribution for the GGOP model. Thus, the mean 
value functions, considered in the present work, are given  
by,

with FEW (t) = 1 − exp[−(t∕�)�]� . The corresponding inten-
sity/rate functions �(t ∣ �) = dm(t ∣ �)∕dt for the mean func-
tions (2) are given by,

where G(t) = ���
−1{1 − exp[−(t∕�)�]}�−1exp[−(t∕�)�](t∕

�)�−1 and where FEW (t) is defined as in (2).
The intensity functions given by (3) define the hazard 

rates of the time between occurrence of events in the respec-
tive models. The several expressions for the rate functions 

(2)

mPLP(t ∣ 𝜃) =(t∕𝜎)
𝛼 , where 𝜃 = (𝛼, 𝜎);𝛼, 𝜎 > 0,

mMOP(t ∣ 𝜃) =𝛽 log(1 + t∕𝛼), where 𝜃 = (𝛼, 𝛽);𝛼, 𝛽 > 0,

mGOP(t ∣ 𝜃) =𝛼[1 − exp(−𝛽t)], where 𝜃 = (𝛼, 𝛽);𝛼, 𝛽 > 0,

mGGOP(t ∣ 𝜃) =𝛼[1 − exp(−𝛽t𝛾 )], where 𝜃 = (𝛼, 𝛽, 𝛾);𝛼, 𝛽, 𝛾 > 0,

mGPLP(t ∣ 𝜃) = − log[1 − FEW (t)], where 𝜃 = (𝛼, 𝛽, 𝜎);𝛼, 𝛽, 𝜎 > 0,

(3)

𝜆PLP(t ∣ 𝜃) =(𝛼∕𝜎)(t∕𝜎)
𝛼−1, where 𝜃 = (𝛼, 𝜎);𝛼, 𝜎 > 0,

𝜆MOP(t ∣ 𝜃) =𝛽∕(t + 𝛼), where 𝜃 = (𝛼, 𝛽);𝛼, 𝛽 > 0,

𝜆GOP(t ∣ 𝜃) =𝛼𝛽 exp(−𝛽t), where 𝜃 = (𝛼, 𝛽);𝛼, 𝛽 > 0,

𝜆GGOP(t ∣ 𝜃) =𝛼𝛽𝛾t
𝛾−1 exp(−𝛽t𝛾 ), where 𝜃 = (𝛼, 𝛽, 𝛾);𝛼, 𝛽, 𝛾 > 0,

𝜆GPLP(t ∣ 𝜃) =G(t)∕[1 − FEW (t)], where 𝜃 = (𝛼, 𝛽, 𝜎);𝛼, 𝛽, 𝜎 > 0,
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cover a wide range of forms of behavior of the occurrences 
of the events of interest in function of time. For instance, 
the intensity function �PLP(t ∣ �) presents different behav-
iors depending on the value of � . These behaviors could 
be constant, decreasing or increasing depending on whether 
𝛼 = 1, 𝛼 < 1 or 𝛼 > 1 , respectively. The intensity functions 
�MOP(t ∣ �) and �GOP(t ∣ �) presents a decreasing behavior as 
functions of t and �GGOP(t ∣ �) describes the situation where 
the intensity increases slightly at the beginning and then 
begins to decrease with t. Moreover, for the rate �GPLP(t ∣ �) 
we observe that: if � ≥ 1 and �� ≥ 1, �(t) is an increasing 
function of t; if � ≤ 1 and �� ≤ 1, �(t) is a decreasing func-
tion of t; if 𝛼 > 1 and 𝛼𝛽 < 1, 𝜆(t) has a bathtub form; if 
𝛼 < 1 and 𝛼𝛽 > 1, 𝜆(t) is unimodal.

Two versions of the models will be considered depending 
on the rate function used. In one version we assume that no 
change-points are present and in the other we assume the 
presence of a change-point. Since the Bayesian point of view 
will be used to estimate the parameters and the OpenBugs 
software will be used to program the MCMC algorithm, we 
only need to specify the likelihood function of the model as 
well as the prior distributions of the parameters involved. We 
start with the likelihood function.

In order to specify the likelihood function, we need to 
describe the information actually used in it. In the pre-
sent case, this information consists of the years where 
exceedances of the corresponding threshold for each data 
set occurred. Hence, let n be the number of observed 
times where these events of interest occurred in the time 
interval [0,  T], T ≥ 0 and let 0 < t1 < t2 < … < tn < T  
denote these times. Thus, the set of observed values is 
DT = {n;t1,… , tn;T}.

The likelihood functions of the two versions of the mod-
els considered here are given as follows.

2.2  Likelihood Function Without the Presence 
of Change‑Points

Suppose that there are no change-points, then the likelihood 
function of the model is given by [49],

2.3  Likelihood Function in the Presence 
of a Change‑Point

When we have a single change-point � making a transition 
between two NHPP models of the same type but with differ-
ent parameters, the intensity function of the overall process 
is given by [14] ,

(4)L(� ∣ DT ) =

[

n
∏

i=1

�(ti ∣ �)

]

exp[−m(T ∣ �)].

where �(t ∣ �j), j = 1, 2 are the intensity functions related 
to the intensity functions defined in (2) and �j, j = 1, 2 are 
the parameters associated to the NHPP before and after the 
change-point. The corresponding mean value functions 
m(t ∣ �j), j = 1, 2 , are given by,

Hence, if n exceedances occurred in the time interval 
[0, T] with the occurrence time given by DT , then we may 
rewrite this set as DT = {n;t1,… , tN

�
; tN

�
+1,… , tn;T} where 

tk , k = 1, 2,… , n is the time of occurrence of the kth event 
(in the present case is the kth exceedances of the climate 
threshold), � is the change-point, and N

�
 is the number of 

times the event occurred before the change-point. Therefore, 
when one change-point is allowed the likelihood function of 
the model is given by,

As a special case, for PLP model in the presence of a 
change-point, the intensity function (5) is given by,

with the corresponding mean value function given by,

In a similar way, we obtain the rate and mean functions 
for the MOP, GOP, GGOP and GPLP models in the presence 
of one change-point. Hence, we may consider a Bayesian 
approach entirely based on the marginal posterior densities. 
However, deriving analytical expressions for these densities 
is infeasible, mainly due to the complexity of the associated 
log-likelihood function. In our case, we used Markov chain 
Monte Carlo (MCMC) method based on Gibbs sampling 
algorithms to simulate samples for the joint posterior distri-
butions of interest [34, 35]. A brief description of the Gibbs 
sampling algorithm is presented as follows:

– Suppose �(� ∣ y) a joint posterior distribution, where 
� = (�1,… , �k) , on which we want to obtain inferences.

(5)�(t ∣ �) =

{

�(t ∣ �1) if 0 ≤ t ≤ �,

�(t ∣ �2) if t ≥ �,

(6)m(t ∣ �) =

{

m(t ∣ �) = m(t ∣ �1) if 0 ≤ t ≤ �,

m(� ∣ �1) + m(t ∣ �2) − m(� ∣ �2) if t ≥ �.

(7)

L(� ∣ DT ) =

[

N
�

∏

i=1

�(ti ∣ �1)

]

exp[−m(� ∣ �1)]

×

[

n
∏

i=N
�
+1

�(ti ∣ �2)

]

exp[−m(T ∣ �2) + m(� ∣ �2)].

(8)
�(t ∣ �) =(�1∕�1)(t∕�1)

�1−1 if 0 ≤ t ≤ �,

�(t ∣ �) =(�2∕�2)(t∕�2)
�2−1 if t ≥ �,

(9)
m(t ∣ �) =(t∕�1)

�1 if 0 ≤ t ≤ �,

m(t ∣ �) =(�∕�1)
�1 + (t∕�2)

�2 − (�∕�2)
�2 if t ≥ �.
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– For this, we simulate random quantities of complete con-
ditional distributions �(�i ∣ y,�(i)) , �(i) = (�1,… , �(i−1),

�(i+1),… , �
k
).

– Consider the initial (arbitrary) values �(0) = (�
(0)

1
, �

(0)

2
,

… , �
(0)

k
).

– Generate �(1)
1

 from �(�1 ∣ y, �
(0)

2
,… , �

(0)

k
),

– Generate �(1)
2

 from �(�2 ∣ y, �
(1)

1
,… , �

(0)

k
),

– ⋮

– Generate �(1)
k

 from �(�k ∣ y, �
(1)

1
,… , �

(1)

k−1
).

– Replace the initial values by �(1) = (�
(1)

1
, �

(1)

2
,… , �

(1)

k
).

– The values �(z)
1
, �

(z)

2
,… , �

(z)

k
 , for z sufficiently large, 

converge to a random quantity value with distribution 
�(� ∣ y).

For each generated sample, a chain with N = 200, 000 values 
was generated for each component of the parameter vec-
tor of the model, considering a burn-in period of 5% of the 
chain’s size. To obtain pseudo-independent samples from 
the joint posterior distribution, one out every 100 gener-
ated values was kept, resulting in chains of size 2,000 for 
each parameter. We assumed independent uniform U(a, b) 
or Gamma(c, d) prior distributions for the parameters of 
the proposed models, considering all data sets taken into 
account, where the hyperparameters a, b, c and d are known 
and Gamma(c, d) denotes a gamma distribution with mean 
c/d and variance c∕d2.

The discrimination of the models was made by compar-
ing plots of the empirical accumulated number of climate 
violations with the estimated mean value functions versus 
time of occurrence. The Bayesian analysis for all models was 
made using the OpenBugs software [37]. Convergence of 
the Gibbs sampling algorithm was monitored by usual time 
series plots for the simulated samples. In the selection of the 
best model we also used the deviance information criterion 
(DIC) [50] which is an approximation for the Bayes factor 
(smaller values of DIC indicate better models). However, the 

results were very similar for all assumed models. That makes 
it difficult to choose the best model using this criterion.

3  Results

The data sets considered in the present work are the yearly 
averaged amount of rainfall (in mm) from 1879 to 2002 
( T = 124 ) and the yearly average of the maximum tempera-
tures (in degrees Celsius - ◦ C) collected from 1915 to 2003 
( T = 88 ) in a climate station in Almaty, Kazakhstan [51]; the 
yearly maximum temperature averages collected from 1894 
to 2003 ( T = 110 ) reported at a climate station in Tashkent, 
Uzbekistan; and the yearly average temperature (in degrees 
Fahrenheit - ◦ F) collected from 1895 to 2019 ( T = 125 ) in 
the USA (https:// www. ncdc. noaa. gov/ cag/).

The threshold considered in each case is the correspond-
ing overall average measurement. For instance, the thresh-
old for the rainfall data from Kazakhstan is the average of 
the 124 values belonging to this data set, and in the case 
of temperature, it is the average of the corresponding 88 
measurements.

In the next three subsections we present the application of 
the NHPP model considered in the earlier sections to each 
of these data sets.

3.1  Kazakhstan Climate Data

In a first instance, we consider data from Almaty, Kazakh-
stan. Hence, we have the yearly precipitation averages (in 
mm) from 1879 to 2002 (given an observation period of 
T = 124 years) and the yearly average of the maximum 
temperatures (in ◦ C) measured from 1915 to 2003 (given 
an observation period of T = 88 years) in a climate station 
in Almaty, Kazakhstan [51]. Figure 1 shows the plots of 
these two time series. The plot on the left corresponds to 

Fig. 1  Yearly average precipita-
tion and averages of the maxi-
mum temperatures in Almaty, 
Kazakhstan
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the yearly precipitation averages and that on the right cor-
responds to the yearly averages of maximum temperatures.

The overall precipitation average for the period of 124 
years (1879 to 2002) is equal to 50.88 (data set in Table 5, 
in Appendix 1), and the overall average of averages of the 
maximum temperatures for the period of 88 years (1915 to 
2003) is equal to 14.939 (data set in Table 6, in Appendix 1). 
Taking this into account, it is possible to observe an increase 
in trend, which is above average, in the precipitation as well 
as temperature data after the years 1920 and 1950, respec-
tively. That could indicate a possible presence of a change-
point in the time series since after those years a change in 
the behavior of the data may be observed.

3.1.1  Yearly Rainfall Averages

Since the overall precipitation average for the period of 124 
years is equal to 50.88, we assume for this data analysis a 
threshold for the precipitation average equal to 51. That gives  
us n = 57 exceedances, that is, there were 57 years where 
precipitation averages were above 51 during the follow-up 
period of T = 124 years.

Under the NHPP setting, we assume that, in the case 
where no change-points are present, the prior distributions 
of the parameters appearing in the rate functions given by 
(2) are the following,

– PLP: � ∼ U(0, 5);� ∼ U(0, 10000).
– MO: � ∼ Gamma (0.01, 0.01);� ∼ Gamma (0.01, 0.01).
– GO: � ∼ Gamma (0.01, 0.01);� ∼ Gamma (0.01, 0.01).
– GGO: � ∼ Gamma (0.01, 0.01);� ∼ Gamma (0.01, 0.01);

� ∼ U(0, 5).
– GPLP: � ∼ Gamma (0.1, 0.1);� ∼ Gamma (0.1, 0.1);

� ∼ U(0, 100).

Observe that we are using non-informative prior distribu-
tions for the parameters of the proposed models. Estimation 
of the parameters was performed using a sample of size 1000 
taken every 100th simulated Gibbs sample after a burn-in 
period of 11000 iterations.

Table 1 shows the posterior means, standard deviations 
and 95% credible intervals for the parameters of each model 
considering the yearly precipitation averages from Kazakh-
stan where the threshold 51 was used.

From Table 1, we have that assuming a squared error loss 
function, the Bayesian estimator is given by the posterior 
estimated mean which is equal to 42.53 (or year 43 which 
corresponds to the year 1921), but considering the posterior 
estimated median (32.63), this change-point occurred earlier, 
in year 33 corresponding to the year 1911.

In Fig. 2, leftmost figure, we have the plots of the accu-
mulated average precipitation exceedances (values above the 

threshold 51) as well as the estimated mean value function 
assuming each one of the five proposed rate functions and 
when no change-points are present. It is possible to observe 
that the best fitted model is given by the PLP. Even though the 
GPLP model has three parameters and good convergence of 
the MCMC algorithm, it has not produced a better fit for this 
data set. Note that this model possibly has some identifiability 
problems, and for practical use it is necessary very informa-
tive prior distributions based on opinion of climate experts.

Also in Fig. 2, middle figure, we have the plots of the 
empirical mean value function m(t) and the estimated using 
the PLP model (the best fitted model when no change-points 
are present) when a change-point is allowed and when we 
assume the following prior distributions: �j ∼ U(1.3, 1) ; 
�j ∼ U(0, 10) and � ∼ U(1, 124), j = 1, 2 . Observe that when 
specifying the prior distributions in the case of one change-
point, we use some prior information obtained from the 
Bayesian estimators assuming PLP model without the pres-
ence of change-points, especially for the parameters �1 and 
�2 , i.e., we use a Bayesian empirical analysis [52]. Figure 2 
also shows the histogram of the generated Gibbs samples for 
the change-point � assuming the PLP model in the presence 
of a change-point (rightmost figure).

Table 1 also shows the posterior summaries of inter-
est for the PLP model in the presence of a change-point. 
With the obtained Bayesian estimate for the change-point 
� = 42.63 , that is, � = 43 which corresponds to the year 
1921, from (8) we have m(t) = (t∕5.082)1.354 if t ≤ 43 , and 

Table 1  Posterior summaries (Kazakhstan precipitation averages 
data)

Model Par. Post. Mean Std. Dev. 95% Cred. Int.

Lower Upper

PLP � 1.376 0.173 1.069 1.718
� 6.795 2.542 2.832 12.35

GPLP � 1.153 0.202 0.784 1.565
� 2.465 3.411 0.263 11.19
� 5.862 3.044 1.305 12.79

MOP � 201.6 91.03 73.71 417.6
� 115.7 44.20 53.66 224.2

GOP � 239.9 101.8 109.4 495.2
� 0.003 0.001 0.001 0.005

GGOP � 168.2 81.94 73.06 378.2
� 0.002 0.001 0.001 0.002
� 1.470 0.193 1.116 1.844

PLP change-point �1 1.354 0.821 0.498 3.611
�2 1.307 0.208 0.799 1.604
�1 5.082 2.217 1.293 9.396
�2 6.012 2.653 0.593 9.861
� 42.63 36.01 1.714 120.0
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m(t) = (43∕5.082)1.354 + (t∕6.012)1.307 − (43∕6.012)1.307 if 
t > 43.

3.1.2  Yearly Maximum Temperature Averages

When we consider the temperature data, we have seen that 
the overall average for the period of 88 years is 14.939. 
Hence, we take 15 as the threshold of the Kazakhstan tem-
perature data. Using this threshold, there were n = 43 years 
where exceedances occurred, that is, there were 43 years 
with values above the threshold 15 in the follow-up period 
of T = 88 years.

Consider now the NHPP formulation with parametric 
forms for the intensity function given by (2). In the present 
case, we use the same prior distributions (9) assumed for the 
Kazakhstan’s precipitation data as well as the same MCMC 
simulation procedure.

Table 2 shows the posterior means, standard deviations 
and 95% credible intervals for the parameters of each model 
taking into account the yearly averages of the maximum 
temperatures and the threshold 15.

In Fig. 3, leftmost figure, we have the plots of the accu-
mulated exceedances of averages of the maximum tempera-
tures (values above the threshold 15) and the estimated mean 
value functions assuming each one of the five proposed mod-
els and with no change-points present.

Looking at Fig. 3, it is observed that the best fitted model, 
when no change-points are allowed, is again given by the 
PLP model. Also in Fig. 3, middle figure, we have the plots 
of the empirical m(t) and the fitted by a PLP in the presence 
of a change-point when we use the following prior distribu-
tions: �j ∼ U(1.3, 1) ; �j ∼ U(0, 10) and � ∼ U(1, 88), j = 1, 2.

The posterior summaries of interest for the PLP model 
in the presence of a change-point are also shown in Table 2. 
The estimated change-point � = 33 (approximation for 

the estimated value 32.56) corresponds to the year 1948. 
Hence, from (8), we have m(t) = (t∕3.884)1.09 if t ≥ 33 and 
m(t) = (33∕3.884)1.09 + (t∕6.24)1.407 − (33∕6.24)1.307  i f 
t > 33.

Figure 3 also shows the histogram of the simulated Gibbs 
samples for the change-point � (rightmost plot) assuming the 
PLP model with one change-point. Moreover, from Table 2, 
we observe that assuming a squared error loss function the 
Bayesian estimator of the change-point, given by the poste-
rior mean, is equal to 32.56, but considering the posterior 
median (23.505), this estimated change-point occurred early 
in the year 23 corresponding to the year 1938. Hence, the 
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Fig. 2  Accumulated precipitation exceedances (empirical and fitted m(t)) and histogram of the generated Gibbs samples for � in the case of the 
PLP model using the Kazakhstan precipitation data

Table 2  Posterior summaries (Kazakhstan maximum temperature 
averages data)

Model Par. Post. Mean Std. Dev. 95% Cred. Int.

Lower Upper

PLP � 1.342 0.193 1.001 1.771
� 5.597 2.236 2.022 10.66

GPLP � 1.129 0.267 0.671 1.711
� 2.686 6.493 0.139 14.40
� 4.251 2.927 0.413 11.18

MOP � 151.3 82.39 46.13 369.9
� 90.90 40.74 37.74 199.8

GOP � 191.9 91.55 78.85 419.2
� 0.004 0.002 0.001 0.008

GGOP � 160.0 103.2 60.00 453.9
� 0.002 0.001 0.001 0.004
� 1.383 0.199 1.001 1.767

PLP change-point �1 1.090 0.386 0.455 2.038
�2 1.407 0.217 0.927 1.740
�1 3.884 2.121 0.697 9.031
�2 6.240 2.542 0.997 9.904
� 32.56 24.70 1.895 83.74
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changes in the climate variable corresponding to temperature 
have been observed for quite a while.

3.2  Uzbekistan Maximum Temperature Data

We consider now the Uzbekistan’s temperature ( ◦ C) data 
(data set in Table 7, in Appendix 1). Hence, we have the 
yearly averages of the maximum temperatures collected 
from 1894 to 2003 (giving an observed period of T = 110 
years) in a climate station in Tashkent, Uzbekistan, another 
country in Central Asia [51]. Figure 4 shows the plot of this 
time series.

The overall average for the period of 110 years is 20.7395. 
Thus, we assume in the application of the model a threshold 
equal to 21. That gives us n = 50 exceedances, that is, there 
were 50 years in which the average of the maximum tem-
perature averages is above 21 during the follow-up period 
of T = 110 years.

Hence, under the NHPP formulation we consider the 
parametric forms for the intensity function given by (2) and 
the prior distributions given in (9). Table 3 shows the poste-
rior means, standard deviations and 95% credible intervals 
for the parameters of each model considering the yearly 
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Fig. 3  Accumulated maximum temperature average exceedances (empirical and fitted m(t)) and histogram of the simulated Gibbs samples for � 
in the case of the PLP model using and Kazakhstan temperature data
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Fig. 4  Yearly average of the maximum temperature averages in Tash-
kent, Uzbekistan

Table 3  Posterior summaries (Uzbekistan maximum temperature 
averages data)

Model Par. Post. Mean Std. Dev. 95% Cred. Int.

Lower Upper

PLP � 1.550 0.199 1.195 1.969
� 9.073 3.013 4.256 15.64

GPLP � 1.354 0.268 0.903 2.002
� 1.627 2.673 0.140 7.330
� 8.18 4.137 2.033 18.70

MOP � 209.3 96.61 72.46 449.3
� 114.7 45.80 51.62 230.3

GOP � 247.1 113.3 107.6 555.2
� 0.002 0.001 0.001 0.005

GGOP � 146.0 66.91 66.72 315.4
� 0.001 0.001 0.000 0.002
� 1.661 0.236 1.218 2.255

PLP change-point �1 1.264 0.412 0.571 2.289
�2 2.103 0.458 1.207 2.831
�1 6.752 4.229 1.607 17.35
�2 18.12 7.486 3.685 29.46
� 43.20 25.88 2.462 98.94
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averages of the maximum temperature averages when the 
threshold equals to 21. The same MCMC scheme considered 
in Sect. 3.1 is used here as well.

Figure 5, leftmost figure, shows the plots of the accumu-
lated maximum temperature averages exceedances (values 
above the threshold 21) and the estimated mean value func-
tions assuming each of the five proposed forms for the rate 
function and when no change-points are present.

It is possible to observe, by looking at Fig. 5, that, in the 
case of no change-points, the best fit is again given by the 
PLP model. Figure 5 also shows, middle figure, the plots 
of the empirical and fitted m(t) when the PLP model in the 
presence of a change-point is used and when the following 
prior distributions considered: �j ∼ U(1.5, 1);�j ∼ U(0, 30) 
and � ∼ U(1, 110), j = 1, 2.

From Table 3, we may observe that assuming a squared 
error loss function, the Bayesian estimator for the change-
point, given by the posterior mean, is equal to 43.20 corre-
sponding to a change-point � = 43 . Using this change-point, 
from (8) we have that, m(t) = (t∕6.752)1.264 if t ≤ 43 and 
m(t) = (43∕6.752)1.264 + (t∕18.12)2.103 − (43∕18.12)2.103 if 
t > 43.

3.3  US Climate Data

Now, consider the USA yearly average temperatures ( ◦ F) 
data from 1895 to 2019 giving an observed period of 
T = 125 years. The overall of the 125 consecutive years 
measurements is 52.16 (data set given in Table 8, in the 
Appendix 1). The data published in August 2020 (see https:// 
www. ncdc. noaa. gov/ cag/) are presented in Fig. 6.

Looking at that Fig. 6 we may also see that, apparently, 
from the year 1982 there is an increasing trend in the values 
of the average temperature until the year 2019.

Considering the five rate functions, described in Sect. 2, in 
the model without the presence of change-points, we assume 
the same prior distributions (9) for the parameters of the 
models, except for the parameter � of the GGOP model where 
we assume a prior � ∼ U(0, 100) instead of � ∼ U(0, 5) . The 
same MCMC scheme used for the climate data of Kazakhstan 
using the OpenBugs software is applied to the present data 
set. Since the mean temperature during the observed period 
is 52.16, for the present data set, we take 52 as the threshold 
value. That gives n = 60 exceedances, that is, there were 60 
years in which the temperature averages were above 52 dur-
ing the follow-up period of T = 125 years.
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Fig. 5  Accumulated maximum temperature average exceedances (empirical and fitted m(t)) and the histogram of the generated Gibbs samples 
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Table 4 shows the posterior means, standard deviations 
and 95% credible intervals for the parameters of each model 
when we take into account the temperature averages in USA 
with a threshold equals to 52.

Figure 7, leftmost figure, shows the plots of the accu-
mulated average precipitation exceedances (values above 
the threshold 52) and the estimated mean value functions 
assuming each one of the five proposed models when no 
change-points are allowed.

Looking at the leftmost plots in Fig. 7, we may see that 
the best fit is again given by the PLP. In the same Fig. 7, 
middle figure, we have the plots of the empirical m(t) and 

fitted by a PLP model in the presence of a change-point 
where the following prior distributions were assumed: 
�j ∼ U(1.7, 1);�j ∼ U(0, 30) and � ∼ U(1, 124), j = 1, 2.

In Table 4 we also have the posterior summaries of inter-
est for the PLP model in the presence of a change-point. 
The estimated change-point � = 55 (approximation to the 
Bayesian estimate � = 54.67 ) corresponds to the year 1949. 
Hence, from (8), we have that m(t) = (t∕11.5)1.646 if t ≤ 55 
and m(t) = (55∕11.5)1.646 + (t∕16.51)1.978 − (55∕16.51)1.978 
if t > 55.

In Fig. 7, rightmost figure, we also have the histogram of 
the generated Gibbs samples for the change-point � assum-
ing the PLP model in the presence of a change-point. In this 
case, the posterior mean equal to 54.67 (or year 55) is close 
to the posterior median which is 56.38.

4  Discussion and Concluding Remarks

The use of the methodology based in NHPP in the pres-
ence of one change-point considered in this study could be 
applied to any climate data to detect the year in which a pos-
sible change in climate might have occurred. The proposed 
methodology also could be generalized for situations with 
more than one change-point. However, we do not take that 
into account. One reason for not doing so is that changes in 
climate are, in general, a very slow process and the occur-
rence of a comparatively new change-point detection may 
be considered a rare event to occur in the future, during the 
period of time considered in the present work. However, this 
might be a subject of a future study if an extended data set is 
obtained. The Bayesian inferences of interest (point estima-
tors and credible intervals for the parameters of the models) 
are obtained using MCMC simulation methods where exist-
ing free software like the OpenBugs may be used with few 

Table 4  Posterior summaries (USA yearly temperature averages)

Model Par. Post. Mean Std. Dev. 95% Cred. Int.

Lower Upper

PLP � 1.730 0.219 1.327 2.190
� 11.95 3.581 5.494 19.84

GPLP � 1.436 0.240 1.021 1.945
� 3.114 4.316 0.319 12.76
� 10.46 4.257 3.723 19.79

MOP � 241.5 96.82 102.4 476.3
� 139.4 49.80 68.23 263.4

GOP � 291.5 130.3 126.2 635.3
� 0.002 0.001 0.001 0.004

GGOP � 98.25 24.35 73.04 169.9
� 0.001 0.001 0.000 0.002
� 2.043 0.191 1.639 2.414

PLP change-point �1 1.646 0.617 0.544 3.256
�2 1.978 0.417 1.199 2.709
�1 11.50 5.318 3.592 25.56
�2 16.51 7.514 3.243 29.20
� 54.67 36.36 2.477 116.5
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computational costs. Important results were obtained from 
the data analysis indicating significative climate changes in 
the applications considered in the study. They are listed as 
follows.

In the first application, i.e., where the rainfall data from 
Kazakhstan (1879 to 2002) are used, there are 11 years 
before the estimated change-point (year 43 corresponding 
to the year 1921) and 46 years after, with precipitation aver-
ages above the overall average. This might be considered 
as an indication that the average rain has been increasing 
after the year 1921. Moreover, in the second application, 
i.e., where the temperature data from Kazakhstan (1915 to 
2003) are used we have that: there are 13 years before the 
estimated change-point (year 33 which corresponds to the 
year 1948) and 30 years after, with maximum temperature 
averages above the overall average, an indication that the 
average maximum temperature has been increasing after the 
year 1948.

In the third application, i.e., when the temperature data 
from Uzbekistan (1894 to 2003) are used, we have that: 
there are 11 years before the estimated change-point (year 43 
which corresponds to the year 1936) and 99 years after, with 
maximum temperature averages above the overall average. 

That is also an indication that the average maximum tem-
perature has been increasing after the year 1936.

Finally, when average temperature data from USA (1895 
to 2019) are used, we have the following: there are 18 years 
before the estimated change-point (year 55 which corre-
sponds to the year 1949) and 106 years after the estimated 
change-point with average temperatures above the overall 
average, also an indication that the average temperature has 
been increasing after the year 1949.

Another possible way of studying the type of prob-
lems considered here, is to use the so-called Hawkes pro-
cess. In this case, the intensity function ruling the occur-
rences of events that we are trying to study is given by 
�
∗(t) = f ∗(t)∕(1 − F∗(t)) , t ≥ 0 , where f ∗(⋅) and F∗(⋅) are the 

density and distribution functions of the occurrence times 
conditioned to the past occurrences times. This type of mod-
els may be useful in the cases where exceedances may occur 
in small clusters. However, this paths is not followed here 
and is the subject of future studies. For a review regarding 
the Hawkes process see, for instance, [53].

Appendix 1

Table 5  A1. Average yearly 
precipitation in Kazakhstan 
(Almaty) from the year 1879 
to 2002

35.5000 42.5000 57.2500 60.6667 32.2500 40.1667 36.6667 79.4417 50.0833
38.4167 53.5833 46.4167 50.0333 48.8833 45.3417 37.7750 57.9750 67.3917
47.0083 65.2250 40.5917 50.8333 70.3333 70.1583 45.9750 45.8250 56.3000
48.9750 63.3417 60.7167 35.3167 27.5750 57.9667 42.7083 37.3083 *
33.5625 48.6000 25.3750 31.2250 35.1750 51.8455 66.3250 42.8000 57.3250
48.6417 38.6333 42.9500 37.7917 62.9083 40.1333 45.1167 42.3583 43.2500
33.3917 64.3833 46.7250 39.8417 50.2917 38.9417 48.7167 57.4417 56.7250
65.2500 43.7333 29.1083 47.9250 59.3500 68.7750 48.7833 53.5500 41.0667
54.6333 55.0500 56.1167 52.7417 39.5583 46.2500 51.6750 81.5333 57.6000
54.9000 57.3750 45.7417 67.9500 59.0333 46.4250 64.1500 40.3833 42.4083
74.7750 47.7000 42.0833 69.4833 61.2750 40.7500 40.9000 52.9833 45.4333
52.7750 73.1333 56.8667 59.7000 43.5750 47.9417 45.1500 63.1917 57.3667
69.3500 59.4333 51.0833 54.7500 30.0833 59.5000 58.7500 56.0000 40.6667
54.7273 45.9167 65.5000 59.8333 50.1667 50.8333 69.0000

Table 6  A2. Average yearly 
maximum temperature in 
Kazakhstan (Almaty) from the 
year 1915 to 2003

21.0250 12.9455 15.2750 14.1111 15.4800 13.5833 15.2083 14.1583 14.4583
15.7667 14.6417 15.0833 13.7333 13.4917 13.8583 13.8917 14.8417 14.5000
12.8583 13.3000 13.8917 13.0667 15.2583 15.2583 15.8667 16.7000 14.5333
14.7250 15.1167 14.6500 14.7083 15.0583 15.0833 13.7000 14.5083 13.8417
13.5167 14.9167 12.9833 15.3500 15.3417 14.2667 14.1833 13.8250 13.7750
15.1500 15.3250 15.9167 13.7667 15.6500 14.6083 14.3167 14.6333 12.9083
14.7667 15.9667 13.6083 15.4250 14.0333 15.7500 14.5583 16.0500 15.6000
15.3833 15.7083 15.1167 15.5333 16.7250 13.9500 14.7818 15.1917 15.2167
15.1083 14.8250 15.9750 16.0667 16.1917 14.4333 15.2750 14.9909 14.7417
17.2500 15.7583 16.6167 16.8750 16.6333 16.4583 15.4333
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