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Abstract
Over the past decades, the Southeast Atlantic Forest in Paraíba do Sul River Valley has suffered intense deforestation and 
human disturbances. Due to the Atlantic Forest biodiversity and the economic relevance of such a region in Brazil, spatial-
temporal analyses are of crucial importance to protect the forest, as well as to support economic decision-making of public 
and private agents. In this context, the use of change detection techniques applied to remote sensing imagery arises as a 
powerful tool to track and map the Earth’s surface transformations. Therefore, this work investigates the effectiveness and 
practical feasibility of distinct unsupervised change detection approaches when they are applied to reveal the spatial-temporal 
dynamics in Paraíba do Sul River Valley across the last four decades. Different change detection approaches such as Change 
Vector Analysis (CVA), a K-Means and Principal Component Analysis (PCA-KM) framework, and a Alternating Sequential 
Filtering (ASF) based process were taken and properly tuned to cope with Landsat image series. The analysis of the results 
revealed a permanent land cover change rate over the last decades. Moreover, these changes do not necessary occur in the 
same locations, as it was confirmed the existence of successive modifications in original coverage of the study area. Another 
observed aspect is that the simplest technique for detecting changes, CVA, turned out to be the best approach to map the 
changes in the examined region.
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1 Introduction

The Paraíba do Sul River Valley is a very affluent and 
prosperous region in Brazil, located between São Paulo 
and Rio de Janeiro states [1]. The region is the home of 
a huge piece of the Atlantic Forest, one of the major 
biodiversity hotspots in the world with many endemic and 
endangered species [2]. Despite its high biodiversity and 
ecological importance, the Atlantic Forest has experienced 
alarming levels of habitat destruction and fragmentation, 
mainly due to the disorderly growth of agricultural and 
industrial activities [3–5]. According to SOS Mata Atlântica 
Foundation [6] – a Brazilian NGO dedicated to conserving 
this biome, the deforestation of Atlantic Forest is critical, 

as only 12.4% of the biome’s native vegetation still remains 
undisturbed. This devastation scenario has contributed to 
transform the forest landscape into anthropic spaces, as well 
as to promote the fragmentation of its green zones [7]. As 
a result, the biome formations are not very representative 
in the so-called Paraíba Valley, since they have been 
substantivally altered over the time so that only a reduced 
number of green areas remains totally preserved.

The region has undergone different changes over the past 
few centuries, from the coffee growing in 19th-20th centuries 
to the eucalyptus cultivation nowadays. Coffee crop had its 
”gold century” between 1830-1930, promoting prosperity to 
the Paraíba Valley economy, but with the high price of Atlantic 
Forest deforestation. Due to the urban and industrial expansion, 
coffee culture was weakened, leading to the predominance 
of extensive pastures in the region. Moreover, the coffee 
productivity reduction trigged an intense rural exodus to 
large urban centers around the Paraíba Valley so that many 
of the abandoned lands were converted into small vegetation 
areas, thus partially contributing to the increase of forest 
coverage [8]. From 1966 to 1974, there was an exponential 
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growth in eucalyptus culture, encouraged by tax incentives 
given by the Brazilian government for reforestation projects, 
in particular, eucalyptus crops. Nowadays, the Paraíba Valley 
has a dense concentration of eucalyptus plantations which is 
an important economic pilar for the region [7].

Among several technologies that may support Spatio-
temporal analysis of Paraíba Valley, the use of change 
detection techniques arises as a convenient alternative. 
Such techniques allow the identification of differences 
in multitemporal imagery acquired by Remote Sensing. 
Moreover, if the identification process is unsupervised, no 
ground-truth data is required so that the output will be a 
mapping which highlights the regions of the image where 
changes have occurred. Unsupervised change detection 
techniques have been successfully applied for different 
purposes, such as crop mapping [9, 10], forestry monitoring 
[11, 12], natural disasters inspection [13, 14], and urban 
planning [15, 16].

Considering the highly changeable scenario as faced by 
Paraíba Valley during the last decades, a descriptive study 
focused on identifying spatial-temporal changes in land use/
cover of Atlantic Forest is proposed in this paper. We take a 
remote sensing imagery to perform multi-temporal analysis 
of the region, allowing for capturing different representations 
of large aerial areas in the Atlantic Forest as the time varies.

More specifically, we tune and run three unsupervised 
change detection approaches so as to collect several data-
driven evidences to support specialists and public agents in 
the task of monitoring the Atlantic Forest ecozone. Also, 
we provide pair-wise and multiple instant comparisons in 
order to properly determine the dynamics of land changes. 
In our study, we adopt aerial images collected from the 
Landsat-5 and -8 satellites by the Thematic Mapper (TM) 
and Operational Land Imager (OLI) sensors. In particular, 
we compare the years 1987, 1997, 2007 and 2017.

This paper is organized as follows: Sect. 2 brings an 
introductory review about the change detection methods 
we apply to generate the results, while Sect. 3 describes 
the study area, data sets, and methodological aspects of the 
study. Section 4 presents the results and their discussion. 
Finally, Sect. 5 summarizes our findings and conclusions.

2  Unsupervised Change Detection 
Techniques

Change detection accomplishes the identification of changes 
in land surfaces through images acquired during a given 
time period  [17]. This task plays a fundamental role in 
environmental studies, for example, to track the ecosystem 
transitions, as well as to better comprehend the successive 
interaction between natural phenomena and human 
activities. Once these changes are identified and properly 

quantified, the land use and land cover analysis can be 
performed in a more effective and comprehensive way [18].

Several change detection techniques have been proposed 
in the literature. We can roughly group these techniques 
between supervised and unsupervised ones. Due to specific 
constraints and limitations, which include high financial 
costs and the annalistic efforts to get a large amount of 
data to validate a supervised method, recently the scientific 
community has focused on unsupervised learning-based 
strategies [19]. Indeed, the ability of identifying temporal 
changes without any additional data resource makes 
unsupervised methods more attractive than the supervised-
based ones [20, 21]. On the other hand, the unsupervised 
change detection methods are not able to discriminate land 
cover types behind the change or non-change events.

Usually, these techniques embrace post-classification 
analysis, simple arithmetic operations, Principal Component 
Analysis (PCA) and morphological filters [22]. In the 
following, we discuss each one of these change detection 
strategies.

2.1  Change Vector Analysis

The so-called Change Vector Analysis (CVA) [23] is an 
unsupervised learning-based model which comprises three 
successive steps. First, geometric and radiometric corrections 
are performed on an input pair of images. Thereby, let us 
denote by I(1) and I(2) the pair of the calibrated images, 
defined on a support S ⊂ N

2 of a given geographic region 
whose the position s ∈ S (i.e., a pixel) in I(1) and I(2) defines 
attribute vectors �(1)

s
 and �(2)

s
 , respectively. These vectors 

embed a particular measures computed from a specific target 
regarding different wavelength intervals.

Next, I(1) and I(2) are compared through the vectors �(1)
s

 
and �(2)

s
 for all s ∈ S . The amplitude difference ‖�(1)

s
− �

(2)
s
‖ 

gauges how similar �(1)
s

 and �(2)
s

 are, producing the resulting 
difference image I(1−2) . Finally, the discrimination 
between the relevant and irrelevant features of the images 
is performed, by exploiting the difference image I(1−2) . 
Relevant differences, usually with high magnitudes, stands 
for changes, while low magnitude differences correspond 
to non-change events. We denote changes and non-
changes by the classes �c and �n , respectively. The use 
of thresholding techniques, for example, the Otsu [24] or 
Kittler-Illinghworth [25] algorithms, allows learning-based 
strategies to distinguish between the low and high magnitude 
differences.

2.2  PCA and K‑Means framework

The well-known mathematical model Principal Component 
Analysis (PCA) [26] has been the basis of many unsupervised 
change detection methods [27–29]. A good representative 
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of PCA-based method is the one proposed in [30], which 
combines the versatility of PCA with the effectiveness of 
K-Means (KM) clustering [31] into a unique unsupervised 
change detection approach. Despite its simplicity in terms of 
algorithmic architecture, the method does a very good job in 
identifying changes while still keeping robust to noisy data.

Similar to CVA, typical PCA-based approaches rely 
on an amplitude difference image I(1−2) built from a 
pair of images I(1) and I(2) with support S . First, the 
domain S is decomposed into non-overlapping squares of 
dimensions h × h , where h = 2k + 1;k ≥ 2 . Next, a vectorial 
representation for each image region in I(1) and I(2) is 
derived so that the PCA is computed on this set of vectors. 
This is also performed for each pixel s in the composite 
difference image S of I(1−2) . The extracted vectors are 
then projected onto a different feature space by the PCA 
technique, wherein the first p components are taken. Finally, 
the KM algorithm is applied on the projected data so that 
two clusters are derived. The cluster of the centroid closer 
to the origin of the projection space determines the set of 
non-change pixels ( �n ), while the remaining cluster stands 
for the pixels that have been changed ( �c).

Here, we refer to the combination of PCA and K-Means 
as PCA-KM.

2.3  Alternating Sequential Filters for Change 
Detection

The use of morphological filters, especially the class of 
Alternating Sequential Filters (ASF), arises as a valid 
alternative to perform change detection tasks. ASF 
consists in a sequence of opening and closing morphologic 
operations so that the images are filtered several times 
in order to capture their objects of interests [32, 33]. By 
applying ASF, one can highlight the differences between 

images while preserving the geometric features of the targets 
in the image [19].

For instance, in Mura et al. [19], the authors proposed an 
unsupervised change detection method inspired on the ASF 
concepts. Analogously to CVA and PCA-KM, their method 
computes the amplitude difference image I(1−2) , and then the 
ASF is applied to reduce the high-intensity values of I(1−2) , 
as well as to preserve the geometric features of the difference 
image. The ASF filtering operations are successively applied 
based on gradual increases of the kernel size. Notice that 
ASF takes the number of iterations as a free parameter, 
which is used to regulate the change detection capability 
of the method.

Lastly, the Kittler-Illinghworth thresholding then applied 
to the ASF filtering result from I(1−2) . While filtered pixel 
values inferior to the defined threshold are classified as non-
changes ( �n ), pixels whose values are greater than such 
threshold are assigned to change locations ( �c).

For the sake of simplicity, we denote this method as ASF.

3  Data and Experiment Design

In this section, we detail the data sets and the methodological 
steps we have conducted in this study. Specifically, 
Subsection 3.1 describes the study area and the examined 
data, while Subsection 3.2 presents the experiment design.

3.1  Study Area Description

The study area covers the Metropolitan Region of Paraíba 
do Sul River Valley, in Brazil, a region located between 
São Paulo and Rio de Janeiro cities which encompasses 
an area of 14,236 km2 , with a population of approximately 
two million people [34]. Figure 1 depicts the study area 

Fig. 1  The study area location
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location. According to Silva et al. [8], the study area has 
been undergoing a forest transition process, migrating from 
a period of constant reduction of native vegetation to the 
natural expansion of genuine forest territories, which is 
related to the abandonment of deep slope areas that are not 
compatible with mechanized agriculture, demographic and 
economic aspects.

As previously discussed in Sect. 1, Paraíba do Sul River 
Valley is the home of the Atlantic Forest, but nowadays such 
a green coverage of this biome is highly fragmented [6]. The 
current scenario is the result of intense deforestation caused 
by anthropic activities over the years [4].

We take images acquired by the TM and OLI sensors 
aboard the Landsat-5 and -8 satellites, respectively. These 
images refers to the study area in the years of 1987, 1997, 
2007 and 2017. The aerial scenes from 1987 to 2007 were 
acquired by the TM sensor (Landsat-5), while the 2017 image 
was acquired by the OLI sensor (Landsat-8). The images 
have a spatial resolution of 30m and spectral bands from 
blue and short-wave infrared wavelengths. Additionally, the 
full data was obtained from the EarthExplorer platform [35] 
and express the surface reflectance after the atmospheric 
correction has been performed by LEDAPS [36] and LaSRC 
[37] algorithms. Finally, the output data produced by such 
algorithms were used to properly detect clouds and shadows 
masks in the images for each time instant.

Because of the large-size dimensions of the study area, 
we generate composite image mosaics to carefully inspect 
all the region. Four scenes were taken to produce each 
mosaic. These scenes were chosen in the months of August 
and September in order to ensure low occurrence of clouds 
and similar solar incidence. Figure 2 illustrates the resulting 

mosaics for the analyzed years. Each mosaic is defined on a 
wide support of 7800 × 4650 pixels. The studied region has 
around 17.27 millions of pixels.

Assuming the interest in conducting quantitative 
assessments of the change detection results, it makes 
necessary the availability of ground-truth samples. Under this 
premise, a detailed inspection and comparison of the study 
area mosaics in different pairs of years were carried out, by 
selecting samples over locations where occur and do not occur 
changes. Also, the land use and land cover maps provide by 
MapBiomas project [38] supported the process of comparing 
pairs of instants and identifying candidate regions for samples 
collection. Table 1 summarizes the selected samples in the 
four pairs of periods. Notice that, once the sample dimensions 
are much smaller than the entire region, we can not illustrate 
in details the spatial distribution of these samples.

3.2  Experiment Design

Figure 3 illustrates the experiment design of this study. From the 
mosaics in Fig. 2, and by applying the change detection methods 
already discussed in Sections 2.1-2.3, we generated temporal 
changes/non-changes maps for different pairs of instants. In 

Fig. 2  The study area time-serie 
mosaics

Table 1  Summary of change and non-change samples in different 
periods

Period ( # of pixels/# of polygons)

Class 1987–1997 1997–2007 2007–2017 1987–2017
Change ( �

c
) 556/20 505/14 323/12 113/6

Non-change ( �
n
) 1444/23 952/22 972/14 525/12
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particular, the following pair-wise years were considered: 
1987–1997; 1997–2007; 2007–2017; and 1987–2017.

Different parameter settings were tested for all the change 
detection methods. For the CVA approach, the parameter refers 
to the thresholding option in either Otsu or Kittler-Illinghworth 
algorithms. The values of h (squared region length) and p 
(number of principal components) for the PCA-KM were 
the following: (h, p) ∈ {(3, 3), (3, 5), (5, 5)} . Concerning the 
ASF approach, the number of iterations ranged from 1 to 7. 
Notice that, for PCA-KM method, h has been limited to 5, as 
greater values for h may lead to feature spaces with very high 
dimensions, and consequently, computational prohibitive in 
face of the large image supports taken as input. Additionally, 
the values for p are limited by h, which have been empirically 
chosen after running successive experimental tests. Regarding 
the ASF method, it was observed from a preliminary battery 

of tests that iterations above 7 provided over-smoothed and 
unrealistic change/non-change mappings.

Once the change maps were obtained, and the parameters 
properly defined, we computed the accuracy assessment of 
the results, by comparing the outputs produced by the change 
detection methods with the ground-truth samples (see 
Table 1). This was quantitatively assessed via the F1-Score 
measure, a statistical-based metric that balances the true/
false positive/negative rates [39]. The higher the F1-Score, 
the better the results. Finally, the best results for each period 
was taken to conduct a more detailed investigation about the 
spatio-temporal dynamics of the study area.

The change detection methods were coded in IDL 
(Interactive Data Language), as well as the assessments 
presented in this study. Data and codes are freely available at 
https ://githu b.com/roger ioneg ri/UCD.

Fig. 3  Experiment design flowchart

Table 2  F1-Score computed for 
the change/non-change maps 
under different periods, methods 
and parameter settings. The 
highest scores are highlighted 
in italic

Method Parameters 1987–1997 1997–2007 2007–2017 1987–2017

CVA Otsu 0.004 0.004 0.006 0.017
Kittler-Illing. 0.887 0.970 0.983 0.860

ASF 1 iteration 0.883 0.944 0.875 0.726
2 iterations 0.752 0.826 0.832 0.428
3 iterations 0.640 0.772 0.768 0.286
4 iterations 0.457 0.536 0.650 0.161
5 iterations 0.317 0.279 0.557 0.324
6 iterations 0.304 0.058 0.299 0.322
7 iterations 0.258 0.043 0.048 0.324

PCA-KM (3,3) 0.120 0.004 0.006 0.017
(3,5) 0.102 0.004 0.006 0.017
(5,5) 0.102 0.004 0.006 0.017
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4  Results and Discussions

Following the experiment design (Subsection 3.2) and the multi-
temporal data analysis (Subsection 3.1), a total of 48 change/
non-change maps were generated (i.e., 4 periods × 12 methods/
configurations). Table 2 shows the accuracy values, in terms of 
F1-Score, computed from these change detection maps.

From the tabulated scores in Table 2, one can verify that the 
PCA-KM approach produced the lowest values in comparison 
with the other change detection strategies. Although PCA-KM 
has been reported in the literature as a very robust approach, 
we have empirically observed that the low performance of 
the technique may be due to the high contrast elements (e.g., 
clouds occurrence), which impair the computation of suitable 
clusters of change and non-change events.

Regarding the ASF approach, there was an inverse relation 
between accuracy and number of iterations: the accuracy 
increases as the number of iteration decreases. Indeed, 

this behavior is the result of successive applications of 
morphological operations. Also, notice that if one takes a single 
iteration, the ASF produces similar scores to the CVA method.

At last, one can see that the CVA approach (equipped 
with the Kittler-Illinghworth algorithm) achieves the highest 
accuracies in the study area. On the other hand, by applying 
the Otsu algorithm, the CVA technique delivered poor 
results. These are similar to the ones produced by PCA-KM 
for 1997–2007, 2007–2017 and 1987–2017 periods. Such a 
behavior may be explained by the occurrence of significant 
contrast differences, including pixel interferences after 
computing the best cutting-point by the Otsu algorithm.

Despite its simplistic architecture, the CVA turns out 
to be a very effective method for detecting changes in 
spatial-temporal images. Furthermore, the presence of 
clouds does not seem to influence the results achieved by 
“CVA + Kittler-Illinghworth” approach. Another interesting 
aspect to be observed is that from 1987 to 2017, the CVA 

Fig. 4  Change and non-change 
maps generated by the combina-
tion CVA + Kittler-Illinghworth 
algorithm for the periods 
of 1987–1997, 1997–2007, 
2007–2017 and 1987–2017

Fig. 5  Change and non-change 
percentage occurrences for each 
period
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delivered the lowest accuracy among all the examined 
periods. This performance reduction comes from the use 
of images acquired by different sensors (i.e., TM and OLI).

Once the CVA has been numerically attested as the most 
effective approach to cope with the study area, we perform 
visual inspections by taking the change/non-change maps as 
obtained by such method. Figure 4 presents the CVA results 
for all the evaluation periods. One can observe for each 
pair-wise comparison that the percentage of non-change is 
dominant. Also, notice that the changes are represented by 
small regions that are spread over all the study area, especially 
along the southeastern-northwest track. This portion contains 
the main highway that crosses the study area, which has led to 
a dense occupation, urban expansion and industrial activities. 
In fact, as pointed out by Andrade et al. [40], it was observed 

a great urban expansion between 1995 and 2015, when 
urbanized areas reached an increase of 133%. According to 
Silva et al. [8], demographic and market shifts have resulted 
in rural land abandonment over the last years and some 
lands transitioned to industrial production in the Paraíba 
do Sul River Valley, especially in areas near to cellulose 
and paper industries. Finally, Silva et al. [41] reinforce that 
urbanization, international market demands, industrialization 
and agricultural modernization are the main factors related to 
landscape changes in Atlantic Forest over the last decades.

Additionally, historical events reveled that this spatial 
behavior comes from the forest transition stage over the years, 
as it comprises the period from the permanent reduction of 
native vegetation to the gradual revitalization of the forest. 
Such an environment transformation is mainly related to the 

Table 3  Multi-temporal 
transitions summary and color 
legend key

1987-1997 �
c

�
c

�
n

�
c

�
n

�
c

�
n

�
n

Cloud
1997-2007 �

c
�
c

�
c

�
n

�
c

�
n

�
n

�
n

2007-2017 �
c

�
n

�
c

�
c

�
n

�
n

�
c

�
n

% 0.27 0.78 1.57 1.42 2.94 5.39 5.04 73.42 9.18
Color legend

Fig. 6  Multi-temporal land cover transitions, in terms of a change/non-change sequence, over the period from 1987 to 2017
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abandonment of deep slope areas that were not compatible 
with mechanized agriculture, as well as local demographic 
and economic issues [8]. Another critical aspect is related to 
the increase in eucalyptus crop areas, as a consequence of the 
cellulose industries hosted in the region [7].

The scores in Fig. 5 brings a comparison – in terms of area 
percentage – between change and non-change regions, as well 
as the parcel compromised by cloud occurrence. In general, the 
change/non-change percentages are similar in all periods. If we 
disregard the cloud locations, it is revealed that on average a 
92% of study area does not change from 1987 to 2017.

Although the findings about the change percentage in 1987-
2017, such analysis does not take into account the land cover 
iterations occurred in particular years of this period. In order 
to address this issue, a step-by-step multi-temporal analysis 
can lead to a better understanding of the study area dynamics. 
In order to do so, we first compute the map of multi-temporal 
land cover transitions, which is depicted in Fig. 6, and next 
we quantify these transition occurrences, as listed in Table 3.

By grouping the eight transitions in Fig. 6 (and Table 3) 
into four general cases, which comprises cloud cover, non-
changes, changes in one/two periods, and changes in three 
periods, one may verify that 73.42% of the clusters refers to 
non-change areas. Figure 7 shows the frequency distribution 
of the established classes.

Furthermore, if cloud-covered areas are unconsidered, 
the non-change percentage drops to 66.68% . This value 
represents a difference of 25.32% when the dynamics of the 
changes are examined in a pair-wise approach, thus revealing 
that the Paraíba do Sul River Valley has faced intermittent 
changes during the last decades.

5  Conclusions

Unsupervised learning for change detection is capable of 
providing significant visual insights of the spatial-temporal 
dynamics between multi-temporal images. Moreover, these 

mappings can be handled and fused to obtain intuitive, multi-
temporal representations of changes in the target region.

By taking such a remote sensing apparatus, we tracked 
the spatial-temporal changes in the Paraíba Valley along 
four decades, a southwestern Brazilian region which houses 
the Atlantic Forest biome. The changes were captured by 
applying different unsupervised change detection approaches, 
in an effort to find out the best strategy to identify disturbed 
areas in Atlantic Forest. We verified that the classic and well-
established Change Vector Analysis method, when equipped 
with Kittler-Illinghworth thresholding approach, produced the 
best results in comparison with other analyzed methods.

The obtained results have also reveled a regular land-cover 
change rate about 8% under similar periods, i.e., 1987–1997, 
1997–2007, 2007–2017 and 1987–2017. However, after the 
multi-temporal analysis with the integrated periods and 
disregarding cloud-covered areas, it was observed an increase 
of 33% w.r.t. changes over the three analyzed decades.

As future work, we plan to: (i) investigate the use of other 
thresholding strategies on the CVA algorithm, similar to the 
analysis conducted in [42], as we have found from our battery 
of tests that CVA provides accurate results when applied on 
the analyzed areas so that the thresholding value seems to 
play an important role in the the generated outputs; and (ii) 
decrease the temporal scale to five or less years, in an attempt 
to detect particular changes that may not have been captured 
when using multi-temporal dataset of ten-years steps, as 
properly discussed in the survery [43].
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