
Environmental Modelling & Assessment (2019) 24:437–456
https://doi.org/10.1007/s10666-019-9654-6

Sensitivity of the Empirical Mode Decomposition to Interpolation
Methodology and Data Non-stationarity

F. M. Z. Bahri1 · J. J. Sharples1

Received: 1 May 2018 / Accepted: 14 January 2019 / Published online: 12 February 2019
© Springer Nature Switzerland AG 2019

Abstract
Empirical mode decomposition (EMD) is a commonly used method in environmental science to study environmental
variability in specific time period. Empirical mode decomposition is a sifting process that aims to decompose non-stationary
and non-linear data into their embedded modes based on the local extrema. The local extrema are connected by interpolation.
The results of EMD strongly impact the environmental assessment and decision making. In this paper, the sensitivity of
EMD to different interpolation methods, linear, cubic, and smoothing-spline, is examined. A range of non-stationary data,
including linear, quadratic, Gaussian, and logarithmic trends as well as noise, is used to investigate the method’s sensitivity to
different types of non-stationarity. The EMD method is found to be sensitive to the type of non-stationarity of the input data,
and to the interpolation method in recovering low-frequency signals. Smoothing-spline interpolation gave overall the best.
The accuracy of the method is also limited by the type of non-stationarity: if the data have an abrupt change in amplitude or
a large change in the variance, the EMD method cannot sift correctly.

Keywords Empirical mode decomposition · Non-linear and non-stationary data · Time series analysis ·
Sensitivity analysis · Interpolation method

1 Introduction

Data non-stationarity and non-linearity are two main
sources of difficulty in data analysis. Time series data are
non-stationary if the mean, variance, or both vary with
time [18, 25]. Empirical mode decomposition (EMD) was
pioneered by Huang in [13] as a fundamental component of
the Hilbert-Huang transform (HHT), which was designed to
facilitate spectral analysis of non-stationary and non-linear
data. EMD is a sifting process that decomposes the data
into component functions, called intrinsic mode functions
(IMFs), which are analogous to the harmonic modes of
Fourier analysis, but which can have variable amplitude and
frequency throughout the time domain. A critical step in
determining each of the IMFs involves constructing upper
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and lower envelopes of the local maxima and minima of the
original series, or a residual series, depending on the stage
of the sifting process. These envelopes are usually obtained
using some form of interpolation, most commonly a cubic
interpolating spline. Transformation of the IMFs using the
Hilbert transform (HT) then delivers spectral information
relating to the data [13].

The combination of EMD and the HT offers a practical
alternative to more traditional time series decomposition
and spectral analysis methods such as the Fourier transform
and wavelet analysis, which are not generally well-suited
to non-stationary and non-linear time series [5, 6, 19, 26].
Indeed, since its inception, EMD has been applied in a
number of areas where non-stationary and non-linear data
naturally arise. Examples include biomedicine [14, 17];
neuroscience [24]; chemical engineering [23]; finance [15];
atmospheric science [9, 27]; seismology [34]; and ocean
dynamics [8, 28]. Given the broad application of EMD, it is
important to have a sound understanding of its limitations
and sensitivities so that the output it produces can be
interpreted appropriately. A number of such limitations and
sensitivities have been discussed in the literature; these
include mode mixing [4, 12, 30], end effects [3, 32, 35], and
sensitivity to interpolation methodology [20, 22].
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Mode mixing occurs when a single IMF consists of
signals of widely disparate time scales, or when similar
time scale signals reside in different IMF components
[4, 12]. Mode mixing is known to occur when applying
EMD to time series that contain noise or some other
forms of signal intermittency [12]. To overcome the mode
mixing problem, Wu [32] introduced the ensemble EMD
(EEMD) procedure, which is a version of EMD based on
multiple application of the EMD method to noise-adjusted
data. Based on an analysis of tropospheric temperature
data, Huang [12] demonstrated that EEMD resulted in less
mode mixing than the straight EMD method. Torres [30]
also addressed the mode mixing issue by introducing the
complete ensemble EMD (CEEMD), in which noise is
added at each stage of the sifting process. Based on an
analysis of synthetic data and real electrocardiogram data,
the CEEMDmethod was found to produce a smaller number
of IMFs than the EEMD method. The high-frequency IMFs
in both methods (CEEMD and EEMD) were similar, but
the CEEMD method produced lower-frequency IMFs that
were more symmetric than those obtained from the EEMD
method [30].

As mentioned above, obtaining the IMFs typically
involves the application of an interpolation method to the
local extrema of a series. However, to support interpolation
at the beginning and end of a time series, it is necessary to
extend the series by adding points before the beginning and
after the end of the time series. The way these additional
points are defined will of course affect the final IMFs that
are produced, and in the worst cases can produce highly
undesirable end effects; for example, due to over- or under-
shooting at the end points [3]. Moreover, these end effects
can propagate inwards and corrupt the whole sifting process,
resulting in inaccurate IMFs. A number of methods have
been proposed to resolve the issue of end effects. These
include the mirror-extending method [35], in which the
data are reflected about the end points, and the slope-
based method (SBM), in which new minima or maxima
are appended to the beginning and end of the series based
on the local slope of the series in their vicinity [3]. The
SBM was subsequently modified by Wu [32] who noted
that it can sometimes result in large oscillations near the
ends. End effects have also been addressed by employing
alternative interpolation techniques such as rational splines
with tension [20, 22].

In the original presentation of the EMD methods, cubic-
spline interpolation was employed to construct the upper
and lower envelopes [13]. However, no a priori reason
was given to justify the use of cubic-spline interpolation
over the multitude of other interpolation techniques that
are available. In fact, known issues with cubic-spline
interpolation, such as overshooting and undershooting, can
limit the accuracy of the overall EMD process [22]. A

number of subsequent studies have investigated the use of
other interpolation methods in the EMD process, and have
shown that the choice of interpolation method used to obtain
the envelopes of the maxima and minima can be quite
critical [2, 7, 20].

Chen [2] introduced an alternative EMD method based
on fitting B-splines to a weighted moving average of the
extrema in the original series or subsequent residuals.
This method removed the need for separate consideration
of the upper and lower envelopes. They [2] used cubic
and quadratic B-splines to compare their method with
the classical EMD method (based on separate cubic
interpolation of the minima and maxima), and found that
the use of cubic B-splines gave a finer decomposition
than the classical EMD method and performed better in
terms of energy conservation. However, there is still no a
priori reason justifying the use of cubic B-splines in this
alternative formulation of EMD. Indeed, Chen note in [2]
that the selection of an optimal B-spline order presents a
new challenge.

Meignen [16] also proposed a method that removes
the need for separate consideration of upper and lower
envelopes. In their method, they define a mean envelope of
the extreme points as the solution of a constrained quadratic
optimization problem. This approach also circumvents one
of the contentious issues with the classical EMD method,
namely that of defining appropriate stoppage criteria, which
is required to terminate the sifting process. Meignen [16]
used synthetic time series to demonstrate that their mean-
envelope method produced results very similar to classical
EMD, although they only considered stationary time series
in their comparisons.

A number of authors have also considered using
alternative interpolation methods to define the upper and
lower envelopes in the EMD process. Pegram [22] and Peel
[20] advocated the use of rational splines with tension, as
presented by Spath [29], in place of the cubic splines in
the classical EMD method. By varying a pole parameter,
which defines the “tautness” of the spline curve, rational
splines can represent a spectrum of interpolation methods
that encompasses quadratic splines, cubic splines, and
piecewise-linear interpolation. The ability to vary the pole
parameter permits consideration of the interplay between
spline tension and the resulting IMFs. The performance
of rational-spline EEMD was tested using synthetic time
series by Peel [21], who found that it could reproduce
the known structures well. Rational-spline EEMD was also
found to perform well when applied to environmental time
series [20–22], although there remains some ambiguity
surrounding the optimal choice of the tension parameter.

Bahri [1] examined the performance of EMD and EEMD
based on linear interpolation (i.e., the simplest form of
interpolation) as applied to synthetic times series and to a



Sensitivity of the Empirical Mode Decomposition to Interpolation Methodology and Data Non-stationarity 439

real geophysical time series. For the synthetic time series,
Bahri [1] found that, on average, EMD and EEMD based on
linear interpolation were able to reproduce the known signal
components very well, with IMFs very similar to those
obtained from the classical methods. Overall, the linear-
interpolation-based methods were able to better capture the
trend in the data, while the classical methods provided
better estimates of both high- and low-frequency oscillatory
components. Linear interpolation, however, did provide
slightly more accurate results near the ends of the data
series. For the geophysical time series (sea level data), the
linear-interpolation-based EEMD was found to produce a
different estimate of the long-term trend in the data than was
obtained from classical EEMD, which raised a number of
questions about the interpretation of EEMD output arising
from actual environmental data.

In addition to the methodological limitations and
sensitivities of EMD discussed above, there are also
questions about how the nature of the non-linearity and
non-stationarity of the time series might effect the efficacy
of EMD. Environmental time series, like those that EMD
has been applied to, can possess a variety of non-stationary
and non-linear characteristics, and so it is important to
understand the sensitivity of EMD to these aspects of the
data. For example, Duffy [7] found that EMD performs
well for periodic signals but can perform poorly for non-
linear aperiodic time series, such as most meteorological
data sets. The sensitivity of EMD to data non-stationarity
has received only little attention in the literature. Peel [21]
investigated the application of rational-spline EEMD to
synthetic time series with a number of trend patterns, while
Huang applied EMD to speech signals with time-dependent
variance [10]. Knowing sensitivity of the EMD method
to interpolation used and the nature of the input data is
essential to obtain a better assessment of the environmental
data.

In this study, we use synthetic time series to system-
atically investigate the combined sensitivity of EMD to
data non-stationarity and interpolation method. In particu-
lar, we consider EMDmethods based on linear interpolating
splines, cubic interpolating splines, and smoothing splines,
and assess their ability to reproduce the known signal
components as IMFs.

We begin by providing a brief overview of the EMD
algorithm and its extension to ensemble EMD. In particular,
we highlight the role interpolation plays in the procedure
and introduce the various interpolation methods used in
the present study. We then define the various synthetic
non-stationary data sets used to systematically analyze the
performance of EMD based on the different interpolation
methods. The performance of the various EMD and EEMD
methods is then assessed based on their ability to accurately
reproduce the known component signals.

2Methods and Data

This section outlines the EMD and EEMD methods
introduced by Huang [13] and [11], together with extensions
based on alternative interpolation methods and describes
the construction and use of synthetic data sets to assess the
application of the alternative interpolation methods in EMD.

2.1 EMDMethod

Huang [13] shows how a time series y(t) can be
decomposed into a number of intrinsic mode functions
(IMFs), which satisfy certain defining conditions. These
conditions are (i) symmetric upper and lower envelopes
(mean is zero) and (ii) the number of zero crossings and
extrema are either equal or differ by 1.

The IMFs of y(t) are determined through the EMD
process in Algorithm 2.1. Figure 1 provides a schematic
flowchart of the EMD procedure.

Algorithm 2.1 Empirical mode decomposition.

1. Identify all the local extrema in the signal .
2. Interpolate the maxima and minima separately to define

upper and lower envelopes of .
3. Calculate the mean of the upper and lower envelopes

1 .
4. The first protomode 1 1 .
5. If 1 2 ThenMode 1 is 1 Else

Go to 1.
6. Find the residual time series 1 1 .
7. For the next IMF, set 1 Go to 1.
8. Subsequent IMFs 3 and residuals 3

are obtained similarly.
If has at most one extremum Stop. EMD is now
complete.

Upon completion of the EMD algorithm, the original
time series has been decomposed as follows:

y(t) =
n∑

j=1

cj (t) + rn(t), (1)

where cj (t), j = 1, . . . , n are the IMFs and rn(t) is
the residual (for a more detailed exposition of the EMD
procedure, the reader is referred to Huang [12]).

As discussed above, noisy input data can result in mode
mixing across the IMFs. Hence, when dealing with noisy
time series, the EMD procedure is implemented as part of
an ensemble process, which is referred to as ensemble EMD
(EEMD). In the EEMD procedure, noise (ε ∼ N(0, δ))
is added to the EMD; the ensemble average of the IMFs
found from numerous EMD applications defines the final
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Fig. 1 Empirical mode decomposition flowchart, n is the total number
of modes

ensemble IMFs [12]. Wu and Huang [31] added noise with δ

equal to 0.1, 0.2, and 0.4 times the standard deviation of the
data, and demonstrated that in each case, EEMD performed
better than EMD. However, as a general rule, they advocated
adding noise with δ equal to 0.2 of the standard deviation
of the data. For this reason, in this paper, we implement the
EEMD method by adding noise (ε ∼ N(0, δ)) with δ equal
to 0.2 times the standard deviation of the data.

In this study, we focus on Step 2 of the EMD algorithm
(Algorithm 2.1), which determines the upper and lower
envelopes using some form of interpolation. In addition
to the Hermite cubic-spline interpolant (implemented
using spline function in MATLAB) originally advocated
by Huang [13], we use piecewise-linear interpolation
between adjacent nodes and smoothing splines. For
brevity, we refer to the EMD procedure based on linear
interpolation as “linear EMD,” the EMD procedure based
on cubic interpolation as “cubic EMD,” and the EMD
procedure based on smoothing splines as “smoothing
EMD.” Analogous terminology will also be adopted for the
various EEMD methods.

For a time series y(j) defined at knot points t (j),
the smoothing spline f is defined as the minimizer (over
an appropriate space of functions [33]) of the following
functional:

p

n∑

j=1

|y(j)−f (t (j))|2 + (1−p)

∫ ∣∣f ′′(t)
∣∣2 dt . (2)

Here, f ′′ denotes the second derivative of the function
f and p ∈ (0, 1) is the smoothing parameter, which
determines a balance between fidelity of the spline to
the data and its smoothness. As p → 0, f approaches
the least squares straight-line fit to the data; as p →
1, f approaches the variational or “natural” cubic-spline
interpolant. Smoothing splines were determined using the
csaps routine in MATLAB.

Of course, the choice of smoothing parameter p will
affect the final IMFs produced by the method. In this
initial work, however, the sensitivity of EMD to variation in
the smoothing parameter will not be investigated in detail.
While we do provide an example of the effect of varying
the smoothing parameter on EMD performance, for the
majority of the analyses, we choose a value of the smoothing
parameter, p = 0.0015, that results in recovery of lower-
frequency signal components to a reasonable degree of
accuracy.

Despite the availability of a number of EMD codes (e.g.,
Huang’s code,1 Flandrin’s EEMD codes2 and the MATLAB
HHT toolbox3), we developed our own implementation of
the EEMD algorithm in MATLAB following the method
espoused by Huang [12]. In particular, we have not
attempted to ameliorate any of the known issues with end
effects (the reader is referred to [3] and [20] for further
discussion of these issues).

2.2 Synthetic Time Series

To examine the sensitivity of the EMD procedure to the
different interpolation methods used in its implementation,
we consider synthetic time series data. The advantage of
using synthetic data is that the actual signal components
are known, which permits direct comparison with the IMFs
obtained from EMD and EEMD.

We are specifically interested in examining the sensitivity
of the EMD/EEMD method on time series that exhibit
non-linear and/or non-stationary behavior. To this end, we
begin by considering a time series x0(t) comprised of

1http://rcada.ncu.edu.tw/intro.html
2http://perso.ens-lyon.fr/patrick.flandrin/emd.html
3http://au.mathworks.com/matlabcentral/fileexchange/
19681-hilbert-huang-transform

http://rcada.ncu.edu.tw/intro.html
http://perso.ens-lyon.fr/patrick.flandrin/emd.html
http://au.mathworks.com/matlabcentral/fileexchange/19681-hilbert-huang-transform
http://au.mathworks.com/matlabcentral/fileexchange/19681-hilbert-huang-transform
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two (deterministic) sinusoidal signals with low and high
frequencies:

x0(t) = L(t) + H(t); t = 1, 2, . . . , 1000, (3)

where L(t) and H(t) are defined as

L(t) = 0.4 sin

(
2πt

200

)
; H(t) = 0.2 sin

(
2πt

25

)
;

t =1, 2, . . . , 1000. (4)

A perfect transform will recover L(t) and H(t) exactly as
IMFs.

To examine the ability of EMD/EEMD to recover linear
and non-linear trend components from an input signal, we
also consider (deterministic) time series defined by adding
a variety of trend functions Ti(t) to x0(t). Specifically, we
consider the following time series:

xi(t) = x0(t) + Ti(t), i = 1, . . . , 4; t = 1, 2, . . . , 1000,

(5)

where

T1(t) = 1 + t

2000
, (6)

2mm]T2(t) = 1 + (t + 300)2

200000
, (7)

T3(t) = 7 − ln(1002 − t), (8)

T4(t) = 2 exp(−0.09(20t − 1)2). (9)

The trend functions have been chosen to emulate patterns
that might be found in environmental time series: T1 is
a constant-linear trend; T2 is a non-monotonic (quadratic)
trend, which initially decreases then increases; T3 is a
logarithmic trend, which exhibits a sharp rise near the end
of the time series—similar to the “hockey-stick” trends
encountered in global temperature data associated with
global warming; and T4 is a Gaussian trend, with a sharp
increase followed by a sharp decrease.

A perfect transform applied to the time series xi(t)would
recover L(t) and H(t) exactly again as IMFs, and the trend
Ti(t) as the residual rn(t) (cf. Eq. 1).

To test the sensitivity of EMD/EEMD in the presence
of noise, we also consider time series obtained by adding
stationary and non-stationary noise to those defined by
Eqs. 3 and 5. Specifically, we define:

y0(t) = x0(t) + ε00(t); t = 1, 2, . . . , 1000, (10)

where ε00 ∼ N(0, δ00) represents stationary (constant
variance) noise, with δ00 taken as 20% of the standard
deviation of x0 (calculated as the mean squared difference
from the average of the signal over time).

Similarly, we define the following time series:

yi(t) = xi(t) + ε0i , i = 1, . . . , 4; t = 1, 2, . . . , 1000,

(11)

To further examine the sensitivity of EMD/EEMD in
the presence of data non-stationarity, we also consider the
following time series:

zi0(t)=x0(t) + εi(t), i =1, 2; t =1, 2, . . . , 1000, (12)

and

zij (t) = xj (t) + εi(t), j = 1, 2, . . . 4; i = 1, 2;
t = 1, 2, . . . , 1000. (13)

Here, the time-dependent noise terms are taken as εi(t) ∼
N(0, δi(t)), with:

δ1(t) = 0.0005t, t = 1, 2, . . . , 1000; (14)

and

δ2(t) = 0.0005 + 0.5 exp
(
−(0.006t − 3)2

)
,

t = 1, 2, . . . , 1000. (15)

Hence, the time series zi0(t) represents data with no
trend and two different types of non-stationary noise:
monotonically increasing standard deviation and standard
deviation that varies in a Gaussian manner (increases and
then decreases) over time; while zij (t) represents data with
various trend components and the two different types of
non-stationary noise. The time series defined by Eq. 12 are
shown in the bottom two panels of Fig. 2.

The various time series considered in this study are
summarized in Table 1.

3 Sensitivity of EMD and EEMD
to InterpolationMethodology

The performance of the EMD and EEMD procedures with
the three different interpolation methods is assessed using
the twenty synthetic time series introduced in the last
section. We begin by considering how well EMD and
EEMD are able to recover the sinusoidal signals L(t) and
H(t) from the input signals x0 and y0. We then investigate
their performance in recovering the sinusoidal signals and
the various trends (6 to 9) from the input time series xi and
yi , i = 1, . . . , 4.

We first show the EMD/EEMD original results for two
selected data sets and then discuss how we analyze the
results. It should be mentioned that in the EEMD results,
it is normal to obtain more modes than we expect but the
amplitude of some of these modes is too small for the
modes to carry valuable information. Therefore, eliminating
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Fig. 2 Synthetic data with
stationary noise and (a) constant
trend y1; (b) quadratic trend y2;
(c) logarithmic trend y3; (d)
Gaussian trend y4; (e)
non-stationary noise z10; (f)
non-stationary noise z20
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these modes will not change the final analysis. In this study,
the modes with small amplitudes (smaller than 1 × 10−2)
are eliminated following the selection criteria introduced in

Table 1 Summary of the time series used as input to EMD/EEMD

Data Description Equation

x0 Sum of sinusoids L & H Eq. 3
xi x0 + various trends (Ti ) Eqs. 5; 6–9
y0 x0 + stationary noise (ε0) Eq. 10
yi x0 + various trends (Ti ) + stationary noise (εi ) Eq. 11
zi0 x0 + non-stationary noise (εi ) Eqs. 12; 14
zij x0 + various trends (Tj )+ non-stationary noise (εi ) Eq. 13

[19]. Figure 3 shows the results of LEEMD (linear-EEMD),
CEEMD (cubic-EEMD) and SEEMD (smoothing-EEMD)
applied to y1.

In the presence of noise, the results are not as
straightforward. Figure 3 shows the EMD outputs for the
three interpolation methods for the y0 data (10). The first
two modes in LEEMD and CEEMD results correspond to
the noise, and the third mode is the high-frequency mode.
For the SEEMD results, the first mode is the noise, and the
second mode is the high-frequency mode. The amplitude
of this mode in SEEMD is underestimated due to the
smoothing parameter being set to extract the low-frequency
mode more accurately (see Section 3.6).
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Fig. 3 EEMD results for the noisy y1 data (10) using LEEMD (left
column), CEEMD (middle column), and SEEMD (right column). The
top two rows are noise, the third row is the high-frequency modes, and

rows 4 to 6 are low-frequency modes extracted by three methods. The
bottom row shows the sum of the two extracted modes (red dash line)
compared with the original signal y0 (black solid line)
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LEEMD and CEEMD struggle to extract the low-frequency
mode. In LEEMD, the low-frequency mode appears in three
IMFs (the first of which still has high-frequencymodemixing)
in CEEMD in two IMFs. This is a common challenge of
the method; the user can either choose one of the two or
three modes or add all the modes with similar time periods
together [19]. It is not clear which is the best method.

Adding the modes and then adding the trend do not
cause loss of any information but, in some cases, we
are interested in studying a mode with a particular time
period; then by adding the modes, we lose some of the
information from that mode. Figure 4 shows the added
modes along with the original low-frequency mode resulting
from LEEMD, CEEMD, and SEEMD. This figure shows
that although adding the modes with similar frequency
components resulting from LEEMD and CEEMD produces
results quite close to the actual mode, they are still less
accurate than that produced in a single mode using SEEMD.
In LEEMD, as can be seen in Fig. 4, some of the information
from the higher-frequency signal are producing error, and in
the CEEMD results, there is underestimation near the end
points. SEEM, however, produces the most accurate results
of the three interpolation methods.

Another problem is in deciding which modes to add
up. This is quite challenging, especially when dealing with
data with several high- or low-frequency components. Then,
the IMFs are often a combination of two or more modes.
Obviously, in both of these situations, some information
will be lost from the analysis. The ideal situation is that
the method should result in pure IMFs in the first place.
Treating the problem objectively, we did not add modes
together but chose the modes that had the closest frequency
and amplitude to the actual modes. For example, for the
low-frequency modes in the y1 results, in LEEMD the fifth
IMF, in CEEMD the fourth IMF, and in SEEMD the third
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Fig. 4 EEMD low-frequency modes for y1 data (10) using LEEMD
(top row), CEEMD (middle row), and SEEMD (bottom row). The red
lines show the sum of the extracted low-frequency modes; the black
lines are the original low-frequency modes

IMF have the closest frequency and amplitude to the actual
low-frequency mode.

The mean absolute error (MAE) is defined to compare
the modes (IMFs) from EMD/EEMD with the actual modes
and trends:

MAEI =

N∑

k=1

|M(tk) − IMFI (tk)|

N
. (16)

Here,M(tk) can be eitherL(tk) orH(tk) or one of the trends
Ti(tk) (6 to 9), and IMFI (tk) is the corresponding IMF. The
subscript I denotes the interpolation method: L linear; C

cubic; S smoothing; and N is the number of the data points.

3.1 EMD/EEMD Applied to x0 and y0

We consider first the performance of the EMD procedure
applied to the noiseless input time series x0(t) and that
of the EEMD procedure applied to the corresponding time
series with noise, y0(t). The ability of EMD and EEMD to
retrieve the component signals in these cases will establish
a benchmark for subsequent analyses of the more complex
synthetic time series.

Figure 5 shows that EMD applied to x0 is able to
recover the high- and low-frequency sinusoidal components
to a very high degree of accuracy. EMD with cubic- and
smoothing-spline interpolations performed the best, with
the MAEs of 6.68×10−4 and 5.22×10−4, respectively, for
the low-frequency component, and 6.68 × 10−4 and 4.56 ×
10−4, respectively, for the high-frequency component.
Linear EMD exhibited poorer performance, with an MAE
of 3.25 × 10−3 for both the low- and high-frequency
components.

EEMD applied to the noisy time series y0 is able
to accurately recover the frequencies of the sinusoidal
components, but performs less well in capturing their
amplitudes, as can be seen in Fig. 5c, d. For the high-
frequency component, cubic EEMD performs the best with
an MAE of 2.22× 10−2, while smoothing EEMD performs
the worst with an MAE of 7.86 × 10−2. Linear EEMD is
able to capture the high-frequency component to a similar
degree of accuracy as the cubic EEMD, with an MAE of
3.69 × 10−2, but produces very inaccurate results for the
low-frequency component, with anMAE of 1.15×10−1. For
the low-frequency component, smoothing EEMD performs
the best, with an MAE of 1.61 × 10−2, while cubic EEMD
yielded an MAE of 1.86 × 10−1.

The large error in smoothing EEMD for the high-
frequency component can be reduced by changing the
smoothing parameter. This will be discussed in more detail
in Section 3.6.

We note the considerable damping of the amplitude in the
low-frequency signals retrieved from the cubic and linear
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Fig. 5 Panels a and b EMD results for the noiseless time series x0
(3); panels c and d EEMD results for the corresponding data with
noise y0 (10). Panels a and c high-frequency IMFs; panels b and d

low-frequency IMFs. Original is either the high-frequency compo-
nent H(t) (top panels) or the low-frequency component L(t) (bottom
panels) of the input signal

Table 2 Mean absolute error (MAE) of the EMD (x1–x4) or EEMD IMFs ×10−3 for all the data inputs

Input High frequency Low frequency Trend

data L(E)EMD C(E)EMD S(E)EMD L(E)EMD C(E)EMD S(E)EMD L(E)EMD C(E)EMD S(E)EMD

x0 3.30 0.66 0.45 3.2 0.67 0.52 NA NA NA
x1 3.30 0.66 0.45 3.2 0.67 0.52 0.092 0.095 0.17
x2 3.20 0.63 0.42 16.6 13.6 14.3 16.12 13.67 14.36
x3 6.80 3.30 5.6 81.3 56.6 72.0 350.23 284.43 255.19
x4 3.20 0.65 0.47 135 31.3 25.9 319.8 56.7 73.7
y0 36.9 22.2 78.6 115.7 186.5 16.1 NA NA NA
y1 36.3.8 22 78.9 123.6 131.3 15.2 19.38 25.4 7.22
y2 82 42.9 82.5 100.3 48.4 33.7 57.06 26.25 22.09
y3 76.7 56.0 81.40 114.3 69.5 166.1 349.7 327.9 267.4
y4 81.2 53.5 80.1 123.2 55.3 41.3 104.86 53.16 62
z10 50.2 41.4 77.3 167.8 941.0 16.5 NA NA NA
z11 54.1 46.4 75.9 158.4 96.5 19 32.65 19.97 12.51
z12 53.1 47.2 79.5 143.8 108.0 72.8 84.78 16.48 26.17
z13 58.0 47.8 79.6 178.1 118.1 55.5 389.9 419.8 283.76
z14 60.6 50.7 79.4 174.2 116.4 35.4 90.99 224.74 79.27
z20 46.6 48.7 73.2 160.3 147.3 10.4 NA NA NA
z21 46.9 48.5 74.8 146.9 150.4 12.0 45.9 12.08 16.2
z22 51.4 46.2 76.2 162.3 135.6 21.9 104.102 36.109 23.78
z23 48.1 49.0 77.9 171.2 193.8 75.7 319.77 388.4 189.25
z24 50.0 49.2 76.4 184.7 177.6 25.5 124.8 99.6 74.8

L(E)EMD, EMD/EEMD with linear interpolation; C(E)EMD, EMD/EEMD with cubic-spline interpolation; S(E)EMD, EMD/EEMD with
smoothing-spline interpolation
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EEMD is due to the fact that in these cases, the signal is
divided over more than one IMF (Fig. 3).

3.2 EEMD Applied to xi and yi

EMD applied to the noiseless time series with constant-
linear trend x1 performed very well regardless of the
interpolation method used, producing identical MAE
statistics to those obtained from x0 for the sinusoidal
components. Similarly, EMD based on each of the
interpolation methods was able to accurately recover the
constant linear trend, with linear EMD, cubic EMD, and
smoothing EMD yielding MAEs of 9.25 × 10−5, 9.50 ×
10−5, and 1.79 × 10−4, respectively.

The corresponding MAE statistics for the time series
x2, x3, and x4 can be seen in Table 2. In the absence of
noise, cubic EMD and smoothing EMD provided the better
estimates of the sinusoidal components and the various
trend components. Linear EMD performed considerably
worse in estimating the logarithmic trend component of x3,
while EMDwith all the interpolation methods had difficulty
in recovering the Gaussian trend component of x4.

Figure 6 shows the results of the various EMD
procedures applied to x3 and x4. It is evident that the
nature of the logarithmic trend has resulted in poor EMD
performance; this is particularly noticeable in the inability
of the linear EMD to estimate the low-frequency sinusoidal
component (Fig. 6b), though similar issues can be seen
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Fig. 6 Panels a, b, and c EMD results for x3 data (5); panels d, e, and f EMD results for the x4 data (5). Top panels: high-frequency IMFs; middle
panels: low-frequency IMFs; and bottom panels: the residuals and original trends
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with the cubic and smoothing EMD results (Fig. 6b). It
has also problems with the estimation of the high-frequency
component near the end of the time series for the all
interpolation methods (Fig. 6a).

With the Gaussian trend, the high-frequency component
was recovered well by all three interpolation methods but
linear EMD again performed poorly for the low-frequency
component. Comparing Fig. 6b and e shows that the
region of particularly poor performance of the linear EMD
coincides with where the trend component exhibits the
greatest variability.

The various EMD methods, particularly linear EMD,
performed relatively poorly in estimating the Gaussian
trend component of x4 (Fig. 6f). The cubic and smoothing
EMD methods were able to capture the general pattern and
symmetry of the trend component, but underestimated its
variability.

The MAE statistics resulting from application of EEMD
to the time series constant noise, y1, y2, y3, and y4,
are given in Table 2. For the constant-linear trend time
series y1, smoothing EEMD resulted in a more accurate
recovery of the three signal components, in particular the

Fig. 7 EEMD results for the y3
data (5)
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constant-linear trend and the low-frequency sinusoidal
components, much better than that of the linear and cubic
EEMD. Indeed, the MAE for the low-frequency component
was an order of magnitude smaller with smoothing EEMD.
Smoothing EEMD also dealt better with noise but it
is important to set the right smoothing parameter (see
Section 3.6).

For the time series y2 with quadratic trend, smoothing
EEMD again provided the lowest MAE value for the low-
frequency component, although those from cubic EEMD are
only slightly higher. Similarly, for the time series y4 with
Gaussian trend, smoothing EEMD yielded the lowest MAE
for the low-frequency component. The exception was the
logarithmic trend in y3, for which cubic EEMD yielded a
lower MAE than smoothing EEMD (see Table 2). As can
be seen in Fig. 7, linear EEMD had considerable difficulty
in accurately reproducing the amplitudes of both sinusoidal
components.

For the noisy data with trends, y1 to y4, the cubic EEMD
and linear EEMD results both had higher MAEs than for
the corresponding noiseless data, x1 to x4. These higher
values are because of considerably more mode mixing than
the noiseless data. This shows that cubic EEMD and linear
EEMD are sensitive to noise. The smoothing EEMD is less
prone to noise, therefore to mode mixing, especially for
low-frequency components.

3.3 EEMD Applied to z10 and z20

The results of applying the various EEMD methods to the
time series z10 and z20 are presented in Fig. 8. The ability
of linear EEMD to recover the high-frequency sinusoidal
component was considerably affected by the noise, a result
which was consistent with those relating to the application
of linear EEMD to the time series yi . Again, it is the
amplitudes of the estimated components that were most
sensitive to the presence of noise, whereas their frequencies
appear to be far more robust. The regions of poorest
performance of linear EEMD coincided with the regions
where the amplitude of the noise was greatest, that is, near
the end of the time series for z10 and in the middle of the
time series for z20. For z10, linear EEMD yielded an MAE
for the high-frequency component of 5.02 × 10−2, while
cubic and smoothing EEMDs produced MAEs of 4.14 ×
10−2 and 7.73 × 10−2, respectively. For the case of z20, in
which the amplitude of the noise is greatest in the middle
of the the time series, linear EEMD produced an MAE of
4.66 × 10−2, while cubic and smoothing EEMDs produced
MAEs of 4.87 × 10−2 and 7.32 × 10−2, respectively.

As mentioned earlier, due to the interest of this
study in long-term variability, the smoothing parameter
is biased towards the accuracy of the low-frequency
IMFs. Unfortunately, that means the high-frequency IMFs
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Fig. 8 EEMD results for the data with non-stationary noise. Panels a and b z10; panel sc and d z20 (12)
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obtained from smoothing EEMD are not as accurate as
they could be, and the values of the corresponding MAEs
are relatively high. These high MAEs are due to errors
in estimating amplitude rather than frequency. So if the
smoothing parameter in smoothing EEMD is not suitable
for a specific frequency range, the method can still find the
correct frequency but will underestimate the amplitude. This
issue can easily be fixed in individual cases by changing
the smoothing parameter to a more suitable value (for
more details about choice of smoothing parameter, see
Section 3.6).

For the low-frequency sinusoidal component, Fig. 8
shows that linear EEMD is badly affected by the presence
of noise, and worst affected where the amplitude of the
noise is greatest. Cubic EEMD also seems to perform poorly

in these cases, though the regions of poorest performance
occur at the ends of the time series rather than where the
noise is greatest in amplitude. This suggests that end effects
may have some bearing on the results of cubic EEMD;
further analysis is required to confirm this possibility. For
z10, linear EEMD yielded an MAE for the low-frequency
component of 1.67 × 10−1, while cubic and smoothing
EEMDs produced MAEs of 9.41 × 10−1 and 1.65 × 10−2,
respectively. For z20, linear EEMD produced an MAE of
1.60 × 10−1, while cubic and smoothing EEMD produced
MAEs of 1.47× 10−1 and 1.04× 10−2, respectively. These
results indicate that smoothing EEMD also provides the
most accurate estimates of the low-frequency sinusoidal
component for the two cases of time-dependent variance
considered; there is no amplitude underestimation in the
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Fig. 9 EEMD results for data with the non-stationary noise and various trends, z11 (constant-linear trend) and z12 (quadratic trend; Eq. 12)
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results and therefore no artificially high MAEs. It is worth
noting that the performance of smoothing EEMD does
appear to also work well near the end of the time series in the
z20 case (Fig. 8). This is evidence that shows the smoothing
EEMD with a suitable smoothing parameter is a good
alternative to the standard (cubic interpolation) EEMD, with
greater accuracy and less mode mixing.

3.4 EEMD Applied to zij , i = 1, 2, j = 1, . . . , 4

Here, we consider the results of applying the various EEMD
methods to the time series z1j and z2j with j = 1, . . . , 4.
Table 2 details the resulting MAE statistics for the various
cases, while Figs. 9 and 10 show some selected examples of
EEMD performance.

Consistent with the results in the previous section, linear
EEMD was highly sensitive to the presence of noise in
the input time series. This is clearer when we consider
the MAEs for the xi (3.3 − 6.8) and the yi (36.9 − 81.2)
in Table 2. Again, it was the amplitude of the estimated
signals that was most badly affected (e.g., see Fig. 9).
Interestingly however, linear EEMD was better able to
accurately reproduce the trend component of the input
signals, in contrast to its ability to accurately reproduce their
sinusoidal components. Figures 9 and 10 show that cubic
EEMD was also prone to poor performance, particularly
in its ability to reproduce the low-frequency sinusoidal
component. Table 2 shows that apart from the data with
logarithmic and Gaussian trends, linear EEMD results for
the trend have smaller MAEs than for the low-frequency
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mode. Figure 9 shows that cubic EEMD is also prone to
poor performance, particularly in its ability to reproduce the
low-frequency sinusoidal component.

Comparison of MAEs in Table 2 shows that, overall,
smoothing EEMD provided the most accurate estimation of
the original signal components. Indeed, smoothing EEMD
produced the smallest MAE values in all but two of the
cases considered, namely z12 and z21, for which cubic
EEMD yielded the smallest MAE values. However, in these
cases, the smoothing EEMDmean absolute errors were only
slightly larger. For the sinusoidal components, smoothing
EEMD consistently produced the smallest MAE values.
For the low-frequency components, smoothing EEMD
produced MAE values an order of magnitude smaller than
those obtained from linear and cubic EEMD.

In terms of estimating the trend components of the input
signal, it was the logarithmic and Gaussian trends that
most confound the various EEMD procedures. Figure 10

shows that it was the abrupt changes in these trend
components that represented by these trend components
resulted in poor EEMD performance. For the logarithmic
trend cases, this is particularly evident near the end of
the time series, whereas for the Gaussian trend cases, the
EEMD methods failed to accurately estimate the full extent
of the trend, similar to the case of y4. However, despite
its relatively poor performance, smoothing EEMD better
captured the variability and symmetry of the Gaussian trend
component for the two cases, z14 and z24, as was the case
with y4.

3.5 Robustness of the EEMD Ensemble Members

In this section, we consider the consistency of the three
interpolation methods in EMD/EEMD in estimating the
trend component of the various input time series. To do this,
we construct confidence intervals based on the full spectrum
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Fig. 11 95% confidence intervals for the trend results for the x1 (a), x2 (b), x3 (c), and x4 (d) data. Blue shading, linear EMD; red shading, cubic
EMD; and green shading, smoothing EMD
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of the EEMD ensemble members. Figures 11 and 12 show
EEMD trend components together with 95% confidence
intervals (shaded), which are determined by considering
the point-wise distribution of the 3000 estimated trend
components (i.e., the ensemble members) across the time
series domain. Thus, at each point in time, the lower
confidence limit defines the value below which 2.5% of the
ensemble member values fell, while the upper confidence
limit defines the value above which 2.5% of the ensemble
member values fell.

Figure 11 shows the trend components estimated by
applying the various EEMD methods to the time series
x1, x2, x3, and x4. The confidence intervals in Fig. 11a
indicate that there is a considerable degree of variability
in the constant-linear trends determined in each of
linear EEMD ensemble runs. In particular, the confidence
intervals indicate that linear EMD produced constant-linear
trend estimates with gradients ranging from 0.58 to 1.3

(width of trend estimation = 0.72). Figure 11a shows
that cubic EEMD also produced a fairly wide spread of
linear trend estimates, from 0.88 to 1.32 (width of trend
estimation= 0.44). In contrast, the confidence intervals
associated with smoothing EEMD were very small, from
0.93 to 1.03 (width of trend estimation = 0.1), indicating
greater consistency in the trend components produced over
the 3000 smoothing EMD ensemble runs.

Similar results are evident for the quadratic, logarithmic,
and Gaussian trend components in Fig. 11b, c, and d,
respectively. Linear EMD produced the broadest range
of trend estimates, while smoothing EMD exhibited
considerable robustness, producing consistent estimates of
the various trends across the 3000 ensemble runs. In the case
of the Gaussian trend in Fig. 11d, the confidence intervals
associated with linear and cubic EEMD indicate that they
were far less consistent than smoothing EMD in their ability
to estimate the trend. However, it should be noted that the
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smoothing EEMD
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Fig. 13 Input data Y (t) (17)

linear EEMD confidence intervals are the only ones that
encompassed the actual trend component.

Figure 12 shows that similar patterns in the confidence
intervals arose for the time series data with time-dependent
mean and time-dependent variance (z1j , j ≥ 1). The
broadest confidence intervals arose in connection with
linear EMD, while smoothing EMD again exhibited a
considerable degree of robustness across the ensemble
members.

Similar results were found for the sinusoidal signal
components, but will not be discussed here.

3.6 Varying the Smoothing Parameter in Smoothing
EEMD

In the previous sections, smoothing EEMD was imple-
mented assuming a smoothing parameter p = 0.0015.
This value of the smoothing parameter was shown to result
in accurate reproduction of the trend and low-frequency

Fig. 14 MAEs for the IMFs
corresponding to the four
sinusoidal components in
Eq. 18, as a function of the
smoothing parameter p
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sinusoidal component, but poor reproduction of the high-
frequency sinusoidal component. In this section, we exam-
ine if increasing the smoothing parameter results in a more
accurate estimate of the high-frequency component, and
what effect it has on the accuracy of estimates of the trend
and low-frequency component. As p → 1, smoothing
spline interpolation approaches cubic interpolation, so the
expectation is that increasing p will produce results more
akin to those obtained using cubic EEMD.

In order to do this, we construct synthetic data with
four sinusoidal components in which we have inserted two
more sinusoidal components between the high-frequency
and low-frequency component used previously:

Y (t) = S(t) + T1(t) + ε0, (17)

where ε0 ≈ N(0, δ) , δ = 0.2 std(S(t)), T1(t) = 1 + t
2000 ,

and:

S(t) = 0.6 sin

(
2πt

400

)
+ 0.4 sin

(
2πt

200

)
+ 0.4 sin

(
2πt

100

)

+0.6 sin

(
2πt

50

)
. (18)

where t = 1, 2, . . . , 1000. These data are shown in Fig. 13.
SEEMD is used on these data with the smoothing

parameter varying in the range 0 < p < 10−6. The
IMFs for each p value are compared with the corresponding
sinusoidal components in Eq. 18; the MAEs for each
component are shown in Fig. 14.

For p > 10−1 and p < 10−3, the MAEs for all IMFs
fluctuate considerably and are relatively high: some value
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Table 3 Summary of the results

Interpolation Advantages Disadvantages

LEEMD Works equally well with other interpolations in absence of noise Prone to noise

Estimate the logarithmic and Gaussian trend well Prone to end effects

Extremely sensitive to type of the data

CEEMD Works generally well and better than linear interpolation Prone to noise

Prone to end effects

Sensitive to type of the data

SEEMD Accurate results in all cases

Not sensitive to noise Needs adjustment of smoothing parameter

Not sensitive to data type

Not sensitive to end effects

of p give good results for the higher-frequency IMFs but
not for the lower-frequency IMFs, and vice versa (Fig. 14).
However, for 10−3 < p < 10−1, the MAEs for all four
IMFs are low, making this range suitable values for the
smoothing parameter. However, this is for the synthetic data
presented here; the range may be different for different
data (Table 3). Finding suitable values for the smoothing
parameter needs further study.

4 Discussion and Conclusions

Lack of a complete formal mathematical framework
underpinning EMD means that a theoretical analysis of
the sensitivity of the EMD method is not possible. Studies
like this one that examine the sensitivity of EMD using
synthetic data are one of the only means of understanding
the limitations of the method. In this study, the application
of EMD to deterministic time series data and EEMD to
noisy time series data has been investigated in the presence
of different types of trend and two types of noise (stationary
and non-stationary). The effects of varying the method of
interpolation, linear, cubic, and smoothing-spline, in the
EMD algorithm have also been investigated.

Linear interpolation performed just as well as other
interpolation methods in EMD applied to data without
noise, but performed poorly in EEMD applied to noisy
data. In particular, it suffered from mode mixing and
end effects, and consistently underestimated the amplitude
of the sinusoidal signal components. Linear interpolation
did however provide reasonable estimates of the trend
components (except for the data with logarithmic or
Gaussian trends).

Cubic EEMD exhibited overall better performance than
linear EEMD, but was still prone to mode mixing and
end effects in certain cases. Smoothing EEMD (SEEMD)
consistently provided the most accurate estimates of the
low-frequency sinusoidal component and the various trends.

Because the smoothing parameter is set to favor the low-
frequency components, the amplitude of the high-frequency
component in most of the cases was underestimated.
However, we have shown that it is possible to find a
smoothing parameter that gives accurate results for all
frequencies. There is a need for further study on how to find
suitable smoothing parameter for data in general.

Another advantage of SEEMD is that it is more robust
and less sensitive to noise, so that there is less mode mixing.
In addition, SEEMD is less sensitive to non-stationarity of
the input data. In all cases, there is much less variation in
IMF ensemble members using SEEMD.

It is important to note that there are a number of
additional interpolation methods that could be used in
place of smoothing splines, and that may produce similar
stabilizing effects on the EMD procedure—one such
method is Gaussian-process interpolation. Investigating the
performance of such methods would be an interesting
extension of the current study.

We have also shown that EEMD performance depends
on the nature of the input data. In particular, it is sensitive
to abrupt changes in the underlying trend in the data; for
example, the “hockey-stick” logarithmic trend, and the rise
and fall of the Gaussian trend. When the data are more
complex or there are sudden changes in the trend, EEMD is
sensitive to the choice of interpolation method. The reason
for this sensitivity is difficult to ascertain in the absence
of a sound theoretical basis for EMD, but further analyses
using carefully targeted synthetic time series could provide
additional insight into this issue.

Estimation of the frequency of the sinusoidal components
by the IMFs was less sensitive to the data than estimation
of the amplitude—this was because component signals were
divided over multiple IMFs for some of the interpolation
methods. All the interpolation methods worked reasonably
well in recovering the trend with no one method always
better than the others. Finding the correct shape of the
residual is important in analyzing long-term changes, and
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critically important to the accurate study of environmental
data [8].

For completeness and future reference, the results of our
study for each type of the time series considered in the study
are summarized in Table 2.
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