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Abstract
Hurricanes originating in the West Atlantic often have devastating consequences on the cities in the US east coast, both monetary
and otherwise, and hence pose a source of considerable concern to several authorities. The possibility of a connection between
global warming in general and an increased frequency of these strong hurricanes is well researched, but is still actively debated. The
present work tries to promote the use of a smoothing statistic termed empirical recurrence rates and to advocate the use of another,
termed empirical recurrence rates ratio in a bid to better understand the rich history of these storms on one hand and to make
appropriate inferences on the other, so that some light can be shed on the acceptability of conjectures held by renowned climate
scientists. The methods introduced are intuitive and simple to implement and should find wide applications in diverse disciplines.
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1 Introduction

As one nears the end of the current decade, strong hurricanes
and tropical storms originating from the Atlantic Ocean con-
tinue to pose a relentless threat, especially to the east coast of
the USA and researchers believe that in the absence of a so-
phisticated forecasting tool and a better understanding of the
cyclone dynamics, the years to come shall witness an unprec-
edented loss of human lives and property. In 1926, a category
4 hurricane lashed out at Miami and a report published by the
Times estimates that if such a hurricane should hit the same
place today (which now has a population in excess of 2.5
million), the estimated monetary damage would easily surpass
$180 billion. Hurricane Sandy struck the east coast in October
2012 and inflicted a $20 billion damage in New York City
alone. Simulation-based research (Emanuel [7]) published by
leading atmospheric scientist Dr. Kerry Emanuel based at
Massachusetts Institute of Technology paints a grim picture:
the frequency of tropical cyclones will increase by 10 to 40%

by 2100 and the intensity of these storms should increase by
45% by the end of the century.

There is no dearth of climate literature that hint at a
connection between the increased restlessness of these
devastating storms and other controllable factors, notably
climate change: Hansen et al. [12] have identified ocean
heat content and water vapor as significant factors contrib-
uting to more intense tropical cyclones and have described
how they have increased considerably over the past several
decades, primarily due to human activities such as burning
of fossil fuels and massive deforestation—an inevitable
consequence of which is an increased concentration of car-
bon dioxide in the atmosphere—which in turn, acts as an
envelope over the ocean, thereby preventing its heat con-
tent to escape. Trenberth and Shea’s [34] and Trenberth’s
[33] study probed into the causes of an abnormal increase
in ocean temperature with specific emphasis on North
Atlantic and concluded that about 0.3 °C of the increase
was due to ocean oscillations, 0.2 °C came from natural
weather variation, but alarmingly enough, global warming
accounted for the most—0.45 °C. Hoyos et al. [14] and
Santer et al. [28] voice similar concerns: over the period
of 1970 onwards, warmer sea surface temperature is the
most significant player behind the increased frequency of
strong hurricanes. Sriver and Huber [31] have found that a
0.25 °C increase in the average annual tropical sea surface
temperature can lead to a 60% increase in a hurricane’s
potential destructiveness.
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Awareness about the harmful consequences of climate
change is on the rise over the last few years: Delegates met in
Peru to try and agree on a negotiating text for a new global
climate deal to be signed at the end of 2015 (http://www.bbc.
co.uk/news/science-environment-30225511), Australia pledged
A$200 m (£106 m; $166 m) to help poor nations mitigate the
impact of global warming (http://www.bbc.co.uk/news/world-
australia-30408036), while there are skeptics who believe that
schemes to tackle climate change could prove disastrous for
billions of people, but might still be required for the good of
the planet (http://www.bbc.co.uk/news/science-environment-
30197085). Following Hurricane Sandy, Mayor Michael
Bloomberg came up with a voluminous 430-page report detail-
ing a $19.5 billion plan to shieldNewYork from climate change-
related hazards. But as Dr. Emanuel [6–8] points out, this con-
nection portraying climate change as a pivotal cause behind
frequent hurricanes is still at the level of a probable hypothesis
and the possibility of a vehement confirmation would need to
wait for a few more years and for more reliable data.

The principal purpose of the present statistical endeavor is
neither to challenge nor to support this cause-effect hypothesis
that relates global warming and strong hurricanes, but to pro-
mote the use of a smoothing empirical recurrence rates (ERR)
statistic developed by Ho [15, 16] and used by Tan, Bhaduri,
and Ho [32] and Ho and Bhaduri [17], as an aid to better
understand the recent trends in strong hurricane frequency
and also to check whether some of the conjectures held by
leading environmentalists, oceanographers, and atmospheric
scientists that relate to the frequency and incidence of these
strong hurricanes are tenable enough. The methods employed
will essentially be nonparametric and the development of a new
statistic termed as empirical recurrence rates ratio (ERRR) will
facilitate arguments even further. These two statistics are
intended to serve rather different purposes: as will be evidenced
later, ERR tracks the history of the maximum likelihood esti-
mate of the intensity of the single time series it is generated
from, while ERRR, defined as a ratio of two ERRs, will eluci-
date the evolution of the mutual interplay between two compet-
ing processes. As a welcome corollary, one will also be able to
shed some light on the previously mentioned suspicion. The
latter quantity has recently been introduced and profitably used
by Ho et al. [18] in the financial industry to analyze the inter-
action structure between the size of a bank and its likelihood of
failure. Success in such competitive and adversarial a field as
banking, where the intricacies of interaction is undoubtedly
comparable to weather science, should go a long way in con-
vincing skeptics about the versatility of the technique.

One must hasten to add that methods exist in literature to
assess risks for extreme hydrological hazards, but most of them
are forbiddingly technical to be of use to scientists working
outside the realm of weather science. Sisson et al. [30], for
instance, uses Bayesian technologies for inference from annual
maxima and peaks over threshold models, in the context of

assessing the long-term risks of rainfall and flooding in the
Caribbean. They explain how standardGumbel hazard analyses
assign almost zero probabilities to extremely intense and rare
events. While methods such as these are novel and
implementable in the present context, the computational diffi-
culties involved (for instance sampling from posterior densities)
might pose a considerable hindrance to applied practitioners.
On the other extreme, works carried out by Elsner et al. [5], for
instance, concentrates on quantifying the fluctuations of North
Atlantic hurricane frequencies using frequency domain spectral
analyses for the period 1886–1996. In the present work, how-
ever, one opts for a time domain analyses (in view of its ready
interpretability) and is encouraged to reach similar conclusions.
Considering the different categories of hurricanes possible
(Table 1), based on their maximum wind speeds, the current
work delivers a stronger message. Another breed of studies
looks into the forecasting aspects of hurricane tracks. Lin
et al. [23], for example, uses generalized linear models and
probabilistic clustering technique to classify the best tracks of
typhoons around Taiwan during 1951–2009. General reliability
studies concerning oceanic hazards are also available: for in-
stance, a generalized version of the Poisson reliability model
that we are going to employ has been used by Zhang and Lam
[38] for reliability modeling of offshore structures.

The paper is organized as follows: Section 2 lays down the
basic definitions and tools that will be used frequently from a
general viewpoint. Section 3 will talk about the data collection
method, the observation domain both with respect to space
and time, and the rationale behind such a choice. Sections 4
and 5 detail the analyses using different categories of hurri-
canes and two different ocean basins with the statistics intro-
duced previously. Section 6 summarizes key findings.

2 Theory and Methodology

2.1 Empirical Recurrence Rate

Let t1, . . ,tn be the time of the n ordered events during an
observation period [0, T] from the first occurrence to the last

Table 1 Major hurricane categories

Storm classification Maximum sustained wind speeds (MSW)

Hurricane 5 category (H5) > 135 knots (> 250 km/h)

Hurricane 4 category (H4) 114–135 knots (211.1–250 km/h)

Hurricane 3 category (H3) 96–113 knots (177.8–209 km/h)

Hurricane 2 category (H2) 83–95 knots (153.7–175.9 km/h)

Hurricane 1 category (H1) 64–82 knots (118.5–151.9 km/h)

Tropical/subtropical storm 34–63 knots (62.9–116.7 km/h)

Source: National Oceanic and Atmospheric Administration (NOAA),
Office of Coastal Management Webpage: http://www.noaa.gov/
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occurrence. Then a discrete time series {Zl} is generated se-
quentially at equidistant time intervals h, 2h, . . , lh,…Nh(=T).
If 0 is adopted as the time-origin and h as the time step, then
one regards zl as the observation at timet = lh. A time series of
the empirical recurrence rates (Ho [16]) is developed as

zl ¼ nl=lh; ð1Þ
where nl is the total number of observations in [0, lh) and l = 1,
2,…, N. Note that Zl evolves over time and is simply the
maximum likelihood estimator (MLE) of the mean unit rate,
λ, if the underlying process observed in [0, lh) is a homoge-
neous Poisson process (HPP). The ERR curve should be ap-
proximately flat for a typical HPP, where the correlation func-
tion for zj and zj + kzj + k is

p j; jþk ¼ j= jþ kð Þ½ �1=2; for j ¼ 1; 2; :::;N−1; k

¼ 0; 1; :::;N− j:

2.2 ERR Plot

The very definition of the ERR statistic helps one realize
its inherent advantage over an ordinary time series in that
it is able to Brecall^ past events: If {Xt} represents the
underlying ordinary time series counting the number of
events at time t, then the numerator of the ERR statistic
is given by nl =∑t ∈ [0, lh)xt and this cumulative effect im-
parts greater inertia to the zl series, which sometimes is
extremely desirable. Since a simple time series forgets the
past, it is very easy for a small random shock to destabi-
lize the series considerably. However, a process needs to
behave sufficiently abnormally to induce a significant
change in the ERR series since small increments are
smothered by a deterministic increase in t, especially for
large t. Such a property, building upon a more reliable
description, should be of immense help to exercises such
as change point identification.

The following graph (Fig. 1) will help clarify this point
even further in terms of a concrete example: The ordinary time
series that is depicted through the dotted line will ultimately
count the number of H5 category (the strongest) hurricanes in
the West Atlantic basin over the period of 1923–2013, later in
the paper and its corresponding ERR series is plotted as well.

As can be seen, although the original time series fluctuates
quite often, the ERR series is rather stable, especially after the
initial noise dies down and the ERR series jumps up signifi-
cantly only when there is a corresponding abnormal increase
in the original time series, specifically at t = 11, 83. So, an
unnecessarily complex and immensely sensitive algorithm
might generate more than one change point if the original
series is fed into it, but such a danger can be largely avoided
by the use of ERR.

This smoothing property can best be described using the
fact that under the assumption of a homogeneous Poisson
process, the random variable nt has a Poisson distribution with
parameter λt. Consequently,

E ztð Þ ¼ E
nt
t

� �
¼ λt

t
¼ λ

which proves the unbiasedness of the ERR statistic, irrespec-
tive of the sample size. In view of the fact that it also serves as
the maximum likelihood estimate, this fact is particularly in-
teresting since there are occasions when these two cannot be
achieved simultaneously for small samples (for instance,
while estimating variance). Regarding smoothing and the re-
duction of variance, we can observe:

Var ztð Þ ¼ Var
nt
t

� �
¼ 1

t2
λt ¼ λ=t→0 as t→∞

Although the ERR statistic is endowed with nice smooth-
ing power, it cannot describe more than one series at the same
time. Thus to address the interesting issue of interaction be-
tween two possibly correlated series, the following ERRR
statistic is proposed, using similar ideas.

2.3 Empirical Recurrence Rates Ratio

Let X1 and X2 be independent observations from Poisson (λ1)
and Poisson (λ2) distributions, respectively. A well-known
method of testing the difference of two Poisson means is the
conditional test (Przyborowski and Wilenski [25]) and is re-
ferred to as the C-test. It is based on the fact that the sum S =
X1 + X2 follows a Poisson distribution with rate parameter,

Fig. 1 Simultaneous behavior of ERR and original time series
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λ1 + λ2, and the conditional distribution of X1 given S = s is
distributed as binomial (s,p12), where p12 = λ1/(λ1 + λ2) = ω12

with ω12 = λ1/λ2. Thus, for the C-test, testing H0 : λ1 = λ2 vs
Ha : λ1 ≠ λ2 is equivalent to testing H0 : ω12 = 1 vs Ha : ω12 ≠
1, which is also equivalent to testing H0 : p12 = 0.5 vs Ha :
p12 ≠ 0.5. Motivated by the simplicity of the C-test and the
smoothing power of the empirical recurrence rate (Ho [15,
16]), the following empirical recurrence rates ratio time series,
to be referred to as ERRR, is introduced, to measure the event
rates ratio between two processes: K and M.

First as before, we partition the observation period (0, T)
into N equidistant time intervals h, 2h, . . , lh, …Nh(=T) for a
given time step, h. The ERRR, RKM, l, at time t = lh is then
generated as follows:

RKM :l ¼ nKl
nKl þ nMl

for nKl þ nMl > 0;where

nKl ¼ Total number of events for the K series in 0; lhð Þ;
nMl ¼ Total number of events for the M series in 0; lhð Þ;
and l ¼ 1; 2; :::;N :

ð2Þ

If 0 is adopted as the time-origin, then we regard RKM, l as
the observation at time, t = lh, discarding the burn-in period
where nKl + nMl = 0. Also, if both of the targeted processes are
homogeneous Poisson processes, then at every time step, the
ERRR updates the MLE of pij, the binomial success probabil-
ities defined previously, which can be used to find the MLE of
ωij = λi/λj using the invariance property of the MLE. The
ERRRs are unconventionally created to be cumulative to off-
set the potential of creating a time series with a lot of detri-
mental but seasonal zero values through a discretization pro-
cess. It can accommodate the complexity of the data. For
instance, point processes that characterize small recurrence
rates or, in particular, exhibit seasonality with a lot of off-
season zero counts such as sand-dust storms and hurricane
data, are recorded as well. Numerous time series that attempt
to model rare events are frequently plagued with such annoy-
ing zeroes which pose considerable problems to researchers.
Apart from its inherent capability of generating pseudo data
over such barren periods of time, ERRR is endowed with
other nice properties that appeal to intuition. For instance,
the nature and strength of the two processes involved are cod-
ed into this statistic. While sheltered by the versatility provid-
ed by the time step parameter, data analysis with a counter-
intuitive time step should be supported by a rigorous sensitiv-
ity analysis.

2.4 ERRR Plots

Intuitively, every ERRRKM (= RKM) is simply the (absolute)
frequency of events fromK, normalized by the total number of
events from both groups, a relative frequency cumulated at

each time-point. Mathematically, ERRRKM = ERRK/(ERRK

+ ERRM). Therefore, any information accrued from compar-
ing any pair of ERR curves is reproduced and displayed by a
single ERRR time series plot (ERRR plot). SetM as the base-
line group for the pairwise comparison. RKM = 0.5 means that
there are same numbers of events for both the series up to that
time-point. If RKM < 0.5, there are more events fromM, while
RKM > 0.5 indicates that, so far, the K series is more frequent.
Therefore, a reference line at RKM = 0.5 is added in Fig. 2.
Deviation from this reference line in either direction indicates
departure from an ideal independence and raises suspicion that
the two series might be correlated.

For instance, with a pair of equal size ratio series defined as

K ¼ 1; 0; 0; 2; 4; 2; 2; 4; 2; 0; 0; 0; 0; 0; 0; 2; 4; 2; 2; 4; 2; 0; 0; 0; 0; 0; 0; 2; 4; 2; 2; 4; 2; 0; 0; :::
M ¼ 2; 4; 2; 1; 0; 0; 0; 0; 0; 2; 4; 2; 2; 4; 2; 0; 0; 0; 0; 0; 0; 2; 4; 2; 2; 4; 2; 0; 0; 0; 0; 0; 0; 2; 4; :::

and with a pair of different size ratio series defined as

K ¼ 1; 0; 0; 2; 4; 2; 2; 4; 2; 0; 0; 0; 0; 0; 0; 2; 4; 2; 2; 4; 2; 0; 0; 0; 0; 0; 0; 2; 4; 2; 2; 4; 2; 0; 0; :::
M ¼ 1; 2; 1; 1; 0; 0; 0; 0; 0; 1; 2; 1; 1; 2; 1; 0; 0; 0; 0; 0; 0; 1; 2; 1; 1; 2; 1; 0; 0; 0; 0; 0; 0; 1; 2; 1; 1; :::;

one has the first panel of the following graph.
It is expected that the ERRR series from two sequences that

are directly correlated should exhibit a significant and consis-
tent trend (either upwards or downwards), while the one from
two inversely related sequences should show a wavy pattern.
To check this, a pair of sequences counting the imaginary
number of events in 1 year can be created: one direct, given
by:

K ¼ n
M ¼ n−2

o
for n ¼ 1; 2; :::20

and one inverse, given by:

K ¼ 2; 3; 4; 3; 2; 0; 1; 0; 0; 0; 2; 3; 4; 3; 2; 0; 0; 1; 0; 0
M ¼ 0; 0; 1; 0; 0; 2; 3; 4; 3; 3; 0; 0; 0; 1; 0; 2; 3; 4; 3; 2:

The ERRR curves shown (Fig. 2) confirm the expected
patterns.

In addition to simply helping one understand the nature of
the dependence (if any), these curves can also be used profit-
ably to quantify the strength of the dependence through usual
quantities like the slope, namely, the steeper the slope, the
stronger the dependence.

3 Data

The term Btropical cyclone^ is generic and embraces all types
of closed atmospheric circulation that forms over a tropical or
subtropical ocean. If the maximum sustained wind speed ex-
ceeds 74 miles per hour, these storms are called hurricanes in
the Atlantic Ocean, typhoons in the Pacific, and cyclones else-
where . The Nat iona l Oceanic and Atmospher ic
Administration (NOAA) is a government organization under
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the United States Department of Commerce and their
Historical Hurricane Tracks webpage at http://coast.noaa.
gov/hurricanes/?redirect=301ocm# records most of the
recent storms that occur globally. Based on geographical
criteria, the water mass of the earth has been partitioned into
several basins such as West Atlantic, North Pacific, Gulf of
Mexico, Southern Indian, and Eastern Australian and data are
available on the speeds, dates, and duration of storms
originating in each of these basins. Additionally, based on
the strength of the storms judged by the maximum sustained
wind speeds (MSW), one has six major categories: and some
of the records date back to 1851. But the earlier records are
mostly based on eyewitness’s accounts and other less reliable
methods and, hence, after consultation with experts well
versed with the data collection method, 1923–2013 was
finalized as the observation period. Preliminary analyses
have been done on storms originating in the West Atlantic
basin, mainly because of its proximity to the US east coast
which has to face the wrath of these natural calamities almost

every year and often with grave consequences, but also
because of the fact that this basin is well studied by
oceanographers and climatologists and hence would render
one a chance to compare the findings to their beliefs. Similar
analyses can, of course, be done on other basins as well.

4 Data Analysis on West Atlantic Basin

Emanuel [6–8] believes that it is the category 3, 4, and 5
hurricanes that cause the most damage and so, entirely for
the sake of a simplified analysis, one may define these as the
Bstrong^ group of hurricanes. H2 and H1 constitute the
Bweak^ class of hurricanes and the BTropical^ category is
reserved for the final class. It may be found that over the
period under consideration, there has been 32 H5 storms, 84
H4 storms, 87 H3 storms, 93 H2 storms, 150 H1 storms, 271
tropical, and 24 subtropical storms. In this section, one uses
(1) to create the ERR series for each of the three major

Fig. 2 ERRR comparisons for the
artificially constructed series
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categories and agrees to follow the following convention:
while comparing two categories of hurricanes through
ERRR, say category i and category j (denoted by an i − j
population), the i population will serve as the numerator in (2).

It is worth noticing the views of Emanuel once again. From
a candid interview with the Discovery Channel (http://news.
discovery.com/earth/global-warming/does-climate-change-
mean-more-or-stronger-hurricanes-120907.htm), one knows
that he is of the opinion that with a continually warming
climate, it is increasingly difficult to start a devastating
hurricane due to a hike in saturation deficit which works
against its creation, but if it gets started somehow, it has the
potential to become more intense. Thus, the total number of
storms should decline globally, but the proportion of
hurricanes which are intense should rise. The gradual
decline in the number of strong hurricanes is confirmed by
the above ERR plot (Fig. 3), at least over a considerable range
of time and the conjecture of an increase in the proportion of
strong hurricanes in recent years is accepted by the above
ERRR curve (Fig. 3), especially on the strong-weak
population.

Interestingly enough, the three curves in both the dia-
grams seem to meet at roughly t = 47, which corresponds to
the year 1970 (= 1923 + 47). Global warming tightened its
grip at about the same time which brings to the fore the
troubling realization that perhaps changes in the hurricane
behavior pattern, at least over the West Atlantic, might be a
rueful consequence of this preventable scourge. Knutson
et al. [22] point out that sea surface temperatures (SST) in
regions where cyclones and hurricanes typically originate
from have increased by several tenths of a degree Celsius
over the past several decades. Although this variability
makes trend analyses complex, they conclude that substan-
tial proportions of the increased sea surface temperature

over the Atlantic and Pacific is due to greenhouse
warming. Others such as Ke [20] study the zonal asymme-
try of the Antarctic oscillations and finds that this measure
for the Western Hemisphere is directly correlated with the
number of hurricanes in the Atlantic. This has been done
through an examination of the main contributors for hurri-
cane formation such as vertical wind shear, convergence
and divergence conditions, and low-level atmospheric
pressure. Evan et al. [9] speculate that the increased rest-
lessness could in part be a consequence of increased dust
transport over the Tropical Atlantic.

4.1 Modeling ERR and ERRR Series for Strong West
Atlantic Hurricanes

The descriptive statistical analyses on both ERR and ERRR
generate encouraging results. So to understand whether such a
pattern will continue in the near future and also to make the
generated process inherit the rich structure of such established
domains such as time series, one may take recourse to fitting
efficient seasonal autoregressive integrated moving average
(SARIMA) models to both the ERR and ERRR series. A
detailed sensitivity analysis with respect to the time step h
did not generate alarming results and so, for the sake of sim-
plicity and also for generating a sufficiently large number of
data points, the time step can be fixed at h = 1 year. The ERR
(treated now as a time series et) modeling is described in detail
here, the analysis for ERRR can be carried out on a similar
vein.

To ensure reliable modeling results, one treats the first 10
ERR and ERRR observations as belonging to a burn-in peri-
od, when the series are expected to fluctuate widely. Also to
understand the predictive ability of the fitted model, one re-
serves the final 10 observations as a prediction set. The
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residual set is the training sample and these observations may
be used to search for a good model.

Established procedures for model selection, for instance,
the ones detailed in Shumway and Stoffer [29], have been

followed here. The initial autocorrelation function (ACF)
and partial autocorrelation function (PACF) graphs are shown
below (Fig. 4) which clearly show a steady cyclical pattern,
but a very slow decrease.

Fig. 4 Time series analysis results
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Then, to capture a possible seasonality pattern, one takes
the first order differenced series ∇et = et − et − 1 and plot the
corresponding ACF and PACF curves (Fig. 4):

Significant peaks can be seen at 1s, 2s, 3s, 4s, …, where
s = 5 (approximately) with relatively slow decay indicating the
need for seasonal differencing. The ACF and PACF curves for
the new series

∇ 5∇ et ¼ 1−B5
� �

1−Bð Þet
tend to show a strong peak at 1s and relatively smaller peaks at
2s, 3s, and 4s. So it appears that either

(i) The ACF is cutting off after lag 1s and the PACF is tailing
off in the seasonal lags.

(ii) The ACF is cutting off after lag 2s and the PACF is
tailing off at the seasonal lags.

(iii) They are both tailing off in the seasonal lags.

These suggest either (i) a seasonal moving average
(SMA) of order Q = 1, (ii) an SMA of order Q = 2, or (iii)
a seasonal autoregressive moving average (SARMA) of
order P = 2 or 3 (due to 2 or 3 significant peaks in the final
PACF) and Q = 1.

Next, to identify the non-seasonal parameters, one focuses
on the within season lags and it seems that either

(i) Both ACF and PACF are tailing off.
(ii) ACF and PACF are tailing off at lags 2 or 3.

These suggest either (i) p = q = 1 or (ii) p = 2 or 3, q = 2 or
3.

Narrowing down the search domain this way, one now
chooses the best from these competing Bnearby^ models ac-
cording to the minimumAIC criterion. The best parsimonious
model found was a seasonal autoregressive integrated moving
average (SARIMA) with these parameters: p = 2, d = 1, q = 1
and P = 2, D = 1, Q = 1, s = 5 with the AIC value of − 237.84.
Thus, the final model is the following SARIMA(2, 1, 1) × (2,
1, 1)5:

Φ2 B5
� �

ϕ Bð Þ∇ 1
5∇

1et ¼ Θ1 B5
� �

θ Bð Þwt ð3Þ

where φ,Φ2, θ, andΘ1 are polynomials of orders 1, 2, 1, and 1
respectively, B is the backward shift operator, and wt repre-
sents a purely random process. The parameter estimates and
the summary statistics are shown in Table 2.

Next, one subjects this model to the usual diagnostic tests
and the findings are detailed in the next few figures (Fig. 5).
The standardized residuals from the fit can be found to be well
within acceptable limits, ACF of the residuals are negligible,
and the Ljung-Box tests have significantly high p values
(close to 0.9), thereby failing to reject the independence hy-
pothesis of the residuals. The Q-Q plot obtained from these

residuals also seems to support the normality assumption on
the residuals.

Model (3) does quite well from a prediction point of view
as is evidenced by Fig. 6 above and so, one eventually pools
the training and prediction set together to form the observed
data set to be fed into this SARIMA model. Next, 10-year
forecasts are extracted and the findings are recorded in
Fig. 7. A constant and an upward trend is generally observed
in the forecasts for the ERR and the ERRR cases respectively,
which tend to support the hypothesis that if similar climatic
conditions prevail in the near future, the proportion of strong
Atlantic hurricanes will significantly go up, although their
actual number might not increase drastically.

In a wonderfully crafted review article, Knutson et al. [22]
reach similar conclusions and note that using existing model-
ing techniques and observations, the mean number of cyclone
frequency will either remain unaffected or will decrease due to
the greenhouse effect. The global decrease should range
somewhere between 6 and 34%. Following their argument,
one can attribute this phenomenon to the weakening of oce-
anic circulation, together with a decrease in the upward mass
flux accompanying deep convection and an increase in the
saturation deficit of the middle troposphere. We note that
ARMA models (or its several generalizations such as
ARIMA or SARIMA) suffer from stifling assumptions on
the residuals (such as their independently and identically
distributed-ness (Hamilton, [11]) or normality (Damsleth and
El-Shaarawi [4]), and thus, one may inquire about their appli-
cability to study bounded quantities like ERRRs. We note,
however, that in this specific hurricane instance, as evidenced
by the residual diagnostic plots (Fig. 5), the assumptions seem
to be satisfied. Any departure from these constraints, possibly
due to the boundedness of these variables, would have been
signaled by considerable deviations of the sample quantiles
from the theoretical ones in the Q-Q plot, or by significant
spikes in the autocorrelation function curve. One has to admit
that this might not be true in every situation, and to model
bounded variables from a general time series framework, one
may use transformations as proposed by Wallis [36] in an
economic context, or beta regression, proposed by Guolo
and Varin [10] using Gaussian copula.

Table 2 Parameter estimates and summary statistics

Call:

arima(x = ts3, order = c(2, 1, 1), seasonal = list(order = c(2, 1, 1),
period = 5))

Coefficients:

ar1 ar2 ma1 sar1 sar2 sma1

0.4986 0.3570 − 0.4908 − 0.0402 − 0.2587 − 0.9994
s.e. 0.1677 0.1325 0.1407 0.1314 0.1199 0.7565

σ2 estimated as 0.00165: Log likelihood = 125.92, aic = − 237.84
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The modeling exercise conducted here aimed to track the
evolution of the ERR and ERRR series in the immediate future.
Aided by insights from experts, the modeling and the forecasts
may be fine-tuned by including other climatic variables such as
sea temperature, oceanic currents, and atmospheric pressure.

Such an attempt would require SARIMA modeling with exog-
enous variables (SARIMAXmodels), along lines similar to Xie
et al. [37], and while possible in principle, we refrain from
treading that route immediately, since issues such as variable
selection, among others, could prove distracting to the central
theme of the present work.

5 Comparisons Between Atlantic and Pacific
Basins

Scholars are of the opinion that the West Atlantic basin is one
of the most well studied areas and it would be interesting to
explore the possibility of its interaction with other basins,
especially the East Pacific. Thus, as a final analysis, one pools
together all the different hurricane categories over each of the
Atlantic and Pacific basins and construct the following ERRR
series, based on annual data over the same period: 1923–2013:

RKM :l ¼ nKl
nKl þ nMl

forKl þ nMl > 0;where

nKl ¼ Total number of hurricanes in the Atlantic basin in 0; lhð Þ;
nMl ¼ Total number of hurricanes in the Pacific basin in 0; lhð Þ;

and l ¼ 1; 2;…;N :

The definition of ERRR has been so constructed that
it is extremely susceptible to identifying abrupt

Fig. 5 Model diagnostic plots

Fig. 6 ERR and ERRR modeling for strong West Atlantic hurricanes
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movements in the progression of both the processes un-
der consideration. Thus, it serves as a reliable tool to
capture the simultaneous dynamics, by locating the
change points for the two series together on a single
graph. Forecasts from an efficient model such as (3)
can describe the future interplay with a reasonable de-
gree of confidence. For instance, an abrupt increase in
the intensity pattern for the Pacific basin should neces-
sitate a downward trend in the ERRR series and, simi-
larly, an upward trend should result from an increased
activity in the Atlantic basin.

Figure 8 confirms this hypothesis. Modern statistical
literature on change point detection houses several com-
peting methodologies, each thriving on such assump-
tions as a possible retrospective or prospective analysis
(Ross [27]) or a parametric or distribution-free approach
(Ross [26], Pettitt [24]). In the present context of
handing discrete counts, a Poisson-based likelihood ratio
test was believed to be the most apt. With {Ni}
representing a sequence of independent Poisson vari-
ables with rates {λi}, i = 1, 2, …, c, the change point
detection under this framework boils down to choosing
one of the following:

H0 : λ1 ¼ λ2 ¼ ⋯ ¼ λc ¼ λ
H1 : λ1 ¼ λ2 ¼ ⋯ ¼ λk ¼ λ≠λkþ1 ¼ λkþ2 ¼ ⋯ ¼ λc ¼ λ

0
:

The null likelihood

L0 λð Þ ¼ ∏
c

i¼1

e−λλni

ni!

and the alternate likelihood

L1 λ;λ
0

� �
¼ ∏

k

i¼1

e−λλni

ni!
∏
c

i¼kþ1

e−λ
0
λ0ni

ni!

enables one to construct a likelihood ratio statistic

Lk ¼ −2log
L0 λ̂
� �

L1 λ̂; λ̂0
� �

where the hats represent the maximum likelihood estimates of
the rate parameters. The optimum change point position is

given by the value of k that maximizes Lk, say k̂, and the null
assumption is rejected if Lk̂ < C, where C is appropriately
chosen to satisfy the level condition. Information on the null
distribution of maxkLk can be obtained from Chen and Gupta
[3]. Generalized versions of these likelihood ratio based tests
may be implemented using the Bchangepoint^ package in R,
created by Killick and Eckley [21], where one may control the
type of change desired (mean, variance, both, etc.), the num-
ber of change points, the penalty function, etc.

Such routine parametric change point analysis (on the
statistical software R) indicates a change point at around
t = 24 for the Pacific and one at around t = 43 for the
Atlantic basin, both showing instances of increased activ-
ity thereafter. From the first panel, one observes that these
are extremely close to the peak and trough of the generated
ERRR series. At t = 24, the peak is clearly visible, while at
t = 43, the rapid rate of descent is somewhat arrested, giv-
ing the impression of a Bchange of inflection^ point. The
proximity of these peaks and troughs can be taken as a

Fig. 7 ERR and ERRR forecasts
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measure that quantifies the extent of the suspected inverse
relationship, with the strength being negatively correlated
to the period length. Finally, a general wavy pattern of the
ERRR series indicates that the two basins are inversely
related, the justification for which must be left to the able
hands of specialists. For instance, Knutson et al. [22] argue
that Atlantic Ocean SST has increased at a pace faster than
tropical mean SST over the last three decades, which is
coincident with the positive trend in the Atlantic power
dissipation index over this period. This differential
warming of the Atlantic can be affected by natural
multidecadal variability, as well as by aerosol forcing, but
not strongly by greenhouse gas forcing as various climate
models seem to suggest. If the relationship between
Atlantic power dissipation and this differential warming
is causal, then a substantial part of the increase in
Atlantic power dissipation since 1950 is likely due to fac-
tors other than greenhouse gas-induced warming. On the
other hand, the case for the importance of local SSTs
would be strengthened by observations of an increase in
power dissipation in other basins, in which local warming
in recent decades does not exceed the tropical mean
warming. Emanuel [8] finds a statistical correlation be-
tween low-frequency variability of power dissipation and
local SSTs for the northwest Pacific. But this correlation is
considerably weaker than for the Atlantic Ocean, and other
key measures of storm activity in the northwest Pacific,
such as the number of category 4 and 5 typhoons, do not
show a significant correlation with SST.

6 Conclusions

Formulation of theories to understand and quantify the nature
and strength of dependence between two stochastic processes
in general and time series, in particular, has attracted the at-
tention of researchers since quite some time. Methods exist in
the literature that often address this issue, but most are too
technical to be appraised by non-specialists in applied areas.
The present work endeavored to propose and popularize a
simple smoothing statistic termed as empirical recurrence
rates ratio (ERRR) which is endowed with properties that
appeal to intuition, but at the same time, preserves the neces-
sary statistical rigor.

In addition to resolving the fundamental question related to
the dependence strength, it can also simultaneously identify
the possible change points of the two series involved with
remarkable precision. In general, statistical methods differ
while analyzing discrete data from continuous ones: for in-
stance, the theory of Poisson count regression is different from
the standard normality based methods and modelers will have
to be conscious of the nature of the underlying data structure.
ERRR, however, is versatile enough to handle both types at

Fig. 8 Peaks and troughs of ERRR series help to locate possible change
points
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the same time owing to properties such as under indepen-
dence, the quantity

N1 tð Þ
N1 tð Þ þ N 2 tð Þ

follows a beta distribution if the individual components follow
gamma laws. Due to properties like this, one can effortlessly
extend the analyses carried out in this work to a dependence
study context where the quantities being measured are not
discrete like counts, but are continuous such as volume or area
affected. Another way to claim the novelty of this approach
could be by arguing that there exist a close connection be-
tween a time series and a point process and each area can learn
significantly from the other. A relation such as this has been
sparsely conjectured in literature: Brillinger [2] for instance,
tries to find unifying characteristics embracing time series,
point processes, marked point processes and hybrids through
the introduction of a Bstationary increment process^ and ex-
amination of second- and third-order autocovariances where
he talks about converting a linear point process to a binary
time series, but refrains from forecasts and inferences.
Henschel et al. [13] make a casual remark about converting
a point process to a time series but does not explicitly show
how. As is thus evidenced, although there are separate tools
designed for the specific tasks of forming bridges between
time series and point processes, detecting change points, or
handling count data and non-count data separately, to the best
of the authors’ knowledge, there exists no statistic that com-
bines all of these properties and remains easily amenable.
ERR and ERRR are bright exceptions in this regard.

One would also like to emphasize the fact that ERR would
be an invaluable weapon in every modeler’s arsenal, especial-
ly while dealing with events which are sparse or rare or both.
Figure 5 depicts a slowly decaying ACF curve, a classic sig-
nature of a long memory process and interested researchers
might explore the possibility of fitting fractionally differenced
time series models in this situation. Here, following the prin-
ciple of parsimony, the authors have refrained from creating a
model which is unnecessarily complex. It goes without saying
that a relentless search for a better model would invariably
bring in more advanced technical ideas, but it is our firm
conviction that as long as the underlying structure remains
ERR or ERRR, better forecasts can be achieved without pay-
ing a hefty price in terms of model complexity.

The purpose of the present work was twofold: On one hand
and on a lesser extent, one attempted to address the issue of a
suspected cause-effect relationship between global warming
and hurricane intensity from a rigorous statistical perspec-
tive—the absence of which created a void too wide to ignore.
On the other hand and to a much larger extent, one intended to
formulate and popularize a smoothing statistic which should
be able to understand the nature (both direct and inverse) and

extent (strong or weak) of the dependence between two time
series and which, at the same time, should have a simple
construction and should preferably provide useful insights in-
to the dynamics of the process: identify change points, for
instance. ERRR provided a nice solution to both and the au-
thors are confident that owing to its simplicity and strong
intuitive properties, it should find wide applications in applied
areas such as geology, volcanology, medical science, and me-
teorology. Encouraging evidence of its growing popularity
may be garnered from Ho and Bhaduri [19] and Bhaduri and
Zhan [1]. Once the acceptability of the proposed simple meth-
od is established, one can extend these to more complex
Bayesian hierarchical spatio-temporal or co-regional models
along lines described by Vanem [35], for instance.

Modern literature is thriving on new and evolving tech-
niques and each day, one is bombarded with batteries of com-
plex statistical tests and estimates and it is easy to lose sight of
the fact that simplicity is a virtue one can never afford to
overlook, especially if it can provide results that are in con-
siderable agreement with the ones generated by established
methods. It is believed that both ERR and ERRR are excellent
examples in this regard.
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