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Abstract
In order to improve the forecasting accuracy of atmospheric pollutant concentration, a prediction model of atmospheric
PM2.5 and nitrogen dioxide (NO2) concentration based on support vector regression (SVR) is established. Quantum-behaved
particle swarm optimization (QPSO) algorithm is used to select the optimal parameters influencing the performance of
SVR. And in order to improve the problem that the fixed SVR model is difficult to adapt to the highly nonlinear process,
a simple online SVR based on re-modeling method is proposed instead of the fixed one. According to hourly PM2.5 and
NO2 concentrations and meteorological conditions from May 2014 to April 2015 in Wanliu Monitoring Station of Beijing
in China, the experiment is carried out based on the data of 3 months. Meanwhile, PM2.5 concentration is predicted by
three different prediction methods, including the recursive prediction method, direct prediction method, and online direct
prediction method. The results show that the online direct prediction method is the most accurate in the three prediction
methods. In addition, compared with original particle swarm optimization (PSO) algorithm, QPSO algorithm is tested
more efficiently for the improvement of global search ability and robustness during the procedure of parameter selection.
Moreover, the hybrid QPSO-SVR model proposed in this paper has higher prediction accuracy and less computational time
compared with the PSO-SVR model, genetic algorithm (GA)-SVR model, and grid search (GS)-SVR model, which indicates
reliability and effectiveness of the QPSO-SVR model in prediction of these two pollutant concentrations.
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Abbreviations
AI Artificial intelligence
ARMA Autoregressive moving average
ANN Artificial neural network
SVM Support vector machine
SVR Support vector regression
PLS Partial least squares

PSO Particle swarm optimization
QPSO Quantum-behaved particle swarm optimization
GA Genetic algorithm
GS Grid search
PM Particulate matter
NO2 Nitrogen dioxide
CO Carbon monoxide
CO2 Carbon dioxide
SO2 Sulfur dioxide
CH4 Methane
NOx Nitrogen oxides
O3 Ozone

1 Introduction

Recently, with the rapid development of urbanization and
industrialization in China, a large amount of harmful sub-
stances have been released into the atmosphere, and more
and more attention has been paid on the transformation of
the air pollutants data, such as carbon monoxide (CO), car-
bon dioxide (CO2), sulfur dioxide (SO2), methane (CH4),
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nitrogen oxides (NOx), ozone (O3), and particulates (PM2.5

and PM10). These harmful substances affect the urban air
quality and pose a great threat to human health [24, 47].
Many regions have suffered from serious air pollution, espe-
cially Beijing, Tianjin, Hebei, and Shandong province in
China [51, 56].

PM2.5 and nitrogen dioxide (NO2), as dominant pollu-
tants, have attracted wide attention [13, 15]. PM2.5 refers
to the particulate matter whose aerodynamic diameter is 2.5
μm or less. It is made of toxic and hazardous substances
with high activity; it has the character of long residence
time and far transportation distance in the atmosphere [43].
The sources of PM2.5 include fuel combustion from automo-
biles, power plants, wood burning, industrial processes, and
vehicles such as buses and trucks. It is also formed in the
atmosphere when gases such as SO2 and NOx and volatile
organic compounds are transformed in the air by chemi-
cal reactions. NO2 is a poisonous gas with reddish brown
and pungent odor at room temperature. Its participation
in the photochemical reaction catalyzes ozone production,
thus leads to photochemical smog pollution. NO2 is mainly
derived from the fossil fuel and biomass burning, soil emis-
sions, and lightning. Meanwhile, the contribution of anthro-
pogenic sources accounts for a larger proportion, including
motor vehicle emissions, power plants, and other indus-
trial sources [11, 27]. Numerous studies [8, 9, 40, 55] have
shown that exposure to high levels of NO2 and PM2.5 leads
to breathing difficulty, lung and cardiovascular diseases,
acid deposition, and eco-environmental system damages. To
provide an early warning for air quality changes and protect
human health and environment, an effective and accurate
model for the short- and long-term forecasts of PM2.5 and
NO2 concentration is more necessary [48, 53, 54].

Forecasting methods can be divided into three main cate-
gories, i.e., numerical methods, statistical methods, and arti-
ficial intelligence (AI)-based methods [21]. A large number
of numerical models [20, 44, 50], such as box model, Gaus-
sian model, Lagrangian model, and Euler model, have been
used for air pollutant concentration forecast. These mod-
els can simulate the physical and chemical process in the
atmosphere and they are also called atmospheric dispersion
models. However, such models are restricted in many opera-
tional conditions because they require accurate and detailed
data, such as meteorology, terrain geomorphology, pollution
sources, and other data [6, 37]. For the statistical meth-
ods, multiple regression model [13, 45], grey model [34],
Kalman filter techniques [38], and autoregressive moving
average (ARMA) model [25] have been widely used to fore-
cast air pollutant levels; such models can be generalized
and are consistent with actual observations. However, due
to the existence of strong nonlinearity problem of air pol-
lutant concentration, the predicting accuracy is difficult to
improve by using the abovementioned methods [32].

In recent decades, the AI-based methods have aroused
public interest in air pollutant concentration forecasting.
Among them, artificial neural network (ANN) and support
vector machine (SVM) are more popular. ANN is good at
solving nonlinear problem and is considered as a promising
forecasting tool [4, 16, 41]. Moustris et al. [29] presented
an ANN to forecast the maximum daily value of pollutants
index in Athens and Greece. The results indicated that ANN
could give reliable forecast for the air quality. Gennaro et al.
[10] proposed an ANN to forecast daily PM10 concentration
in regional site and urban site. The results showed that ANN
could be a powerful tool to obtain real-time information
on air quality status. Feng et al. [15] introduced a novel
hybrid model combining air mass trajectory analysis and
wavelet transformation to improve the ANN accuracy for
PM2.5 concentration forecast. The mass trajectory was
applied to recognize different corridors, and the wavelet
transformation was used to deal with the fluctuation of
PM2.5 concentration. Nevertheless, ANN suffers from a
number of weakness, such as overfitting problem, local
minimal problem, network construction problem, and the
need of a large number of data for network training. So
there are more difficulties when ANN is applied to some
forecasting problems [2, 41].

SVM has been proposed on the basis of statistical learn-
ing approach and it overcomes the shortcomings of ANN
model [39]. It employs the structural risk minimization prin-
ciple to obtain the global optimum, instead of empirical risk
minimization principle. Originally, SVM was applied for
pattern classification. With the introduction of ε-insensitive
loss function, SVM was gradually developed to solve the
nonlinear regression estimation and time series prediction
problems [17, 46], namely support vector regression (SVR).
Ortiz-Garcı́a et al. [32] established SVR model to fore-
cast hourly O3 concentration in Madrid urban area, and the
model parameter was optimized by an improved grid search
method. The findings showed that the SVR model is supe-
rior to multi-layer perceptron. Yeganeh et al. [49] used a
hybrid model based on partial least squares (PLS) and SVM
to forecast hourly and daily CO concentration. The results
indicated that this hybrid model performed faster prediction
and more accurate ability. Moazami et al. [28] applied SVR
model to predict the carbon monoxide (CO) concentrations
of the next day in Tehran metropolitan; the results showed
that the SVR has less uncertainty in CO prediction than
adaptive neuro-fuzzy inference system (ANFIS) and ANN
models.

However, some shortcomings still exit in these studies.
On one hand, the original time series of air pollutant
concentration is highly nonlinear and time-varying. The
fixed SVR model is difficult to adapt to this feature, while
the online SVR model can update model dynamically;
therefore, the online SVR model based on re-modeling
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method is used to predict air pollutant concentration in
this study. On the other hand, SVR model performance
is greatly affected by three parameters (penalty factor C,
kernel parameter σ , and insensitive coefficient ε). The
traditional methods, such as grid search, cross validation,
and gradient descend, exist some limitations due to
low calculation efficiency and poor accuracy [2, 19].
Therefore, it is necessary to overcome these shortcomings.
Heuristic algorithm is a kind of local optimization algorithm
based on intuition or experience; it is applied in many
fields, such as the optimization of neural network [30],
the optimization of scheduling problem [35, 36], and
so on. While for the parameter selection, the heuristic
algorithms have also shown great superiority. Several
heuristic algorithms have been applied to select parameters,
such as genetic algorithm [14], immune algorithm [26], and
simulated annealing algorithm [33]. However, compared
with particle swarm optimization (PSO) algorithm, these
methods perform slow search speed and poor accuracy
in multi-dimensional optimization problems [5, 12]. PSO
algorithm was introduced by Kennedy and Eberhart [22];
it is equipped with the mechanism of memory and has a
simple structure. Therefore, it is more suitable to select the
SVR parameters [12, 52].

In order to prevent premature convergence and local
minimum of the standard PSO algorithm, a quantum-
behaved PSO algorithm (QPSO) is applied, and a hybrid
QPSO-SVR model is established to forecast PM2.5 and
NO2 concentration. At the same time, in order to select
the optimal prediction method, the recursive multi-step
prediction, direct multi-step prediction, and online direct
multi-step prediction methods are compared to predict
PM2.5 concentration in three selected months.

The rest of this paper is organized as follows: Section 2
describes the preliminary knowledge of mathematics,
including SVR method, QPSO algorithm, and multi-step
prediction method. Section 3 shows the data required for the
experiment, and the experiment results for PM2.5 and NO2

concentration prediction. Finally, conclusions are given in
Section 4.

2 Preliminary Knowledge of Mathematics
Algorithm andModel

2.1 Support Vector RegressionModel

Support vector machine (SVM) was developed on the basis
of statistical learning [1]. In 1992, Boser, Guyon, and
Vapnik proposed the optimal boundary learning theory in
the conference paper about computational learning for the
first time, which was also the initial form of SVM. In 1995,
Vapnik proposed a SVM learning algorithm completely; it

had outstanding advantages in theory and it realized the
nonlinear mapping of the high-dimensional space by kernel
function, and it was used to solve nonlinear classification
and regression estimation problems.

In conventional ε-support vector regression (ε-SVR)
algorithm, the basic idea is to map the input vector
into a high-dimensional feature space via a nonlinear
mapping function. The structure risk minimization principle
is applied to construct the optimal decision function in
the feature space so that the relationship between the
input and the output is approximated. Given the data set
{(xi , yi), i = 1, 2, ..., l} (xi is the input vector, yi is the
desired value, l is the number of samples), the regression
estimation can be performed by the following formula:

f (x) = ωT φ(x) + b (1)

where ω and b are the coefficients to be adjusted, and
φ(x) is a mapping function of the input vector in the high-
dimensional space. These can be estimated by minimizing
the structure risk function described as follows:

R(f ) = 1

2
‖ω‖2 + C

l∑

i=1

Lε(yi, f (x)) (2)

where 1
2‖ω‖2 is used as a measurement of function

smoothness, and C is a regularized constant determining
the trade-off between the model complexity and promotion
ability. The ε-insensitive loss function is denoted by Lε and
is described as the following:

Lε(yi, f (xi )) =
{

0 |yi − f (xi )| < ε,

|yi − f (xi )| − ε |yi − f (xi )| ≥ ε
(3)

where y and f (x) are the observation and predictive value
respectively. This function is utilized to panelize the training
error between y and f (x). The above problem to find ω

and b can be expressed in the form of convex quadratic
programming, which can be described as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
ω,b

( 1
2 ||ω||2 + C

l∑
i=1

(ξi + ξ∗
i )

s.t .

⎧
⎨

⎩

yi − ωφ(x) − b ≤ ε + ξi i = 1, 2, · · · , l

−yi + ωφ(x) + b ≤ ε + ξ∗
i i = 1, 2, · · · , l

ξi ≥ 0, ξ∗
i ≥ 0 i = 1, 2, · · · , l

(4)

where ε defines the error requirement of regression
function, which determines the number of support vectors
and guarantees the sparseness of the solution. The slack
variables ξi, ξ

∗
i are used to control the upper and lower

bounds of the output.
In order to solve the above quadratic programming

problem, the Lagrange function is introduced. In this case,
the dual form of optimization problem is described as
follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max
α,α∗ [− 1

2

l∑
i=1

l∑
j=1

(αi − α∗
i )(αj − α∗

j )K(xi , xj ) −
l∑

i=1
(αi + α∗

i )ε +
l∑

i=1
(αi, α

∗
i )yi]

s.t .

⎧
⎪⎪⎨

⎪⎪⎩

l∑
i=1

(αi − α∗
i ) = 0

0 ≤ αi ≤ C

0 ≤ α∗
i ≤ C

(5)

where αi and α∗
i are the Lagrange multipliers. The function

K(xi , xj ) = φ(xi )φ(xj ) is the kernel matrix and can be
replaced by any function satisfying the Mercer’s condition.
A common election for this kernel function is the radial
basis function (RBF):

K(xi , xj ) = exp

(
−‖xi − xj‖2

σ 2

)
(6)

where σ is the width of RBF; it reflects the degree of
correlation between support vectors. The impact of support
vector is too strong to achieve sufficient accuracy if σ is too
large; in contrast, the support vector is relatively loose if σ

is too small, and the model is relatively complex.
By solving the optimization problem described above,

the coefficients of Eq. (1) can be found as the following:

ω∗ =
l∑

i=1

(αi − α∗
i )φ(xi ) (7)

b∗ = 1

Nnsv

⎧
⎨

⎩
∑

0<αi<C

[yi −
∑

xi∈SV

(αi −α∗
i )K(xi , xj )− ε]

+
∑

0<αi<C

[yi −
∑

xj ∈SV

(αj − α∗
j )K(xi , xj ) + ε]

⎫
⎬

⎭ (8)

where Nnsv is the number of normal support vectors, and
SV is the support vector. The following equation is the
regression function:

f (x) = ω∗φ(x) + b∗ =
l∑

i=1

(αi − α∗
i )φ(xi )φ(x) + b∗

=
l∑

i=1

(αi − α∗
i )K(xi , x) + b∗ (9)

The fixed ε-SVR takes the existing sample data to build
the model and then predicts the unknown value based on
the established fixed model. While, for the highly nonlinear
and time-varying data, it is difficult for fixed SVR model to
adapt to such characteristics, and this leads to the decrease
of prediction accuracy. Therefore, an online SVR model
based on re-modeling method is proposed to overcome
this shortcoming. The main idea of this approach is to

re-establish the SVR model based on the online updated
time series. When a new sample arrives, it is added to
the previous training set and then a new SVR model is
obtained, and this new model is used for the next forecast.
The single forecasting process of the fixed SVR model and
the proposed online SVR model are shown in Fig. 1.

As mentioned above, the SVR parameters (C, σ , and ε)
affect the performance of the model. Hence, it is essential
to select appropriate parameter, and a quantum-behaved
particle swarm optimization algorithm is utilized to find the
proper SVR parameters.

2.2 Particle SwarmOptimization

2.2.1 The Original Particle Swarm Optimization

PSO [23] is a kind of stochastic optimization algorithm
on the basis of population intelligence. It features a
feasible and simple structure without gradient information.
In continuous function optimization problems especially,
it shows advantage in performance, such as the speed of
convergence, computational time, and so on. Hence, it has
become a hot research algorithm in the field of intelligent
optimization. The basic principle is described below.

A swarm consists of m particle flies with a certain
speed in a D-dimensional search space, and each particle
represents a bird in the search space. For the problem to
be solved, a potential solution is determined by a particle,
and each particle has a velocity that determines the distance
and direction of its flight. Moreover, all particles have a
fitness value determined by the optimized function. In the
process of flight, the particles will be adjusted dynamically
by their own and group flight experience. After several
iterations, the optimal solution is obtained. In each iteration,
the particle updates itself by tracking two “extremes,”
one is the optimal solution found by itself, called the
individual extremum, another is the optimal solution found
by the whole population, called the global extremum. Their
velocity and position are updated according to the following
equations.

V(i+1) = ω·Vi+c1·r1·(pBesti −Xi )+c2·r2·(gBest−Xi ) (10)

Xi+1 = Xi + V(i+1) (11)
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Fig. 1 The single forecasting
process of the fixed SVR model
and the proposed online SVR
model

where ω is the inertia weight; c1 and c2 are the two positive
constants, called cognitive learning rate and social learning
rate respectively; r1 and r2 are random numbers in the
range [0,1]; Xi = (xi1, xi2, · · · , xiD) represents the ith
particle; pBesti = (pBesti1 , pBesti2 , · · · , pBestiD ) represents
the best previous position of the ith particle; the gBest

represents the best particle among all the particles in the
population; Vi = (vi1, vi2, · · · , viD) represents the velocity
for the ith particle, and the velocities are confined within
[Vmin,Vmax]D ; if Vi exceeds the threshold Vmin or Vmax ,
it is set equal to the corresponding threshold.

2.2.2 Quantum-Behaved Particle Swarm Optimization

The main disadvantage of PSO is that global convergence
cannot be guaranteed [31]. To deal with this problem, QPSO
was developed and reported by [42].

In traditional PSO algorithm, the dynamic behavior of
the particle is widely divergent due to that the exact values
of V and X cannot be determined simultaneously. While
in QPSO algorithm, the state of a particle is determined
by wave function ψ(X,t) instead of velocity and position. It
is only necessary to learn the probability that the particles
will appear at position X with probability density function
‖ψ(X,t)‖2 , the form of which depends on the potential field
that the particles lie in. Thus, the particles can appear at any
point of space with a certain probability and the whole space
can be searched without diverging to infinity. The particles
move according to the following iteration equations:

Xt+1 =
{
Pi − β(mBest − Xt ) ln(1/u) if k ≥ 0.5
Pi + β(mBest − Xt ) ln(1/u) if k < 0.5

(12)

where,

Pi = ϕ · pBesti + (1 − ϕ) · gBesti (13)

mBest = 1

N

N∑

i=1

pBesti (14)

u, k, and ϕ are random numbers in the range of [0,1]
respectively; mBest is the mean best position defined as
the mean of all the best positions of the population; β,
called contraction-expansion coefficient, can be tuned to
control the convergence speed of the algorithm and it is only
parameter in QPSO algorithm.

QPSO has already been applied in various optimization
problems with excellent results [3, 7]. Therefore, QPSO
is used to optimize the parameters of SVR, and the
optimized SVR model is applied to predict air pollutant
concentrations.

2.3 QPSO for Parameter Determination of the SVR
Model

As it has been demonstrated above, QPSO algorithm is
used to select the penalty factor C, kernel parameter σ , and
insensitive coefficient ε in the SVR model, and then use
the optimized SVR model to forecast the PM2.5 and NO2

concentrations. The flowchart of the QPSO algorithm for
the three-parameter selection in the SVR model is shown
in Fig. 2 and the procedures of the QPSO-SVR model are
presented as follows:

Step 1: Initializing the QPSO parameter. The number of
particles is 10, the maximum iteration number is
30, and the search ranges of C, σ , and ε are
[0.1,100], [0.1,100], and [0.01,10] respectively.
Each particle’s position is determined by the
three-dimensional parameters, and the particle
swarm position is randomly initialized according
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Fig. 2 The flowchart of
QPSO-SVR model

to the initial range of given variables. Contraction-
expansion coefficient β is set to the following
linear decreasing form:

β = (1.0 − 0.5)(T − t)/T + 0.5 (15)

where T is the maximum iteration number and t is
the current iteration number.

Step 2: Calculating the current fitness of all particles.
The fitness value for each particle’s position is
determined by the fivefold cross validation error.
In this study, mean square error (MSE) is utilized
as cross-validation error, which is defined as
follows:

MSE = 1

n

n∑

i=1

(Yi − Y ∗
i )

2 (16)

where Yi is the measured value, Y ∗
i is the predicted

value, and n is the number of the data points.
Step 3: Choosing the individual history optimal position

and the global optimal position. The current
position of each particle is initialized to the

individual historical optimal position, and the posi-
tion with the smallest fitness value among all the
particles is chosen as the global optimal position.

Step 4: Updating the position of the particles. First, calcu-
lating the average position of the particles accord-
ing to Eq. (14), then calculating random position
for each particle according to Eq. (13); finally, the
position of the particles is updated according to
Eq. (12).

Step 5: The fitness value of the updated particle is
recalculated and compared with the fitness value
of the previous iteration. If it is better, the position
of the particle is updated to the current position of
the particle.

Step 6: The current global optimal position and fitness
value of the population are calculated and com-
pared with the fitness value of the global optimal
position of the previous iteration. If it is better,
the global optimal position of the population is
updated to the current global optimal position.

Step 7: Checking the termination criterion. Optimal
parameters are determined if the termination crite-
rion is satisfied. Otherwise, return to step 2.
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2.4 Multi-step Ahead Forecast Method

Multi-step ahead forecast can be described as an estimation
of future values in the case of the given previous
observations. There are several strategies for multi-period
forecast, such as recursive strategy, direct strategy, MIMO
strategy, and so on [18]. Therefore, the multi-step ahead
forecast methods based on the recursive strategy and the
direct strategy are compared to select optimal prediction
method. The main idea of recursive strategy is that M

samples are trained to obtain regression model firstly.
Secondly, a single-step forecast can be determined using
the established regression models. Finally, the following
forecasting steps are calculated iteratively using the single-
step predicted values as a historical time series for the
subsequent point. And the estimation of the H next values
is defined as Eq. (17), while the direct strategy presents
an easily understandable result when forecasting H steps
ahead. And the estimation of the H next values can be
obtained by Eq. (18).

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ŷ(t + 1) = f (y(t), y(t − 1), · · · , y(t − n + 1))

ŷ(t + 2) = f (ŷ(t + 1), y(t), · · · , y(t − n + 2))
...
ŷ(t + H) = f (ŷ(t + H − 1), ŷ(t + H − 2), · · · , ŷ(t), y(t − 1), · · · , y(t − n + H))

(17)

{
ŷ(t + H) = f (y(t), y(t − 1), y(t − 2), · · · , y(t − n + 1)) (18)

where n is the maximum embedding order, y is the
observed value, ŷ is the predicted value, and f represents
the established model. And H = 1, 2, ..., M , M is the
maximum horizon of prediction.

By the above equations, the H step prediction results can
be obtained. When the value of H is large, with the increase
of the prediction step, it may appear that all the inputs
are the predicted values, which may reduce the forecasting
accuracy. In this study, in order to avoid error accumulation
and computational complexity, the values of H and n are set
to 4 and 1, respectively. Therefore, the following recursive
equation and direct equation are obtained respectively:
⎧
⎪⎪⎨

⎪⎪⎩

ŷ(t + 1) = f (y(t),P(t))

ŷ(t + 2) = f (ŷ(t + 1),P(t + 1))

ŷ(t + 3) = f (ŷ(t + 2),P(t + 2))

ŷ(t + 4) = f (ŷ(t + 3),P(t + 3))

(19)

{
ŷ(t + 4) = f (y(t),P(t)) (20)

where y(t) is the concentration of air pollutant to be
predicted at time t . P(t) represents the value of the auxiliary
variables at time t . And in the experiment, it is assumed
that the values of all the auxiliary variables, which will be
described in Section 3.1, can be known 4 hours in advance.

3 Simulation Results and Discussions

3.1 Original Dataset

Beijing, as the capital of China, has built 35 air
quality monitoring sites so far, among which Wanliu
monitoring site located in Haidian District of Beijing is
an environmental assessment point, and it is close to the

city center. So the evaluation of its air quality has certain
representation for the overall air quality of Beijing. This
is why Wanliu monitoring site is selected as the object
of this experiment. According to the dataset which was
collected in the Urban Air project [57–59], the available
air quality dataset measured at the Wanliu Monitoring
Station in May 2014 to April 2015 is selected as the
original dataset. The selected dataset includes five major
air pollutants, i.e., PM2.5, NO2, CO, O3, and SO2, and six
meteorological parameters, i.e., weather (W), temperature
(T), pressure (P), relative humidity (RH), wind speed (WS),
and wind direction (WD), which were hourly measured at
the Wanliu Monitoring Station. The weather are described
by 17 different values and the wind direction is represented
by 10 different situations, as shown in Tables 1 and 2,
respectively. All input variables in the models are shown
in Table 3. And three kinds of prediction methods are
used to forecast PM2.5 and NO2 concentration for 4
hours ahead: (1) multi-step prediction based on recursive
strategy (recursive forecast): the pollutant concentration are
predicted according to Eq. (19). (2) Multi-step prediction
based on direct strategy (direct forecast): the value of all
input variables at time t is used to directly forecast the
pollutant concentration at time (t+4). (3) Online multi-step
prediction based on direct strategy (online direct forecast):
the regression model is updated dynamically in the process
of direct multi-step prediction. While for the first two
methods, they use a fixed model in the forecasting process.

Because meteorological conditions have great impact on
atmospheric pollutant concentrations, and Beijing is a city
with four distinct seasons, in order to assess the effect of
seasonal variations on model performance, the recorded
levels of PM2.5 and NO2 in July 2014, November 2014, and
January 2015 are selected as original samples. The number
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Table 1 Different weather
conditions are represented by
17 different values

0 1 2 3 4 5

Sunny Cloudy Overcast Rainy Sprinkle Moderate rain

6 7 8 9 10 11

Heaver rain Rain storm Thunder storm Freezing rain Snowy Light snow

12 13 14 15 16

Moderate snow Heavy snow Foggy Sand storm Dusty

of valid data in those months were 688 (July 3, 2014, 00:00–
July 31, 2014, 15:00), 720 (November 1, 2014, 00:00–
November 30, 2014, 23:00), and 720 (January 1, 2015,
00:00–January 30, 2015, 23:00). In the experiments, the first
70% of the data is selected as training set, and the remaining
data is used as testing set. At the same time, the fivefold
cross-validation method is adopted to obtain the optimal
prediction model in the experiments. And its main idea is
that the previous 70% training data are divided into five
equally sized and mutually complementary subsets firstly,
and then the data from the four subsets are trained to obtain
a model and the remaining subsets are tested to evaluate the
obtained model; this process is repeated for the five possible
choices. Finally, the model with the smallest error in five
experiments is selected as the optimal model, and then the
previously divided 30% test data is used to evaluate this
optimal model. In the experiments, all the algorithms were
coded in matlab and C++ language and their code was run
on an Intel(R) Core(TM) i5-4210U, 1.70GHZ PC with 4GB
of RAM.

In order to eliminate the influence of different dimension
and unit, the input and output data of samples are
normalized respectively in the data process. The formula is
as follows:

Xnorm = X − Xmin

Xmax − Xmin

(21)

The formula normalizes the original data into the range of
[0, 1], where Xnorm is the normalized data, X is the original
data, and Xmax and Xmin are the maximum and minimum
values in the original data set respectively.

3.2 Evaluation of theModel Performance

The test results of the QPSO-SVR model are analyzed
quantitatively based on mean absolute error (MAE), root
mean square error (RMSE), and coefficient of determination

(R2) in this study. The three evaluation functions are defined
as follows:

MAE = 1

n

n∑

i=1

∣∣Yi − Y ∗
i

∣∣ (22)

RMSE =
√√√√1

n

n∑

i=1

(Yi − Y ∗
i )2 (23)

R2 = 1 −

n∑
i=1

(Yi − Y ∗
i )2

n∑
i=1

(Yi − Ȳi )
2

(24)

where Yi is the measured concentration level, Y ∗
i is the

forecast value, Y i is the average of the measured value, and
n is the number of the data points.

In MAE, the deviation is absolute; it can reflect the actual
situation better for prediction error. RMSE is most useful
for large error due to the existence of relatively high weight
for large error. The better performance is always given by
smaller MAE and RMSE and the better fitting result is
always described by the value of R2 which is close to 1.

3.3 PM2.5 Concentration Forecasting Results

In the experiments, the QPSO-SVR model proposed in this
paper is used to select the optimal prediction method among
three prediction methods, and then this optimal prediction
method is applied to compare the performance of different
optimization algorithms for SVR parameter selection.

Figure 3 shows the original time series of hourly PM2.5

concentrations in July 2014, November 2014, and January
2015. It can be observed that the highest concentrations of
PM2.5 are 262μg/m3, 435μg/m3, and 482μg/m3 in the
3 months respectively, and PM2.5 concentration increased
significantly in late November; this is mainly due to the
combustion of coal which produces a large amount of
pollutants. In addition, meteorological conditions affect

Table 2 Different wind
directions are represented by
10 different values

0 1 2 3 4 9 13 14 23 24

No East West South North Unstable Southeast Northeast Southwest Northwest
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Table 3 All input variables for the models

Input variables Name Symbol Unit

Basic value PM2.5 ρ(PM0
2.5) μg/m3

CO ρ(CO0) mg/m3

O3 ρ(O0
3 ) μg/m3

SO2 ρ(SO0
2 ) μg/m3

NO2 ρ(NO0
2 ) μg/m3

Meteorological parameters Weather W –

Temperature T oC

Pressure P hPa

Relative humidity H %

Wind speed WS m/s

Wind direction WD –

the diffusion of atmospheric pollutants. Therefore, it is
necessary to analyze and predict the PM2.5 concentration.

In order to select the best prediction method, three
prediction methods were tested based on the QPSO-SVR
model. Figure 4 shows results of the three prediction
methods based on QPSO-SVR model for the prediction of

PM2.5 concentration in July 2014, November 2014, and
January 2015. It is observed that, for the recursive prediction
method, the prediction result is the worst one in the selected
months. The reason is the cumulative effect of errors in the
recursive strategy, while the other two methods have little
difference in the prediction result. However, it still can be
seen that the online direct forecast method is slightly better
than the result of the direct prediction method. This can
be seen from Table 4; both MAE and RMSE produced by
the online direct prediction method are smaller than those
created by the recursive prediction and direct prediction
methods in the selected months. Hence, it can be concluded
that the online direct prediction method is superior to the
other two methods. Therefore, the online direct prediction
method is selected to test the prediction performance of
several models.

Figures 5, 6 and 7 present the prediction results of PM2.5

concentration based on the QPSO-SVR model and the PSO-
SVR model in the selected months, respectively, which
include the fitting curve of the two models in the test phase
and the corresponding absolute error. It can be seen from
Fig. 5 that there are many deviation points in the prediction

Fig. 3 The original time series of hourly PM2.5 concentrations a July 2014, b November 2014, c January 2015
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Fig. 4 The results of the three
prediction methods based on
QPSO-SVR model for the
prediction of PM2.5
concentrations. a July 2014. b
November 2014. c January 2015
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Table 4 The comparison of
three prediction methods for
PM2.5 concentration prediction
based on the QPSO-SVR model

Prediction methods July 2014 November 2014 January 2015

MAE RMSE MAE RMSE MAE RMSE

Recursive forecast 14.89 19.69 20.33 28.73 20.25 27.16

Direct forecast 12.20 16.43 15.82 24.00 12.68 20.41

Online direct forecast 10.42 14.05 13.57 23.29 10.90 18.66

of the PSO-SVR model, while the QPSO-SVR model only
appears with few deviation points. Either for the individual
case or for the average case, the QPSO-SVR model shows
better prediction performance than the PSO-SVR model.
Figures 6 and 7 can also prove the same conclusion.
In addition, the robustness of both QPSO-SVR model
and PSO-SVR model is also inspected under the impact
of meteorological factors such as weather, temperature,
pressure, humidity, wind speed, and wind direction in the
three different seasons. Hence, it can be concluded that the
QPSO-SVR model possesses advantages to the PSO-SVR

model although the impact of meteorological factors exists.
Table 5 lists the comparison of prediction performance

among the QPSO-SVR model, PSO-SVR model, GA-SVR
model, and GS-SVR model for PM2.5 concentration on the
test stage. It can be seen from the table that the QPSO-SVR
model has the lowest prediction error and its calculation
time is less than that of the GA-SVR model and GS-SVR
model. Although the QPSO-SVR model and the PSO-SVR
model have little difference in the running time, it can still
be seen that the QPSO-SVR runs faster than the PSO-SVR
model. Therefore, it can be concluded that QPSO is superior

(b)(a)

(c)

Fig. 5 The online multi-step prediction results for PM2.5 concentration and the absolute error of two models in July 2014. a QPSO-SVR model.
b PSO-SVR model. c Absolute error of two models
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(a) (b)

(c)

Fig. 6 The online multi-step prediction results for PM2.5 concentration and the absolute error of two models in November 2014. a QPSO-SVR
model. b PSO-SVR model. c Absolute error of two models

(a)

(c)

(b)

Fig. 7 The online multi-step prediction results for PM2.5 concentration and the absolute error of two models in January 2015. a QPSO-SVR
model. b PSO-SVR model. c Absolute error of two models
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Table 5 The comparison of model performance for PM2.5 concentration prediction based on the online direct prediction method

Models July 2014 November 2014 January 2015

MAE RMSE R2 Time(s) MAE RMSE R2 Time(s) MAE RMSE R2 Time(s)

QPSO-SVR 10.42 14.05 0.93 26 13.57 23.29 0.90 28 10.90 18.66 0.92 31

PSO-SVR 12.12 16.30 0.91 28 16.01 24.41 0.88 31 12.68 20.41 0.90 33

GA-SVR 13.56 17.80 0.88 34 18.12 26.34 0.85 37 13.23 20.04 0.88 37

GS-SVR 19.68 23.52 0.78 141 22.05 30.11 0.76 145 23.83 30.43 0.76 156

to other optimization algorithms in parameter selection of
SVR model; it is proved that the proposed hybrid QPSO-
SVR model is effective in the prediction of atmospheric
PM2.5 concentration.

3.4 NO2 Concentration Forecasting Results

Considering the characteristic of each pollutant, such as
the accumulation of PM2.5, and chemical and physical

complexity of NO2, prediction performance and the
robustness of the QPSO-SVR model can be further verified
by forecasting NO2.

Figure 8 shows the original time series of hourly NO2

concentrations in July 2014, November 2014, and January
2015 respectively. It can be observed that NO2 also shows
same change regulation with PM2.5 concentration, and the
frequent fluctuation of NO2 concentration may have an
impact on the prediction model.

(a) (b)

(c)

Fig. 8 The original time series of hourly NO2 concentrations. a July 2014. b November 2014. c January 2015
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(a) (b)

(c)

Fig. 9 The online multi-step prediction results for NO2 concentration and the absolute error of two models in July 2014. a QPSO-SVR model. b
PSO-SVR model. c Absolute error of two models

(a) (b)

(c)

Fig. 10 The online multi-step prediction results for NO2 concentration and the absolute error of two models in November 2014. a QPSO-SVR
model. b PSO-SVR model. c Absolute error of two models
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(a) (b)

(c)

Fig. 11 The online multi-step prediction results for NO2 concentration and the absolute error of two models in January 2015. a QPSO-SVR
model. b PSO-SVR model. c Absolute error of two models

Figures 9, 10 and 11 present the prediction results of
NO2 concentration based on the QPSO-SVR model and
the PSO-SVR model in the selected months respectively.
By comparison, it can be seen that the prediction results
generated by the QPSO-SVR model are much better than
those produced by the PSO-SVR model in the 3 months.
Especially in July, more prediction points by the PSO-
SVR model are deviated from the measured points, but
only several prediction points by the QPSO-SVR model are
away from the measured ones. And the MAE produced by
the QPSO-SVR model is smaller than that obtained by the

PSO-SVR model. Therefore, the same conclusion that the
QPSO-SVR model possesses better prediction performance
than the PSO-SVR model can be obtained.

Table 6 shows predicting error and computational time
comparison among QPSO-SVR model, PSO-SVR model,
GA-SVR model, and GS-SVR model for NO2 concentration
on the test stage. It can be seen that, both MAE and RMSE
produced by the QPSO-SVR model are smaller than those
created by the other models in the three selected months,
while the values of R2 generated by the QPSO-SVR model
are greater than those produced by the other models for all

Table 6 The comparison of models performance for NO2 concentration prediction based on the online direct prediction method

Models July 2014 November 2014 January 2015

MAE RMSE R2 Time(s) MAE RMSE R2 Time(s) MAE RMSE R2 Time(s)

QPSO-SVR 7.42 10.98 0.85 25 5.26 8.07 0.94 27 5.92 7.78 0.95 28

PSO-SVR 8.68 11.35 0.84 28 6.94 9.46 0.92 27 6.38 8.32 0.94 29

GA-SVR 9.92 12.79 0.80 37 6.97 9.52 0.92 46 8.29 10.16 0.83 43

GS-SVR 12.25 14.27 0.77 142 11.41 14.31 0.78 148 12.26 14.92 0.77 167
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Table 7 The comparison of different methods in this study

Experimental materials Variables (fixed variables) Variables value Results

PM2.5 concentration in 3
selected months

Prediction method
(fixed, QPSO-SVR)

Recursive It has the cumulative effect of error, which
resulting in reduced prediction accuracy.

Direct The prediction error is smaller than the error of
recursive prediction, but the prediction accuracy of
these two methods is affected by the values of H

and n.

Model (direct, QPSO-SVR) Fixed It is difficult to adapt to the nonlinear and time-
varying characteristics of pollutant concentration.

Online The prediction model is continuously updated
with arriving of the new sample; the prediction
accuracy is higher than that of the fixed model, but
the running time becomes longer.

PM2.5 and NO2 concentrations
in 3 selected months

Optimization algorithms
(online, direct)

GS It is very time-consuming compared with the
heuristic optimization algorithm, and the opti-
mization result is poor.

GA It has more control parameters and more compli-
cated calculation.

PSO It has simpler principle and fewer parameters, and
it is easier to implement.

QPSO It possesses less control parameters, shorter
calculation time, higher optimization accuracy,
and stronger robustness. Compared to PSO and
GA, it is more suitable for the optimization
of SVR parameters in the PM2.5 and NO2
concentration predictions.

the selected months. In addition, the heuristic optimization
algorithm is more efficient than the grid search method in
selecting SVR parameters. Moreover, the PSO-SVR model
possesses much less computational time than the GA-
SVR model, and the QPSO-SVR model also reduces the
calculation time compared with the PSO-SVR model.

Based on the above experiments, it can be concluded that
the QPSO-SVR model is more excellent compared with the
PSO-SVR model, GA-SVR model, and GS-SVR model. It
can always possess good, robust prediction performance for
air pollutants.

3.5 Experiments summary

In order to summarize, visualize, and compare the studies
and to emphasize the contribution of the algorithm proposed
in this study, the comparison of different methods in this
study is presented in the Table 7. In order to improve
the PM2.5 and NO2 concentration prediction accuracy,
three aspects are considered, including prediction methods,
models, and optimization algorithms. According to the
above experimental results, it is concluded that the QPSO-
SVR model based on the online direct prediction method is
more suitable for the prediction of atmospheric PM2.5 and
NO2 concentration than other methods.

4 Conclusions

This paper mainly develops a hybrid QPSO-SVR model
to predict atmospheric PM2.5 and NO2 concentrations in
the short term, and the QPSO algorithm is mainly used to
select the optimal parameters (C, σ , and ε) influencing the
performance of SVR. Firstly, the three prediction methods
are proposed, including multi-step prediction method
based on recursive strategy, multi-step prediction method
based on direct strategy, and online multi-step prediction
method based on direct strategy. PM2.5 concentration was
predicted by these three methods based on the QPSO-
SVR model; the results show that the online multi-
step prediction method based on direct strategy has best
prediction results. Secondly, the prediction performances of
the QPSO-SVR model, PSO-SVR model, GA-SVR model,
and GS-SVR model were compared by using the online
direct prediction methods. And the atmospheric PM2.5 and
NO2 concentrations in the three different seasons were
predicted. The results demonstrate that the QPSO-SVR
model possesses better prediction performance in terms
of prediction accuracy and computational time. Moreover,
the QPSO-SVR model is more robust because it is less
affected by the meteorological factors. Finally, the model
proposed in this paper can be used for the prediction of
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other pollutant concentration, and our team have installed
device in our campus to collect pollutant concentration and
meteorological data in order to analyze and evaluate the
environment of our campus. Additionally, the value of H

and n in multi-step prediction will have an effect on the
prediction results, and the problem of large computation and
poor real-time performance will appear in the online SVR
model when the sample is too large. How to solve these
problems will be our future research work.
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