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Abstract
Climate change is one of the most fiercely debated scientific issues in recent decades, and the changes in climate extremes are
estimated to have greater negative impacts on human society and the natural environment than the changes in mean climate. Extreme
value theory is a well-known tool that attempts to best estimate the probability of adversarial risk events. In this paper, the focus is on
the statistical behaviour of extreme maximum values of temperature. Under the framework of this theory, the methods of block
maxima and threshold exceedances are employed. Due to the non-stationary characteristic of the series of temperature values, the
generalized extreme value distribution and the generalized Pareto distribution were extended to the non-stationary processes by
including covariates in the parameters of the models. For the purpose of obtaining an approximately independent threshold excesses,
a declusteringmethodwas performed and then the de-clustered peakswere fitted to the generalized Pareto distribution. The stationary
Gumbel distribution was found a reasonable model for the annual block maxima; however, a non-stationary generalized extreme
value distribution with quadratic trend in the location was recommended for the half-yearly period. The findings also show that there
is an improvement in modelling daily maxima temperature when it is applied to the declustered series and the given model
outperforms the non-stationary generalized Pareto distribution models. Furthermore, the retained generalized Pareto distribution
model proved better than the generalized extreme value distribution. Estimates of the return levels obtained from both extreme value
models show that new records on maximum temperature event could appear within the next 20, 50 and 100 years.
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1 Introduction

Climate change is one of the most fiercely debated scientific
issues in recent decades, and the changes in climate extremes
are estimated to have greater negative impacts on human so-
ciety and the natural environment than the changes in mean
climate. Extremely high temperatures are among the most
frequently investigated extreme events. Numerous studies

were conducted to investigate possible effects of high temper-
ature on the main human activities. Most analysts believe that
extreme temperatures have considerable consequences: they
can damage agricultural production (e.g. [1]), increase energy
demand (e.g. [2]) and water consumption (e.g. [3]) and also
badly affect human well-being, human health and even cause
loss of human lives (e.g. [4–7]).

According to the synthesis of the Inter-governmental Panel
on Climate Change (IPCC) [8], global mean temperature has
shown a 0.85 °C (0.65–1.06 °C) increase over the period of
1800–2012 and a 0.74 °C increase during the last hundred
years (1906–2005). The IPCC [9] report concludes that
warming of the climate system is now Bunequivocal,^ based
on observations of increases in global average air tempera-
tures and the surface temperature is projected to rise over the
21st and it is very likely that heat waves will occur more often
and last longer.

This work aims to model and analyse maximum tempera-
ture records in Riyadh city, the capital of Saudi Arabia, during
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the time period 1985–2014, using stationary and non-
stationary extreme value theory (EVT) tools.

Within the climate literature, there are twomain approaches
for the diagnostic analysis of extreme events in climate data:
the parametric and the non-parametric. The non-parametric
approach is recognized by the definition of indices for extreme
events, initially introduced by the Expert Team on Climate
Change Detection Monitoring and Indices (ETCCDI).
During the last years, there has been wide interest in analyzing
climate with climate extreme indices (e.g. [10–20]). The main
drawback of this approach is that it lacks the ability to extrap-
olate the results towards damage-relevant extremes with much
larger return periods than those observed [21].

The second approach, initially developed by Fisher and
Tippett [22], is founded on EVT techniques. EVT focuses
directly on the tails of the sample distribution and, therefore,
could potentially perform better than other approaches that
model the whole distribution, in terms of predicting unexpect-
ed extreme changes [23]. EVT has been successfully applied
in various fields, such as hydrology (e.g. [24–26]), engineer-
ing (e.g. [27]), finance and insurance (e.g. [28, 29]), oil price
risk management (e.g. [23, 30]) and environment and climate
fields (e.g. [31–38]). Within climate context, EVT has gained
fast acceptance and popularity among both researchers and
climate experts.

In the context of climate processes, it is common to observe
non-stationarity due to seasonal variations and long-term
trends owing to climate change. Consequently, it is essential
to take into account the non-stationarity when modelling ex-
tremes. There are broadly two common strategies for dealing
with the non-stationarity issues [39]: first, to use the full data
set to detect and estimate non-stationarities, and then to apply
methods for stationary extreme-value modelling to the
resulting residuals, and, second, to fit a non-stationary
extremal model to the original data. The first strategy1 consists
of using the full data set to detect and estimate non-
stationarities induced by the volatility clustering using a
GARCH type model and then to apply methods for stationary
extreme value modelling to the resulting residuals (e.g. [23,
41]). The main advantage of this approach is that it reflects
two stylized facts exhibited by most financial return series,
namely stochastic volatility and the fat-tailedness of condi-
tional return distributions over short time horizons.

The second strategy for modelling the extremes of a non-
stationary process was initially introduced by Davison and
Smith [24], who explicitly model the dependence structure
using time series or covariate in the parameters of the model.
Following this pioneering work, numerous studies describing
methodologies have been proposed for the estimation of time-

varying extreme value distributions on non-stationary time
series. For example, Chavez-Demoulin and Davison [42] de-
scribe smooth non-stationary generalized additive modelling
for sample extremes, in which spline smoothers are incorpo-
rated into models for exceedances over high thresholds. Scotto
and Guedes-Soares [43] illustrate a modelling with non-linear
thresholds. Besides that, the existing literature reveals that
various studies have been conducted, under the non-
stationarity conditions, by using different ideas and techniques
(e.g. [44–50]).

As climate changes increase due to global warming, it
is expected that more extreme weather events will occur.
According to a recent study of Pal and Eltahir [51], the
Arab gulf region and parts of southwest Asia could be
uninhabitable before the turn of the century as tempera-
tures are expected to rise to intolerable levels. These
alarming results justify the need for further analysis of
temperature records in the region. For the case of Saudi
Arabia, changes in temperature have already begun to be
detected, using climate indices (e.g. [11, 12, 52]), al-
though a comprehensive analysis on the subject, based
on rigorous statistical tools, has yet to be conducted.
EVT may provide a rigorous statistical method for the
investigation of extreme temperature events in response
to current and future climate change and for the accurately
assess the changes in extreme temperature.

The objective of this study is to provide a more compre-
hensive analysis of observed changes in temperature extremes
in Riyadh city, during the time period 1985–2014, by applying
stationary and non-stationary EVT tools. In the first step, sta-
tionary and non-stationary generalized extreme value (GEV)
models were conducted for the yearly and half-yearly maxima
temperature data. The results reveal that the stationary
Gumbel distribution was found a reasonable model for the
annual block maxima; however, a non-stationary GEV with
a quadratic trend in the location was recommended for the
half-yearly period. In the second step, generalized Pareto dis-
tribution (GPD) models, under stationary and non-stationary
conditions, were fitted for the temperature data. The findings
show that there is an improvement in modelling daily maxima
temperature when it is applied to the declustered series and the
given model outperforms the non-stationary GPD models.
Furthermore, the retained GPD model was found better than
the GEV. The estimates of the return levels obtained from both
EVTmodels show that new records on maximum temperature
event could appear within the next 20, 50 and 100 years.

To the best of our knowledge, no studies focused onmodel-
ling extreme weather conditions relative to Saudi
Meteorological data, using stationary and non-stationary
EVT models, despite the significant interest to further analyse
the extreme temperatures data. Such analysis is essential to
gain an understanding of their possible occurrence and dimen-
sions in present and future climate.

1 Similar approaches for dealing with non-stationarity can be found in the
literature. One of them is based on the removal of trends, obtaining a net data
series suitable for the classical extreme value analysis (e.g. [40]).
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The paper is organized as follows: Sect. 2 presents a review
of extreme value theory. Section 3 provides the methods of
estimation and model selection. Data and preliminary analysis
are presented in Sect. 4. Results and discussions are presented
in Sect. 5, and Sect. 6 concludes the paper.

2 Extreme Value Theory

In this section, we revisit the extreme value theory to provide a
basis to our modelling of extreme temperature events in cli-
mate model data. Readers interested in a more detailed back-
ground may consult various texts on EVT such as Embrechts
et al. [53]. EVT has two important results. First, the asymp-
totic distribution of a series of maxima (minima) is modelled
and under certain conditions, the distribution of the standard-
ized maximum of the series is shown to converge to the GEV
distribution. The second significant result concerns the distri-
bution of excess over a given threshold. EVT shows that the
limiting distribution is a GPD.

2.1 GEV Distribution

2.1.1 GEV Distribution for Stationary Processes

EVT is concerned with the asymptotic distribution of stan-
dardized maxima (or minima) from a series of independent
and identically (i.i.d) random variables with unknown com-
mon cumulative distribution function (cdf), F(x) = P(X ≤ xi).

By the Fisher–Tippett theorem, the normalized maximum
converges in the GEV distribution whose cumulative distribu-
tion is as follows:

G x;μ;σ; ξð Þ

¼
exp − 1þ ξ

x−μ
σ

� �� �−1
ξ

� �
; ξ≠0; 1þ ξ

x−μ
σ

� �
> 0

exp − exp−
x−μ
σ

� �� �n o
; ξ ¼ 0

8><
>:

ð1Þ
where μ ∈ℝ, σ >0 and ξ ∈ℝ are the location, scale and shape

parameters, respectively. The Fisher–Tippett theorem sug-
gests that the asymptotic distribution of the maxima belongs
to a Frechet, Weibull or Gumbel distribution, regardless of the
original distribution of the observed data. The shape parame-
ter ξ describes the tail behaviour of the maximum distribution.
For ξ = 0, the GEV is the Gumbel distribution. For ξ > 0, the
tail of the GEV is Bheavier^ than the tail of the Gumbel distri-
bution, and for ξ < 0, it is Blighter^ than that of the Gumbel
distribution. The GEVis said to have a type II tail for ξ > 0 and
a type III tail for ξ < 0.

Having modelled the upper tail of a distribution by fitting a
GEV distribution, it remains to use such a model for inference.
One of the main applications of extreme value analysis is the
estimation of the once per N year return levels. An event
exceeding such a level is expected to occur once every N
years. The 1/N year return value based on GEV distribution,
zN, is given by

zN ¼
μ̂̂−

σ̂̂

ξ̂̂
1− −log 1−

1
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The classical G(x, μ, σ, ξ) model assumes that the three
parameters of location, scale and shape are time independent
[32]. This model is frequently called Bthe stationary ap-
proach^. However, if trends are detected in the data sample,
the non-stationary case, where parameters are no longer con-
stants but expressed as covariates (e.g. time), should be
considered.

2.1.2 GEV Distribution for Non-stationary Processes

The stationary GEV in Sect. 2.1.1 can be extended to non-
stationary processes by including covariates in the parameters
of the model (e.g. Coles [32]). In this paper, we limit our
investigation to the case of dependence only on time. The
non-stationary GEV distribution can be denoted as G(μ(t),
σ(t), ξ(t)) with distribution function

G x;μ tð Þ;σ tð Þ; ξ tð Þð Þ ¼
exp − 1þ ξ tð Þ x−μ tð Þ

σ tð Þ
� �� �− 1

ξ tð Þ
( )

; ξ≠0; 1þ ξ tð Þ x−μ tð Þ
σ tð Þ

� �
> 0

exp − exp−
x−μ tð Þ
σ tð Þ

� �� �� �
; ξ tð Þ ¼ 0

8>>><
>>>:

ð3Þ

Following El Adlouni et al. [46], Cannon [54] and Hasan
et al. [55], we consider possible non-stationary behaviour of
the location μ and scale σ parameters but keep the shape

parameter ξ constant. More specifically, nine models of vary-
ing complexity that may be defined in this way (three choices
for each of j and k), allowing up linear and non-linear
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dependence on time of both the location μ and scale σ param-
eters, were developed with parameters as described as follows:
where

μ tð Þ ¼ μ0 þ μ1t þþμ2t
2

σ tð Þ ¼ exp σ0 þ σ1t þ σ2t2
� 	 ð4Þ

We denote by GEVjk the model with timedependence of
order j in the location parameter and order k in the scale pa-
rameter. For example, the stationary GEV distribution is
GEV00, obtained when the location and scale parameters are
both independent of time (μ1 = μ2 = 0 and σ1 = σ2 = 0), whilst
the GEV21 non-stationary model assumes a quadratic trend in
location and a log-linear trend in scale (σ2 = 0). The choice of
the appropriate specification was performed using the selec-
tion criteria such as Akaike information criterion (AIC) and
Bayesian information criterion (BIC) and statistical tests.

2.2 Generalized Pareto Distribution

2.2.1 Stationary GPD Models

In practice, modelling the maximum of a collection of random
variables is wasteful if other data on extreme values are avail-
able. Therefore, a more efficient approach to modelling ex-
treme events is to attempt to focus not only the largest events,
but on all events greater than some large preset threshold. This
is referred to as peaks over threshold (POT) modelling.

Let us define the excess distribution above the threshold u
as the conditional probability:

Fu yð Þ ¼ Pr X−u≤ynX > uð Þ ¼ F uþ yð Þ−F uð Þ
1−F uð Þ ; y≥0 ð5Þ

Balkema and de Haan [56] and Pickands [57] theorem
showed that the generalized Pareto distribution (GPD) is the
limiting distribution for Fu(y) as the threshold tends to the
right endpoint. They stated that if the distribution function
belongs to the maximum domain of attraction of the extreme
value distribution of G, then it is possible to find a positive
measurable function σ(u) such that

lim
u→x F

sup
0≤ y≤u−x F

Fu yð Þ−Gξ;σ uð Þ yð Þ

 

 ¼ 0 ð6Þ

whereGξ, σ(u)(y), the generalized Pareto distribution (GPD), is

Gξ;σ uð Þ yð Þ ¼
1− 1þ ξ

y
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where y ≥ 0 for ξ ≥ 0 and 0 ≤ y ≤− σ uð Þ
ξ for ξ < 0.

The GPD embeds a number of other distributions. If ξ > 0,
then G is a reparametrized version of the ordinary Pareto dis-
tribution, ξ = 0 corresponds to the exponential distribution and
ξ < 0 is known as a Pareto type II distribution.

The estimated return level xm that is exceeded on average
once every m observations is

xm ¼ μ̂þ σ̂

ξ̂
mζuð Þ

^ξ−1

 !
; for ξ̂≠0

μ̂þ σ̂log mζuð Þ; for ξ̂ ¼ 0

8>><
>>: ð8Þ

where u is the selected threshold value, ζu ¼ P X > uð Þ ¼ k
�
n,

k is the number exceedances and n is the number of observa-
tions. By construction, xm is the t-observation return level; how-
ever, it is often more convenient to give return levels on an
annual scale, so that theN year return level is the level expected
to be exceeded once every N years. If there aremx observations
per year, this corresponds to the m-observation return level with
m =mx ×N. Hence, an estimate of the N year return level zN is
defined by

xN ¼ μ̂þ σ̂

ξ̂
Nmxζuð Þ

^ξ−1

 !
; for ξ̂≠0

μ̂þ σ̂log Nmxζuð Þ; for ξ̂ ¼ 0

8>><
>>: ð9Þ

The selection of the threshold u, which is crucial for the
success of the GPD modelling, involves a delicate trade-off
between bias and variance. If the threshold is chosen too high,
then there are not enough exceedances over the threshold to
obtain good estimators of the extreme value parameters, and
consequently, the variances of the estimators are high.
Contrariwise, if the threshold is too low, the GPD may not
be good fit to the excesses over the threshold and there will
be bias in the estimations. Several diagnostic techniques exist
for this purpose, including graphical and bootstrap methods
(e.g. [53]).

In the present study, we have chosen our threshold u using
standard exploratory techniques, based on parameter stability
plot (e.g. [32]), to aid the choice.

The POT model requires that the exceedances be mutually
independent. However, especially in the case of climate data,
this assumption may be violated because of serial correlation.
In fact, at high levels, this appears as clustering of values of the
series. To overcome this issue, a declustering approach that
involves filtering the data series to remove the clustering and
gain a set of independent threshold exceedances is used.

Most declustering methods are based on the estimation of a
statistic called the extremal index θ. The extremal index is
defined as the reciprocal of the limiting mean cluster size
[32]. In the presence of no autocorrelation (clustering) in the
series, then θ = 1. Else if θ < 1, then there is clustering in the
data. The most widely adopted method for dealing with this
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problem is declustering, which filters the dependent observa-
tions to obtain a set of threshold excesses that are approxi-
mately independent.

Mainly, there are two approaches for estimating the
extremal index based on run length r: In the first case, clusters
are formed by arbitrarily specifying run length r, such that a
cluster is considered active until r consecutive values fall be-
low the threshold u. The extremal index is then estimated as
the quotient of the number of clusters over the number of
exceedances of the threshold. This approach is called Bruns
estimator .̂

In the second case, optimal run length is obtained through the
estimation of the extremal index assuming the exceedance times
to be observed values of a point process whose limit is the
Poisson process distribution. This latter method Bintervals esti-
mator^ was formulated by Ferro and Segers [58], extending on
the work of Hsing et al. [59] and Smith and Weissman [60],
amongst others. The choice of r affects the bias-variance trade-
off. Avalue of r that is too small raises concerns over the validity
of the assumption of independent of cluster maxima. Conversely,
large values of r could result in too few cluster maxima, hence
raising concern over the precision of the GP distribution’s param-
eter estimates. This procedure does not involve any arbitrary
choice such as that mentioned above, but it uses the extremal
index, a parameter which measures the degree of clustering of
extremes in a stationary process and takes values in the interval
[0, 1].

In the present work, we have used an automatic
declustering scheme developed by Ferro and Segers [58] to
obtain independent clusters of exceedances. For a detailed
review on different declustering methods, the interested reader
is referred to Smith et al. [61], Ferro and Segers [58] and
Fawcett and Walshaw [62].

2.2.2 Non-Stationary GPD Models

The POT method explained previously is only valid for ex-
tremes for which we can assume stationarity. The idea is now
to describe non-stationarity, as it is the case for temperature
series that generally shows a strong seasonal pattern, by
allowing the GPD parameters to depend on time or other co-
variates. In the literature, various approaches have been devel-
oped to deal with non-stationarity arising from seasonality or
trend.

The most widely adopted technique to deal with data
that vary seasonally is to partition the data into seasons
and perform a separate extremal analysis on each season
(e.g. [20, 63]). The second approach is based on fitting
continuous parametric functions to capture the seasonal-
ity (e.g. [64]).

Thus, attempting to model any seasonal variation, we opt
for the second approach and we include in our analysis a non-
stationary GPD model with cycle variation in the scale

parameter. From Eq. (7), the shape parameter is assumed to
be constant, that is ξ(t) = ξ, whilst σ(t) is given by

log σ tð Þð Þ ¼ σ0 þ σ1sin
2π

365:25
t

� �

þ σ2cos
2π

365:25
t

� �
ð10Þ

For comparison, we introduce a second non-stationary
GPD model with linear time covariate in the scale parameter
given by

σ tð Þ ¼ exp σ0 þ σ1tð Þ ð11Þ

It should be noted that the exponential function has been
adopted to introduce time dependency into the scale parameter
to ensure its positivity. Note that it is also possible to incorpo-
rate the non-stationarity into the shape parameter. However, it
is very difficult to estimate the shape parameter of the extreme
values distribution with precision when it is time dependent,
and therefore, it is not realistic to attempt to estimate the shape
parameter as a smooth function of time [32]. Superiority of the
non-stationary GPD models over the stationary GPD models
was investigated through the likelihood-ratio test.

3 Estimation and Model Selection

Themodel parameters for GEVand GPD can be estimated in a
variety of ways. Possible methods include maximum likeli-
hood techniques (ML), the L-moment approach of Hosking
[65] and Bayesian methods (e.g. [66]). Most common
methods for parameter estimation in climate research are the
ML estimation (e.g. Katz et al. [26, 36]) and the method of
moments. The ML method, although problematic when ap-
plied to very small samples, is the preferable method due to its
universal applicability and its nice asymptotic properties.
Moreover, the method allows for the introduction of covari-
ates such as time into the model [36]. TheML approach seems
to be most common within the literature, and so we concen-
trate on this method here.

The analysis of extremes with EVT has been per-
formed using the free software R and the extRemes
package, which is designed for problems of extreme
weather events and climate. For a brief introduction to
the capabilities of extremes, we refer to the paper of
Gilleland and Katz [67].

In the literature, there exist various methods to identify the
best model out of a set of cautiously selected candidate
models. One approach involves the information criteria, e.g.
the Bayesian information criterion (BIC, e.g. [36]), the Akaike
information criterion (AIC, e.g. [68]) and the Hannan-Quinn
information criterion (HIC, e.g. [69]).
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In this study, the AIC and the BIC statistics were used to
determine which of the candidate models is most applicable.
These two statistics identify the best model, which is supposed
to fulfil the individual Student’s t test on the parameters, when
minimized. For a discussion on the use of these criteria for
model selection, we refer to Burnham and Anderson [70].

4 Data and Preliminary Analysis

4.1 Data

The data used in this study consists of daily maximum tempera-
tures for 30 years spanning from 1 January 1985 to 31 December
2014. The data was collected from the Saudi Arabia Presidency
of Meteorology and Environment (PME). The city of Riyadh,
the capital of Saudi Arabia, was selected as the case study area.
Riyadh is located at 24.7° N and 46.71° E at an elevation of
635 m above sea level and is a typical station experiencing the
hot and dry climate of central Saudi Arabia. The city has expe-
rienced significant population growth and urban expansion dur-
ing the last decades. Such development may have been accom-
panied by changes in the local extreme temperature patterns [11].
In fact, new industrial zones have come up in hitherto green and
open areas, leading to increased air pollution within the urban
environment. The ever-increasing number of motor vehicles also

points tomore pollution. Rising greenhouse gases and changes in
the reflective properties of the Earth’s surface are predicted to
raise global temperatures [16].

This data set is challenging to model given the variety of
extreme weather and climate that make it vulnerable to a
changing climate.

4.2 Preliminary Analysis of Temperature Data

Table 1 shows some descriptive statistics for the daily temper-
atures together with the two selection periods: the yearly and
the half yearly. The daily maximum temperature in Riyadh
fluctuates between 2.5 and 48.2 °C over the period 1985–
2014. The 10,957 daily maximum temperatures has a standard
deviation 9.1 and a coefficient of variation 0.269.

After partitioning the data into yearly and half-yearly se-
lection periods, it is observed that as the selection period in-
creases, the difference between the minimum and maximum
gets smaller, and the coefficient of variation decreases. This
indicates that the maximum temperature data is less dispersed
from the mean as the selection period increases. The skewness
(SK) is negative for both periods, which indicates that the left
tail of the distribution is relatively longer than the right side,
implying that most of the data is concentrated on the right of
the mean; the reverse is true for positive skewness. Figure 1
shows the time series plot of the annualmaximum temperature

Table 1 Descriptive statistics of
maximum temperature Number Min Mean Max S. Dev Coefficient

of variation
Skewness Kurtosis

Daily 10,957 2.5 33.38 48.2 9.1 0.269 − 0.4 − 1.05
Half yearly 60 43.6 46.08 48.2 1.03 0.022 − 0.05 − 0.35
Yearly 30 45.40 46.65 48.2 0.811 0.0174 − 0.36 − 1.05
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Fig. 1 Annual maximum temperature (°C) observed at Riyadh, 1984–2014
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(°C) observed at Riyadh over the period 1984–2014. The
graph shows no clear trend in the annual maximum data.
This visual impression will be confirmed by statistical tests.

In order to get an idea about the extremes of our data, we
look at the absolute frequency2 histograms of daily extreme
temperature presented in Fig. 2. The graph displays the fre-
quencies of extreme daily temperature per year for the time
period of 1 January 1985 through 31 December 2014. We can
see that as we increase the cut-off level as to what we define as
extreme temperature, the number of observations declines
substantially. In addition, there were some years that had
many extreme temperature superior to T ≥ 45 °C (e.g. 2000,
1998, 2010, 1999 and 1996). Broadly, we can see that the
frequency of extremes has been higher in late 1990 until it
reaches a peak in 2000 and it seems that the very extremely
observations are more frequently after 1996.Overall, we can
see that about the third of the year where the daily maximum
temperatures belong to the interval; 40 ≤ T < 45 °C and about
the sixth of them are between 35 ≤ T < 40 °C.

Prior to the application of the EVT models, some tests are
required to assess the proprieties of our date. Three types of
tests were performed for testing the assumptions of indepen-
dence, stationarity and existence of trend. In particular, the
GEV distribution needs that the random variables must be
independent with common distribution. Violation of the as-
sumption of independence will occur since seasonality will
cause temperature data to vary accordingly. Failure to consider
non-homogeneity into account will affect the analysis of the
data and then produce inaccurate results. Therefore, larger

blocks are considered to assure that the assumption of having
common distribution is plausible, even though it will generate
only few block maxima. In addition, the choice of this block
length can often avoid the need to account for yearly seasonal
variation in environmental data, which may be seen as an
advantage over other block lengths for this type of application.

One way for checking the assumption of independence is
to perform the Ljung–Box test. The results of the test, present-
ed in Table 2, show that the null hypothesis of independence
could not be rejected for both selection periods3 (yearly and
half-yearly). Such results are crucial for modelling with GEV
distribution, which is based on the assumption of indepen-
dence of random variables.

In the same table, we observe the results of the Augmented
Dickey Fuller (ADF) and the Kwiatkowski–Phillips–
Schmidt–Shin (KPSS) tests that have been performed to check
the stationarity assumption of the data relative to different
selection periods. The ADF tests suggest that the null hypoth-
esis of unit root cannot be rejected here for both yearly and the
half-yearly periods; however, the KPSS test concludes to the
stationarity of the yearly maxima data but not for the half-
yearly.

The Mann–Kendall (MK) trend test is performed in
order to detect the presence of monotonic trend in the
data under the null hypothesis of absence of trends. The
obtained result, in Table 2, reveals that the null hypoth-
esis was accepted for both selection periods at the 5%
level whilst we fail to reject the null hypothesis for the
half-year period at the 10% level.

2 The absolute frequencies were calculated by counting the number of days per
year where the daily maximum temperatures (T) belong to the three following
arbitrary intervals: 35 ≤ T < 40 °C, 40 ≤ T < 45 °C and T ≥ 45 °C.
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Fig. 2 Absolute frequencies of
daily extreme temperatures (1
January 1985–31 December
2014)

3 For the other selection periods (Quarterly, Monthly), we fail to accept the
null hypothesis of independence. Consequently, we limit our GEVyearly and
modelling to half-yearly block lengths.
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From the MK test result, it seems that there is some con-
cordance with the previous results of the stationarity test, es-
sentially if we consider the KPSS test and we relax the level of
significance to 10%. These results suggest that we ought to
model for both stationarity and non-stationarity of the data set.

Based on the above analysis, we are justified in trying to fit
extreme value theory to the data over the studied time period.

5 Results and Discussions

5.1 Application of GEV Distribution to Annual
Temperature Extremes

In this study, data of maximum temperature are firstly blocked
into annual lengths. An analysis of annual maximum data is

likely to be more robust compared to shorter blocks.
Consequently, larger blocks are considered in our study
to assure that the assumption of independence is plausi-
ble, even though it will generate only few block maxima.
The choice of an annual block length can often avoid the
need to account for yearly seasonal variation in environ-
mental data, which may be seen as an advantage over
other block lengths for this type of application.

Since the time series available for this study typically
cover only a few decades, the sample sizes of annual
maxima data are relatively small. In fact, if a 1-year
block is used, this study will only have 30 annual max-
imum temperatures for the purpose of modelling, which
may affect the accuracy of the estimated parameters of
the GEV distribution. We tried to overcome this short-
coming by considering shorter blocks length (monthly,
quarterly, and half-yearly block lengths) for the GEV
model. However, we finally retained only the yearly
and half-yearly periods, as they are the only block
lengths that lead to sample data that meet the assump-
tion of independence, required for the stationary GEV.

The model selection is based on nine models of vary-
ing complexity, as defined on Sect. 2.2, that incorporate
both stationary and non-stationary GEV. The extreme val-
ue analysis is first performed by fitting the GEV distribu-
tion, assuming constant location and scale parameters to
the sequence of annual maxima. Then, the likelihood ratio

Table 3 Model selection of GEV candidate models (for annual maxima) and return levels for the retained model

Parameters GUM 00 GUM10 GUM20 GUM01 GUM02 GUM11 GUM12 GUM21 GUM22

μ 46.27 (0.13) NA NA 46.24 (0.13) 46.21 (0.15) NA NA NA NA

σ 0.67 (0.09) 0.67 (0.09) 0.60 (0.08) NA NA NA NA NA NA

μ0 NA 46.270 (0.13) 46.64 (0.18) NA NA 46.30 (0.13) 46.35 (0.16) 46.63 (0.21) 46.63 (0.20)

μ1 NA 0.070 (0.18) 0.242 (0.200) NA NA 0.304 (0.231) 0.40 (0.30) 0.24 (0.20) 0.26 (0.25)

μ2 NA NA − 0.950 (0.391) NA NA NA NA − 0.92 (0.48) − 0.922 (0.48)

σ0 NA NA NA − 0.42 (0.14) − 0.36 (0.23) − 0.44 (0.14) − 0.54 (0.24) − 0.51 (0.14) − 0.59 (0.24)
σ1 NA NA NA 0.221 (0.238) 0.25 (0.24) 0.41 (0.24) 0.41 (0.25) 0.03 (0.30) 0.03 (0.30)

σ2 NA NA NA NA − 0.18 (0.51) NA 0.27 (0.54) NA 0.066 (0.57)

AIC 74.10 75.94 72.10 75.16 77.035 75.40 77.16 77.10 76.08

BIC 76.90 80.15 77.71 79.36 82.640 81 84.16 81.10 84.49

Estimated return levels (95% confidence interval)

20 years 49.02 (48.57;49.93)

50 years 49.25 °C (49.87; 50.72)

100 years 50.34 °C (49.36;51.32)

Notes:

- Numbers in parentheses are standard errors

- The lowest AIC and BIC values are printed in italics

- Whilst the Gum20 model has the lowest AIC, it was excluded from the candidate models since it has the parameter μ1 statistically insignificant

- NA (Not available) indicates that the parameters are not estimated to these models

Table 2 Statistical tests for maximum temperature data

Tests Selection period

Yearly Half yearly

Ljung–Box 4.79 (0.19) 4.58 (0.20)

Mann–Kendall 60 (0.29) 268 (0.09)

Stationarity ADF − 1.12 (0.90) − 2.02 (0.57)

KPSS 0.33 (> 0.1) 0.57 (0.026)

Note: P values are in parentheses
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test4 is then used to compare the goodness-of-fit of the
model to the Gumbel distribution (GUM). It depends on the
result of the test; if the null-hypothesis H0: ξ= 0 against the two-
sided alternative (ξ ≠ 0) is not rejected at the significance level of
0.05, we retain in a first step the Gumbel distribution and we try
to improve our modelling approach by allowing for time depen-
dence on the location μ and/or on the scale σ parameters.
However, if we fail to accept the null-hypothesis, the analysis
will be based on the GEVjkmodels defined in Sect. 2.1.2. Model
selection and parameter estimates of different candidate models
are given in Tables 3 and 4.

Table 3 presents the estimated results for annual max-
ima together with their resulting AIC and BIC values. The
estimated shape parameters for the annual period were
found to be very close to 0. The null hypothesis H: ξ = 0
was tested against the two-sided alternative (ξ ≠ 0) using
the maximum likelihood test. The null hypothesis is not
rejected at the significance level of 0.05, which justifies
the application of the Gumbel distribution to the annual
maxima of temperature. Since a stationary behaviour can
be unrealistic for maxima, particularly in a climate change
context, the present model is compared with eight candi-
date models that are considered as defined above. The
results show that the best specification is the simple

stationary Gumbel distribution (GUM00). It is important
to note that this model has the smallest AIC and BIC
criteria, after removing the models with insignificant pa-
rameters (e.g. GUM20) from the competing models. This
finding may be confirmed by the Mann–Kendall (MK)
trend test and the stationary tests results. In fact, in the
former, we have failed to detect the presence of monoton-
ic trend in the annual data and in the latter, we have
showed that our data are level stationary.

The various diagnostic plots for assessing the accuracy
of the Gumbel model are shown in Fig. 3. Both the prob-
ability plot and the quantile plot show the reasonability of
the Gumbel fit: each set of points follows a quasi-linear
behaviour. The return level plot shows approximate line-
arity, since it corresponds to ξ = 0 of the Gumbel distribu-
tion. Finally, the corresponding density estimate seems
consistent with the empirical density of the data.
Consequently, all four diagnostics plots support the fitted
Gumbel model.

Once the best model for the data has been selected, the
interest is in deriving the return levels of extreme maxi-
mum temperature. Estimates and confidence intervals for
return levels for 20, 50 and 100 years are obtained by
Table 3 based on the GEV00 model. It can be seen from
the table that the return levels for maximum temperature
gradually increase for higher and higher return periods.
From the above results, one would expect that the maxi-
mum temperature (°C) at Riyadh will exceed about 49.02
on average every 20 years, will exceed about 49.25 °C on
average every 50 years and will exceed about 50.34 °C
every 100 years. The 95% confidence intervals, in degrees

4 The likelihood ratio test is used to compare the goodness-of-fit of two hier-

archically nested GEVjk models. If l̂0 denotes the maximized log-
likelihood of the simpler model M0 and l̂1 the maximized log-
likelihood of a more complex model M1 that contains M0, then, under
standard conditions, − 2(̂l0−̂l1) asymptotically follows the chi-squared
distribution with q df, where q is the number of additional parameters in
M1 compared with M0.

Table 4 Model selection of Gumbel candidate models (for half-yearly maxima) and return levels for the retained model

Parameters GEV00 GEV10 GEV20 GEV01 GEV02 GEV11 GEV12 GEV21 GEV22

μ 45.73 (0.15) NA NA 45.74 (0.15) 45.73 (0.16) NA NA NA NA

σ 1.04 (0.11) 0.99 (0.10) 0.95 (0.09) NA NA NA NA NA NA

ξ − 0.32 (0.09) − 0.31 (0.09) − 0.31 (0.09) − 0.31 (0.11) − 0.32 (0.12) − 0.31 (0.09) − 0.33 (0.10) − 0.313 (0.089) − 0.295 (0.100)
β0 NA 45.74 (0.14) 46.11 (0.19) NA NA 45.74 (0.14) 45.72 (0.15) 46.120 (0.192) 46.101 (0.197)

β1 NA 0.44 (0.22) 0.38 (0.21) NA NA 0.44 (0.22) 0.42 (0.21) 0.414 (0.217) 0.411 (0.205)

β2 NA NA − 1.03 (0.39) NA NA NA NA − 1.064 (0.401) − 1.031 (0.394)
σ0 NA NA NA 0.03 (0.11) 0.08 (0.17) − 0.002 (0.11) 0.07 )0.16) − 0.054 (0.101) − 0.020 (0.128)
σ1 NA NA NA − 0.06 (0.19) − 0.05 (0.20) − 0.011 (0.16) − 0.04 (0.15) − 0.063 (0.148) − 0.091 (0.156)
σ2 NA NA NA NA − 0.13 (0.29) NA − 0.17 (0.28) NA − 0.138 (0.316)
AIC 178.41 176.56 172.03 180.31 182.12 178.56 180.20 173.84 175.64

BIC 184.69 184.94 182.50 188.68 192.59 189.03 192.77 186.40 190.30

Notes:

- Numbers in parentheses are standard errors

- The lowest AIC and BIC values are printed in italics

- NA indicates that the parameters are not estimated to these models

NA not available
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Celsius, were (48.57; 49.93), (49.87; 50.72) and (49.36;
51.32), respectively. It is almost certain that the yearly
maximum will exceed the current maximum, which is
48.2 °C.

The estimated results for annual maxima together with
their resulting AIC and BIC values for the half-yearly
period are shown in Table 4. The null hypothesis H: ξ =
0 was tested against the two-sided alternative (ξ ≠ 0) using
the maximum likelihood test. The null hypothesis is
rejected at the significance level of 0.05, which justifies
the application of the GEV distribution to the half-yearly
maxima. We follow our analysis by examining the exis-
tence of any trend in GEV parameters.

Our results show that the best specification is non-
stationary GEV20 is the best model. This model sat-
isfies the individual Student’s t test and minimizes both
criteria, the AIC and BIC. The shape parameter of tem-
perature was found negative ξ = − 0.31, indicating that
the distribution of the extremes values is of Weibull
form. Hence, the variable exhibits tail behaviour such
that the upper tail is bounded at a finite upper point.

Diagnostic plots of Fig. 4 show that the fitted model
is satisfactory. The return levels for the GEV20 model
vary through the years because the model is non-station-
ary, which prevents the straightforward presentation of
results.
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Fig. 3 Model diagnostics for the GUM00 fit to the Riyadh maximum
temperature data shown. Quantile–quantile plot (top left), quantiles from
a sample drawn from the fitted model df against the empirical data
quantiles with 95% confidence bands (top right), density plots of

empirical data and fitted model df (bottom left) and return level plot
with 95% point-wise normal approximation confidence intervals
(bottom right)

Fig. 4 Model diagnostics for the
GEV20 fit to the Riyadh
maximum temperature data.
Quantile–quantile plot (top left),
quantiles from a sample drawn
from the fitted GEV df against the
empirical data quantiles with 95%
confidence bands (top right),
density plots of empirical data and
fitted GEV df (bottom left) and
return level plot with 95% point-
wise normal approximation
confidence intervals (bottom
right)
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5.2 Application of the GPD to the Maximum Daily
Temperatures

The POT approach requires that the exceedances be mutually
independent. However, in the case of temperature data, this
assumption may be violated because of serial correlation. For
example, a hot day is likely to be followed by another hot day.
To overcome this issue, a declustering approach, which in-
volves filtering the data series to remove the clustering and
gain a set of independent threshold exceedances, is used.

Prior to the declustering, we need to specify a threshold for
the GPD model. As we have explained in Sect. 2.2, the selec-
tion of the threshold is crucial for the GPD. However, there is
no systemic approach that allows for the choice of an optimal
threshold. In order to solve this problem, we find an appropri-
ate threshold for GP models by fitting them to a sequence of
thresholds in order to find the lowest threshold that yields
roughly the same parameter estimates as any higher threshold
(see [32] for further details).

Therefore, the GPD was adjusted to the maximum daily
temperatures. The maximum likelihood estimators of the mod-
ified scale (σ) and shape parameter (ξ) plotted versus u for the
daily maximum temperatures are shown in Fig. 5. If the GPD is
a reasonable model for the exceedances above a certain thresh-
old u, the estimates σ and ξ should remain near-constant [32].

The plot5 indicates a range of acceptable values for u. It ap-
pears that the results are not very sensitive to the choice of
threshold ranging between 41 and 44. Parameter perturbations
are small until the chosen threshold of 42 is reached. Such choice
was found reasonable. The reasoning underlying this choice is
that we need to have a value which is large enough so that the
limiting GPD of Eq. (6) is a good approximation for the

exceedance distribution, whilst not so large as to reduce unnec-
essarily the number of exceedances available for the analysis. In
order to confirm the rightness of our threshold choice, QQ plots
were created using data screened at different thresholds. From the
plots in Fig. 6, we can see that the chosen threshold of 42 appears
to do an adequate job of predicting most of the data. Based on
this, one could recommend u= 42 as the one to be used.

Before deciding whether there is a need for declustering or
not, we begin by looking at the auto-tail dependence function
plot, shown in Fig. 7, which allows us to check whether there
exists temporal dependence in threshold excess data.

The sample auto tail-dependence function6 based on ρ̂, an
auto-tail dependence estimate suggested by Reiss and Thomas
[71], along with a plot against increasing lags is produced. It
takes on values between zero and one (inclusive). If the values
over a high threshold are stochastically independent, then the
values of ρ̂ should be close to (1 – u) at each lag, where u is the
quantile threshold, which in the example above u = 0.90.
Inspection of Fig. 7 shows that all lags equal or greater than
five are fairly close to 0.4, but that the lag-one, two, three and
four terms are between 0.45 and 0.63, so the assumption of
independence may not be reasonable for these data.

In order to evaluate the strength of tail dependence, the
extremal index was estimated, using the threshold 42, for
maximum temperature data using the method of Ferro and
Segers [58]. Consequently, the optimal run length was deter-
mined. The estimate of the extremal index7 was found 0.031,
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Fig. 5 Adjustment of the GPD for
a range of 25 threshold values
from 40 to 48 °C. The modified
scale (σ*) and the shape
parameter (ξ) versus the threshold
for the daily maximum
temperature are shown for
Riyadh, KSA during the period
1980–2014

5 The idea of this plot is that if the exceedances of a high threshold u0 follow a
GPD with parameters ξ and σu0 , then for any threshold u such that u > u0,
the exceedances still follow a GPD with shape parameter ξu = ξ and
scale parameters are related by σu ¼ σu0 + ξ(u-u0). Let σu = σu+ξu (u-
u0). This new parametrisation does not depend on u any longer, given
that u0 is a reasonably high threshold. The threshold should be chosen at
the value where the shape and scale parameters remain constant.

6 The auto-tail-dependence functions can be defined as follows: Let X1,…, Xn
be a series of identically distributed random variables with common df F.
Assume, in addition, that the series has stationary dependencies in the upper
tail in the sense that for i ≤ n − h, P(Xi + h > F

−1(u)\Xi > F
−1(u)) =P(X1 + h >

F−1(u)\X1 > F
−1(u)) = ρ(u, h). The auto–tail–dependence functions ρ(u, h) at

the level u can be estimated by the sample version ρn u; hð Þ ¼ 1
n 1−uð Þ ∑

i<n
I

min xi; xiþhð Þ > x nu½ �:n
� 	

based on data x1, …, xn.
7 The extremal index is a useful indicator of how much clustering of
exceedances of a threshold occurs in the limit of the distribution. The extremal
index is bounded between 0 and 1, with large values indicating complete
independence and values near zero an indication of perfect dependence be-
tween the exceedances.
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with a 95% confidence level of (0.023, 0.043), which is sug-
gestive of strong tail dependence (in agreement with our
findings in Fig. 7). The estimated run length was found 7.
Having evidence of tail dependence, we decide to employ a
declustering scheme to filter out a set of approximately inde-
pendent threshold excesses.

In order to check the existence of any improvement
in our modelling based on the declustered data, we
present the results of the estimation of two stationary
GPD models. The first model, noted (model M1), is
applied to the data assuming the hypothesis of the in-
dependence and the second, noted (model M2), is fitted
to the declustered series of daily maximum temperature
using the optimal run lengths determined by the method
of Ferro and Segers [58].

Table 5 displays the parameter estimates for both
estimated models. For the model M2, we can see that
the shape parameter estimates is negative (ξ = − 0.39),
indicating a short-tailed distribution. Hence, the variable
exhibits tail behaviour such that the upper tail is bound-
ed at a finite upper point. The 95% confidence interval
for ξ is (− 0.483; − 0.311) does not contain zero which
implies the upper tail here may not decay exponentially.
The result shows that there is a strong evidence, at 5%

significance level to support the suitability of an upper
bounded distribution ξ < 0, for the declustered data.

For the model M1, we also obtain strong evidence in sup-
port of GPDwith ξ < 0. The shape parameter estimate is given
by ξ = − 0.420, which is different from the estimate value
found in the model M2.

From the Table 5, we note that when the GPD is fitted to the
declustered series, the scale parameter σ is overestimated, and
the shape parameter ξ is underestimated relative to the ap-
proach which uses all exceedances (without declustering).

Figure 8 shows the QQ plots for the declustered series
having used a run length of 7. Such plots indicate a good
model fit as the points follow the path of the line of equality.
In the same figure, we observe the QQ plot of the GPD fitted
to all exceedances. It seems that GPD fitted to the declustered
data (model M2) is the most appropriate for modelling our
data. We note that there is a substantial improvement in
GPD fit after clustered observations were filtered from the
analysis. In addition, the model M2 showed the lowest values
for both AIC and BIC information criteria.

Of greater practical interest are the estimated return
levels. Table 6 shows that the estimates are slightly dif-
ferent for the 20-year return periods but are greater for the
declustered data for the 50- and 100-year return periods.

Fig. 6 QQ plots for temperature data for a range of threshold
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Fig. 7 Auto-tail dependence function for daily temperature data using a quantile threshold of 0.90
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We can expect that a maximum temperature event will
reappear within the next 20, 50 and 100 years.

Within climate data, it is common to observe non-
stationarity due to different seasons having different cli-
mate patterns or due to more long-term trends owing to
climate change. Consequently, it is essential to take into
account of the non-stationarity when modelling ex-
tremes. As an example, we have plotted the daily max-
ima for the years 2013 and 2014 (Fig. 9). It is clear that
the temperatures follow a seasonal pattern: the tempera-
ture increases from January until it reaches a peak dur-
ing summer (June, July and August) and then decreases
until it reaches a minimum during winter (December,
January and February).

To avoid these seasonal variations when dealing with
modelling non-stationarity, one possibility to describe
the variation due to seasonality in exceedances could
be a separate season analysis. An alternative way con-
sists to incorporate sinusoidal functions of time to the
parameter estimates of the GPD model.

In this study, two non-stationary GPD models were
included in our analyses with the shape parameter is
assumed to be constant, that is ξ(t) = ξ, whilst σ(t) is
given by either a cycle variation in the scale parameter

(Eq. 10) or a linear time covariate in the scale parame-
ter (Eq. 11).

The results of fitting the non-stationary GPD models
are given in the Table 7. The results show that there is
a significant trend in the scale parameter for both
models.

By comparing the log-likelihood values of the two non-
stationary models, it seems that the non-stationary GPD
with cycle variation in the scale parameter is more appro-
priate than one with linear time covariate in scale
parameter.

The likelihood ratio test is used to compare the three
models and the test statistic and p values are listed in
Table 8. According to the p values of the likelihood ratio
comparison between the stationary GPD model (M1) and the
GPDmodel with cycle variation in the scale parameter (model
M3) and that with model with linear time covariate in the scale
parameter (model M4), the last two models provide a signifi-
cant improvement over the model M1 whilst the model M3 is
more appropriate.

However, by comparing the AIC and the BIC criteria in
Table 7 to those presented in Table 5, it appears that the GPD
fit after clustered observations is more reasonable. There is
strong evidence that the GPD model adequately estimates
the tail behaviour of the distribution of the data series once
the data was declustered.

5.3 Comparison of EVT Models

It is well known that theoretically the parameter ξ is the
same in the GEV and the GPD. However, due to different
amounts of data used in the block maxima analysis versus

Table 5 Summary of results from fitting the GPD models with and
without declustering

σ ξ AIC BIC

Model M1 2.62 (0.027) − 0.42 (0.003) 7611.49 7623.11

Model M2 2.68 (0.18) − 0.39 (0.04) 1047.41 1055

Note: Numbers in parentheses are standard errors
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Fig. 8 QQ plots of the GPD
models fitted to the data with
declustering (left) and without
declustering (right)
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exceedances, the parameter estimates are different. In fact,
if the block is annual, the GEV only considers annual
maxima, whilst the GPD tries to model all values that
exceed a certain threshold u.

In this paper, the Gumbel was found to be a reason-
able choice for modelling the annual block maxima;
however, by considering half-yearly block maxima, we
have found that the most applicable model is a non-
stationary GEV with a quadratic trend in the location
parameter. This result may be due the relatively small
sample sizes (30 observations) of annual maxima data
used in the first case. In fact, a simple look to the
Figs. 2 and 3 confirms that the GEV20 is more suitable
than the stationary Gumbel.

Concerning the GPD approach, we have found that
the GPD applied to the declustered data is better than
the fitting of the GPD to all exceedances, ignoring de-
pendence. There is a substantial improvement in GPD fit
after clustered observations were filtered from the
analysis.

By taking account of non-stationary in POT analyses, it
seems that the non-stationary GPD with sinusoidal functions
in the scale parameter is more appropriate for modelling our
data. However, it appears that the GPD fit after clustered ob-
servations is more reasonable.

Based on the analysis above, we may retain the GEV20
and the GPD fitted to the declustered data as the most
suitable models. In order to compare the performance of

them, we put the diagnostic plots for the two models side-
by-side (Fig. 10). We see that the three models fit the data
fairly well, but the GPD, when it was applied to the
declustered data, it appears to do a better job at the first.
This result is not surprising since it has been well con-
firmed in the literature that the GPD is the more efficient
approach in modelling extreme events. The discrepancies
seem to be because the GPD uses much higher proportion
of the original data values.

6 Conclusions

In this paper, we have studied extreme temperatures in
Riyadh city, KSA. Different approaches coming from ex-
treme value theory (EVT) are applied and compared to
model, analyse and forecast extreme weather conditions
under stationary and non-stationary contexts. In particular,
we have modelled the daily maximum temperatures re-
corded in Riyadh, the capital of Saudi Arabia, using the
GEV and GPD models.

Major findings and conclusions of this study are as follows:

& The stationary Gumbel model was found capable of
fitting extreme temperature series when applied to an-
nual block maxima. The developed non-stationary
GEV models did not show any advantage over the
stationary model according to the used criteria for

Table 6 Estimates of return levels
for the GPD models fitted to the
data without and with
declustering

20 years 50 years 100 years

Model M1 (without declustering) 48.96 (46.91;51) 49.05 (46.04; 52.05) 49.094 (45.07;53.12)

Model M2 (with declustering) 48.97 (46.51;51.43) 49.21 (45.69; 52.73) 49.343 (44.72;53.97)

Note: Numbers in parentheses are standard errors
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models selection. The last choice could also be justi-
fied by the main time series of the data that shows no
obvious evidence of climate change, which may well
not yet have an impact at that location. The return
level estimates reveal that the temperature that ex-
ceeds the current maximum temperature (48.2 °C) will
start to appear within the next 20, 50 and 100 years.

& Despite the absence of any obvious trends in yearly ex-
treme data, there was evidence of trend in the half-yearly
data. The non-stationary GEV model with a quadratic
trend in the location shows advantage over the stationary
models. This result is partially supported by Mann–
Kendall (MK) and the KPPS tests.

& The GPD approach fitted to the declustered data was
found to be superior to the GPD fitted to all
exceedances. Similar results were found for the return
levels; as for the retained stationary Gumbel model
fitted to annual block maxima, new records on maxi-
mum temperature event could appear within the next
20, 50 and 100 years.

& The non-stationary GPD with cycle variation in the
scale parameter is found to be more appropriate for
modelling the temperature data when compared to
the non-stationary GPD model with linear time covar-
iate in the scale parameter. However, it appears that
the GPD fit, when applied to declustered observations,
is more reasonable among all the GPD candidate
models.

& By comparing EVT models, our findings seem to
suggest that the three retained models (stationary

GEV, non-stationary GEV and the GPD with
declustering) to the temperature data are fairly well,
but the GPD, when applied to the declustered data,
appears to do a better job at the first. These results
are not surprising since it is well confirmed in the
literature that the GPD is a more efficient approach
than the GEV.

The main outcomes of this study are broadly consistent
with the findings of Tanarhte et al. [72], who studied the
characteristics of heat waves in the eastern Mediterranean
and Middle East region during the period 1973–2010.
Their results, based on stationary extreme value theory,
reveal that the return levels calculated for the individual
hot days and found to be very high in the Arab Gulf
region. In particular, they reported that the high tempera-
ture of 50 °C is expected to be exceeded every 20 years in
Dhahran (Saudi Arabia) and every 10 years in Kuwait,
48 °C every 10 years in Doha (Qatar) and 46 °C every
10 years in Eilat (Israel). Our results are also in line with
previous studies that used climate indices for the analysis
of extreme temperatures. For example, we can cite the
results of Zhang et al. [73] for the Middle East region
and Athar [12] for Saudi Arabia, in which significant,
increasing trends have been found in the annual maximum
of daily maximum temperature.

In this paper, we have shown how extreme value the-
ory serves as a useful analysis tool in describing extreme
temperature events. The study improves our understand-
ing of temperature events in Riyadh city, and it may be
beneficial for quantifying future heat wave properties as
part of forecasts or longer-term projections from climate
models. Additionally, it may offer some insights, for pol-
icy makers and planners, such as the prediction of long
run temperature in future relative. However, our study
concludes with the importance of regarding climate
change exposure of this region, instead of using a single
station that may not be representative for the whole area,

Table 7 Summary of results from
fitting the non-stationary GPD
models

σ0 σ1 σ2 ξ AIC BIC

Model M3

(GPD with
linear time
covariate in
scale
parameter)

0.88 (0.007) 0.00012 (0.00002) – − 0.41 (0.002) 7605.74 7623.17

Model M4

(GPD with
cycle variation
in scale
parameter)

− 3.27 (0.63) 1.24 (0.15) 4.10
(0.62)

− 0.43 (0.01) 7575.68 7598.92

Note: Numbers in parentheses are standard errors

Table 8 Likelihood ratio test results for comparison of models 1 versus
3 and 1 versus 4

LR statistic p value

Model 1 versus model 3 39.81 0

Model 1 versus model 4 7.75 0.005
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as we were not able to confirm the impact of climate
change based only in these observations.

The results we have presented show the need for more
investigation and therefore can be extended in several
ways. In this study, we only considered data from a single
station to demonstrate the EVT methodology for climate
studies. It is not realistic to extrapolate the findings of this
study for larger spatial scales such as the entire Saudi area
without further analysis using temperature data from mul-
tiple observation stations within the area. In addition, non-
stationarity in extremes increases the complexity in
modelling. This is mainly due to the subjectivity involved
in choosing appropriate parametric functions for season-
ality and long-term trends.

Accordingly, the statistical modelling can further be ex-
panded and improved in various ways. For example, multiple
observation stations could be used to further test the statistical
significance of the results presented in this study and their
generalization for the whole region. Two scientific concerns
that have recently emerged in the field of climate research
motivate the extension of the present work as previously men-
tioned. First, the Nature Climate Change paper of Pal and
Eltahir (2016), BFuture temperature in southwest Asia
projected to exceed a threshold for human adaptability ,̂ ad-
dresses this region specifically and shows that the Persian/
Arab gulf region and parts of southwest Asia could be unin-
habitable before the turn of the century as temperatures are
expected to rise to intolerable levels. Second, the IPCC reports
an expected profound climate change that may radically
change the picture of our climate.

Finally, researchers could extend our framework to jointly
model, via copula functions, the dependence relation between
extreme temperatures and air pollution as they are well known
to be closely coupled and generally move together.
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