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Abstract The main aim of this study was to construct several
regression models of air quality using techniques based on the
statistical learning, in the metropolitan area of Oviedo, in north-
ern Spain. In this research, a hybrid particle swarm optimization-
based evolutionary support vector regression is implemented to
predict the air quality from the experimental dataset (specifically,
nitrogen oxides, carbon monoxide, sulfur dioxide, ozone, and
dust) collected from 2013 to 2015 in the metropolitan area of
Oviedo. Furthermore, a multilayer perceptron network (MLP)
and the M5 model tree were also fitted to the experimental
dataset for comparison purposes. Finally, the predicted results
show that the hybrid proposed model is more robust than the
MLP and M5 model tree prediction methods in terms of statisti-
cal estimators and testing performances.

Keywords Support vectormachines (SVMs) . Particle swarm
optimization (PSO) . Artificial neural networks (ANNs) .M5
model tree . Air quality control andmodeling

1 Introduction

Air pollution can be defined as the introduction into the atmo-
sphere of chemicals, particulates, or biological elements that can
cause discomfort, disease, and even death to humans, animals, or

plants. It can also deteriorate the natural or built environment
[1–3]. Air pollution has many different sources: (a) natural
sources such as volcanic eruptions andwindblown dust; (b) static
man-made sources such as factories or power plants, or dry-
cleaning and degreasing operations; and (c) mobile man-made
sources such as motorized vehicles, planes, and trains, all of
which contribute to air pollution. Air pollution can be of natural
or human origin.

In air quality control, the first response to a known or potential
threat to the established air quality standard or guideline is to
reduce it. State Implementation Plans (SIPs) formalize such re-
sponses in Spain [1–3]. Air pollution is an important environ-
mental problem in metropolitan areas [1–5] like Oviedo
(Principality of Asturias, Spain). It may cause health problems
that lead to difficulty in breathing, coughing, and worsening of
existing cardiac and respiratory problems [3–5]. For instance,
diesel exhaust (DE) is one of the main sources of emission of
particulate matter originated during combustion. DE has been
linked to an increase in thrombosis and acute vascular dysfunc-
tion in several human health studies. This would explain the link
between increased cardiovascular morbidity and mortality and
the previously described particulate matter air pollution [1–3, 6].

Oviedo is the administrative center of the Principality of
Asturias in northern Spain. It has a population of 221,202 and
covers a land area of 186.65 km2. It stands at 232 m above sea
level and has a population density of 1185.12 inhabitants per
square kilometer. The climate of Oviedo, like in the rest of
northwest Spain, is more diverse than in other parts of Spain.
Summers are generally warm and humid, with sunshine but
also some rain. Winters are cold and very wet. Snow is usually
present from October to May in the mountains that surround
the city. Both rain and occasional snow are regular features in
the winters of Oviedo.

The coal-fired power plant in Soto de Ribera is located 7 km
south of the city of Oviedo (Fig. 1). This plant power supplies
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most of the electrical energy consumed in Oviedo. The geo-
graphical locations of the three meteorological stations and the
Soto de Ribera coal-fired power plant are shown in Fig. 1. The
Soto de Ribera plant is situated in the district of Ribera de Arriba
at an altitude of 126.5 m above sea level.

The monitoring of meteorological pollution, measuring
components such as carbon monoxide (CO), sulfur dioxide
(SO2), nitric oxide (NO), nitrogen dioxide (NO2), ozone
(O3), and particulate matter less than 10μm (PM10), is becom-
ing increasingly important due to their adverse effects on hu-
man health [1–3, 7–11]. Therefore, the EU and many national
environmental agencies have established standards and air
quality guidelines for permissible levels of these contaminants
in the air [5, 11, 12]. The main aim of this work is to build a
model for the average daily pollution that would be useful to
the authority responsible for air pollution regulation in the
corresponding region. The data used for this study has been
collected within 3 years, specifically from 2013 to 2015. The
numerical experiments applying the PSO-SVM-based tech-
nique have obtained good daily modeling accuracy for all
pollutants considered. They will be presented and discussed
in this paper.

To fix ideas, the aim of this study is to evaluate the appli-
cation of the support vector machines (SVMs) approach
[13–20] in combination with the evolutionary optimization
technique known as particle swarm optimization (PSO)
[21–24], as well as the multilayer perceptron (MLP) [25–31]
and M5 model tree [32–34] to identify the air quality in the
metropolitan area of Oviedo (northern Spain) on a local scale,
comparing the results obtained. The theoretical support for the

learning algorithms of SVMs is given by the statistical learn-
ing theory and structural risk minimization. Specifically, five
PSO-SVM-based models were created for NO2, SO2, and
aerosol particles less than 10 μm (PM10) as a function that
used the other measured relevant pollutants in air quality as
independent variables, namely, NO, CO, and O3. The purpose
was to obtain accurate concentration estimates of the pollut-
ants NO2, SO2, and PM10 [35–37]. SVM models can be used
as an alternative to the classic regression approaches, and they
are a new family of models that can be used for estimating
values from very different areas [13–20]. The five PSO-SVM-
based models were found to improve the accuracy in the case
of nonlinear regression problems, such as those related to air
quality, which are studied in this paper.

The PSO technique was successfully used here to optimize
the tuning of the kernel optimal hyperparameters in the SVM
training phase. PSO was introduced by Kennedy and Eberhart
in 1995 [21] and is a swarm intelligence (SI) bio-inspired algo-
rithm. The PSO is based on the simulation of the flocking of
birds [21–24] and it is similar to other evolutionary computation
SI-based algorithms. It also exploits the model of social sharing
of information [38, 39]. PSO hybridized with SVM (PSO-SVM)
models [38, 39] was used as a learning tool, and trained to esti-
mate the air quality in themetropolitan area of Oviedo from other
air pollutants on a local scale.

Model, together with the MLP model and M5 model tree
[25–34], was used as automated learning tools, training them in
order to predict the air quality in the metropolitan area of Oviedo
from the operation physical-chemical input pollutants measured
experimentally.

This innovative paper is organized as follows: firstly, the nec-
essarymaterials andmethods to carry out the study are described.
Secondly, the results obtained are shown and discussed. Finally,
the main conclusions drawn from the results are presented.

2 Materials and Methods

2.1 Sources and Types of Air Pollution

An air pollutant is a substance contained in atmospheric air
that can be unhealthy for humans and the environment.
Pollutants can be found in the form of solid particles, liquid
droplets, or gases. They may be man-made or natural and can
be classified as primary or secondary. Mostly, primary pollut-
ants come from a process, such as carbon monoxide from a
motor vehicle exhaust, sulfur dioxide from factories, or ash
from a volcanic eruption. Secondary pollutants form in the air
when primary pollutants interact or react, and therefore, they
are not emitted directly. For instance, an important secondary
pollutant is ground-level ozone, which is one of the many
secondary pollutants which make up photochemical smog
[4, 35–37, 40]. Some pollutants can be both primary and

Fig. 1 The geographical location of the meteorological stations in the
metropolitan area of Oviedo (northern Spain) and Soto de Ribera power
plant (a coal-fired power plant near the city of Oviedo)
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secondary, that is, they have been both emitted directly and
formed from other primary pollutants.

Human activity produces major primary pollutants such as
[1–12, 35–37, 40–42] the following:

& Particulate matter (PM): also called atmospheric particulate
matter, or fine particles. These are tiny particles of solids or
liquids suspended in a gas. On the other hand, an aerosol
would indicate particles and gas together.

& Sulfur oxides (SOx): in particular, sulfur dioxide, a chemical
compound with the formula SO2. The combustion of coal
and petroleum generates sulfur dioxide because these often
contain sulfur compounds.

& Nitrogen oxides (NOx): mainly NO2 that is emitted during
high-temperature combustion. The first product formed is
NO, and when NO oxidizes further in the atmosphere, it
becomes NO2.

& Carbonmonoxide (CO): is produced by the incomplete com-
bustion of fuels such as coal, wood, or natural gas.

Secondary pollutants include [1–12, 35–37, 40–42] the
following:

& Particulate matter: this is composed of gaseous primary pol-
lutants and compounds in photochemical smog. Smog is a
special type of air pollution. Typical smog results from large
amounts of coal burning in a particular area and is caused by
a mixture of smoke and sulfur dioxide.

& Ground-level ozone (O3): this develops from NOx and vola-
tile organic compounds (VOCs). Short-term exposure to el-
evated levels of ozone can be the origin of eye and lung
irritations.

Regarding trends in air quality, the Clean Air Act of 1970
established the setting of standards for four of the primary pol-
lutants (aerosols, sulfur dioxide, carbon monoxide, and nitrogen
oxides) and the secondary pollutant ozone. Back then, in 1970,
these five pollutants were identified as the most widespread and
undesirable. Nowadays, lead has been added and they are known
collectively as the criteria pollutants and are covered by the
United States National Ambient Air Quality Standards
(Table 1) [1–12]. The primary standard for each pollutant can
be seen in Table 1, which is based on the highest level that can be
tolerated by humans without noticeable negative effects, minus a
10–50% margin for safety reasons.

2.2 Experimental Dataset

The government of Asturias, specifically its Section of
Industry and Energy, has three air quality monitoring stations
located throughout the city of Oviedo (Fig. 1). Every 15 min,
measurements are taken of the following primary and

secondary pollutants: SO2, nitrogen oxides (NO and NO2),
CO, PM10, and O3.

The six environmental pollutants studied with the aid of these
automatedmonitoring stationsweremeasuredwith the following
sensors: (a) analyzer API 100A for SO2 gas, (b) analyzer API
200A forNOx gases, (c) analyzer TELEDYNE300E for COgas,
(d) analyzer TELEDYNE 400E for O3 gas, and (e) analyzer
DASIBI 7001 for PM10 aerosol: this last is based on the reduc-
tion of beta rays to measure the concentration of the airborne
particulate matter with a diameter less than 10μm. These sensors
collect the data that is processed and delivered on average for the
whole city every day. Thus, we have data for the pollutants
mentioned above each day, from January 2013 to December
2015. The monthly average concentrations are shown in Table 2.

It is thus possible to study the trend in concentrations of the
preceding pollutants in the years 2013, 2014, and 2015 [1–12,
35–37, 40–42].

Figure 2 shows the monthly concentrations of NO2, SO2, and
CO over 3 years (between 2013 and 2015). The amount of NO2

fluctuated significantly with several maxima of 51 μg/m3 in
January 2013, 50 μg/m3 in December 2013, 40 μg/m3 in
January and February 2015, and 46 μg/m3 in December 2015,
respectively. These maxima corresponded to the months of
highest energy consumption in homes due to heating and a great-
er density of cars on the roads during the winter season.
Likewise, the minima in the concentration corresponded to the
summermonths. According to theUSEPAAir Quality Standards
(Table 1), the maximum permissible concentration of NO2

expressed as annual arithmetic mean is 100 μg/m3. The annual
arithmetic means for this gas during the years 2013, 2014, and
2015 were 31.8, 27.0, and 34.3 μg/m3, respectively. Thus, NO2

concentrations are also below the maximum permitted and meet

Table 1 National Ambient Air Quality Standards by the United States
Environmental Protection Agency (USEPA) [1–12, 40–42]

Pollutant Maximum allowable
concentrations

Carbon monoxide (CO)

8-h average 9 ppm (10 mg/m3)

1-h average 35 ppm (40 mg/m3)

Nitrogen dioxide (NO2)

Annual arithmetic mean 0.053 ppm (100 μg/m3)

Ozone (O3)

1-h average 0.12 ppm (235 μg/m3)

8-h average 0.08 ppm (157 μg/m3)

Particulate < 10 μm (PM10)

Annual arithmetic mean 50 μg/m3

24-h average 150 μg/m3

Sulfur dioxide (SO2)

Annual arithmetic mean 0.03 ppm (80 μg/m3)

24-h average 0.14 ppm (365 μg/m3)
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air quality standards for a healthy person during these 3 years,
including emission peaks.

Similarly, the concentration of SO2 also fluctuated slightly,
with maxima of 20 μg/m3 in December 2013, 16 μg/m3 in
January 2015, and 15 μg/m3 in November 2015, respectively.
Oncemore, thesemaxima corresponded to thewintermonths. It
is alsopossible toobserve that the concentrationofSO2 followed
approximately similar behavior to that of the concentration of
NO2, except that the concentration of SO2 was much smaller.
This trend is general throughout the years studied, and it is only
logical, as a coal-fired power plant is close to this area (Fig. 1).

Finally, the concentration of CO also went up and down slightly
but showedmoreerratic behavior, and themaximacorresponded
to the winter months. Similarly, following the USEPA Air
Quality Standards [1–12, 40–42] (Table 1), the maximum per-
missible concentration of CO expressed as an annual arithmetic
mean is 3.33 mg/m3. The annual arithmetic means for this gas
during the years 2013, 2014, and 2015 were 0.39, 0.32, and
0.37 mg/m3, respectively. Hence, the concentrations of CO dur-
ing these 3 years, including emission peaks, were below the
highest level that can be tolerated by humans, according to
USEPAAir Quality Standards [1–12].

Table 2 Monthly average air
pollution concentration in the
metropolitan area of Oviedo from
January 2013 to December 2015

Month of year SO2

(μg/m3)
NO
(μg/m3)

NO2

(μg/m3)
CO
(mg/m3)

PM10

(μg/m3)
O3

(μg/m3)

January 2013 15 64 51 0.48 31 32

February 2013 14 43 41 0.47 29 36

March 2013 10 30 34 0.40 27 47

April 2013 8 9 22 0.37 33 52

May 2013 9 6 17 0.29 29 54

June 2013 5 8 17 0.35 31 48

July 2013 9 9 19 0.37 36 52

August 2013 13 3 23 0.37 31 48

September 2013 12 20 31 0.38 34 40

October 2013 9 28 33 0.46 28 26

November 2013 13 42 44 0.35 25 22

December 2013 22 71 50 0.43 37 28

January 2014 11 41 40 0.37 27 37

February 2014 8 24 37 0.42 25 46

March 2014 11 25 36 0.42 37 47

April 2014 7 12 29 0.36 25 54

May 2014 7 11 26 0.37 20 59

June 2014 7 9 22 0.36 27 64

July 2014 9 13 18 0.24 24 47

August 2014 7 6 21 0.24 25 35

September 2014 9 17 24 0.26 30 32

October 2014 9 15 21 0.26 28 40

November 2014 7 13 23 0.27 24 32

December 2014 8 32 27 0.32 31 28

January 2015 16 56 40 0.41 29 22

February 2015 9 32 40 0.30 22 32

March 2015 5 17 34 0.31 35 35

April 2015 8 12 31 0.29 39 42

May 2015 5 6 29 0.19 30 42

June 2015 7 31 26 0.22 34 43

July 2015 5 22 31 0.24 33 46

August 2015 7 8 27 0.32 30 41

September 2015 5 11 25 0.47 29 34

October 2015 9 29 39 0.47 28 21

November 2015 15 64 44 0.56 34 26

December 2015 13 68 46 0.62 32 27
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In a similar way, Fig. 3 shows the monthly concentrations of
PM10, O3, andNO from 2013 to 2015 in themetropolitan area of
Oviedo. PM10 went up and down slightly but remained quite
stable at around 30 μg/m3 with two spikes at 37 μg/m3 in
December 2013 and March 2014, and a minimum of 20 μg/m3

in May 2014 and a maximum of 39 μg/m3 in April 2015, re-
spectively. In terms of standard air quality, following the USEPA
Air Quality Standards (Table 1), the maximum permissible con-
centration of PM10 expressed as annual arithmeticmean is 50μg/
m3. The annual arithmetic means for this pollutant during the
years 2013, 2014, and 2015 were 30.9, 26.9, and 31.3 μg/m3,
respectively. Therefore, the aerosol concentrations are below the
permissible maximum for a healthy person during these 3 years,

although emission peaks are close to this value. This behavior
can give rise to serious health problems for the population, such
as chronic diseases and even death.

Similarly, the concentration of NO fluctuates enormously,
with maxima of 64 μg/m3 in January 2013, 71 μg/m3 in
December 2013 (the highest spike), 56 μg/m3 in January 2015,
and 68 μg/m3 in December 2015, respectively. Again, these
maxima corresponded to the winter months. Furthermore, con-
centration minima of NO took place during the summer months.
Its values were 3 μg/m3 in August 2013, 6 μg/m3 in August
2014, and 8 μg/m3 in August 2015, respectively. Although the
initial product of combustion is NO, this gas is rapidly oxidized
and converted into NO2. Its residence time in the atmosphere is

Fig. 2 Monthly trend of nitrogen
dioxide (NO2), sulfur dioxide
(SO2), and carbon monoxide
(CO) concentrations during the
years 2013, 2014, and 2015 in the
metropolitan area of Oviedo

Fig. 3 Monthly trend of
particulate matter (PM10), ozone
(O3), and nitric oxide (NO)
concentrations during the years
2013, 2014, and 2015 in the
metropolitan area of Oviedo
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very short and the USEPAAir Quality Standards does not take it
into account [1–12].

Finally, the concentration of O3 also fluctuated considerably,
but its behavior is just the opposite of that of NO, that is, maxima
of O3 corresponded to minima of NO and vice versa. This trend
is general throughout the years studied, since ozone is associated
with photochemical reactions, which require the presence of
strong sunlight as a catalyst. The Clean Air Act directs the
USEPA to set National Ambient Air Quality Standards for sev-
eral pollutants, including ground-level ozone, and cities out of
compliance with these standards are required to take steps to
reduce their levels. In May 2008, the USEPA lowered its ozone
standard from 80 to 75 μg/m3. This proved controversial, since
the agency’s own scientists and advisory board had recommend-
ed lowering the standard to 60 μg/m3, and the World Health
Organization recommends 51 μg/m3. Many public health and
environmental groups also supported the 60-μg/m3 standard.
The annual arithmetic means for this gas in Oviedo urban area
during the years 2013, 2014, and 2015 were 40.4, 43.4, and
34.3 μg/m3, respectively. Therefore, the concentrations of this
gas were below the maximum permitted, including emission
peaks, and meet air quality standards during these 3 years.
However, in June 2014, a maximum of 68 μg/m3 was reached,
therefore exceeding the 60-μg/m3 recommendation. This fact
could be dangerous for the health of the population of Oviedo.
There is a great deal of evidence to show that high concentrations
of ozone, created by high concentrations of pollution and day-
light UV rays at the Earth’s surface, can harm lung function and
irritate the respiratory system. Exposure to ozone, and the pollut-
ants that produce it, has been linked to premature death, asthma,
bronchitis, heart attack, and other cardiopulmonary problems.

2.3 Support Vector Machine Method

SVMs are a set of supervised learning algorithms closely related
to classification and regression problems [13–20]. This last meth-
od is called support vector regression (SVR). Now, we want to
predict a real-valued output y′. The regression function y = f(x)
for our training data T ¼ xi; yið Þf gLi¼1, where yi ∈ℜ and xi ∈
ℜD, with L the number of the samples in the training dataset and
D the dimension of the input dataset, is as follows:

f xið Þ ¼ wTxi þ b ð1Þ
where w and b are, respectively, the weight vector and
intercept of the model. In general, the regression SVM
will use a sophisticated penalty function, not assigning a
penalty if the predicted value yi is less than a distance ε
away from the actual value ti, that is to say, if |ti − yi| < ε.
The region bound by yi ± ε for all i is called an
ε-insensitive tube (Fig. 4). Another modification to the
penalty function is that output variables which fall outside
the tube are given through two slack variable penalties

depending on whether they lie above (ξ+) or below (ξ−)
the tube (where ξ+ , ξ− > 0 for all i):

ti≤yi þ εþ ξþ ð2Þ
ti≥yi−ε−ξ

− ð3Þ
The error function for SVR can be written as [13–20]:

C ∑
L

i¼1
ξþi þ ξ−i
� �þ 1

2
wk k2 ð4Þ

where C denotes the penalty or cost parameter between empiri-
cal and generalization errors and ξþi ; ξ

−
i are the slack variables

defined in Fig. 4. In order to minimize this error function, it is
mandatory to take into account the constraints (2) and (3) jointly.
To this end, the Karush-Kuhn-Tucker (KKT) optimality condi-
tions [13–20] are applied. These are first-order necessary condi-
tions for a solution in nonlinear programming to be optimal and
allowing inequality constraints. If we introduce Lagrange multi-
pliers αþ

i ≥0, α−
i ≥0 for all i, the optimization problem for iden-

tifying the regression model can be formulated as follows
[13–20, 43, 44]:

max
αþ;α−

∑
L

i¼1
αþ
i −α

−
i

� �
ti−ε ∑

L

i¼1
αþ
i −α

−
i

� ��
−
1

2
∑
L

i; j¼1
αþ
i −α

−
i

� �
αþ

j −α
−
j

� �
xi⋅x j

#

s:t:

0≤αþ
i ≤C

0≤α−
i ≤C

∑
L

i¼1
αþ
i −α

−
i

� � ¼ 0

8
>><

>>:

9
>>=

>>;
for all i

ð5Þ

Therefore, new predictions y′ can be obtained as:

y
0 ¼ ∑

L

i¼1
αþ
i −α

−
i

� �
xi⋅x

0 þ b ð6Þ

In nonlinear cases, we have to proceed by mapping the input
low-dimensional vectors via a nonlinear function Φ :ℝp→F,
whereF is the feature space ofΦ [13–20, 43, 44]. After nonlinear
mapping, the regression function has the following form:

f xð Þ ¼ wTΦ xð Þ þ b ð7Þ

The solution of this quadratic optimization problem by the
Lagrangian dual method [13–20] provides the numerical
method with the prediction value:

f xð Þ ¼ wTΦ xð Þ þ b ¼ ∑
L

i¼1
αþ
i −α

−
i

� �
K x; xið Þ þ b ð8Þ

where αþ
i ;α

−
i are again the Lagrange multipliers of the opti-

mization problem’s dual form and K(xi, xj) is the kernel func-
tion satisfying Mercer condition [13–20, 43, 44], and can be
described as:

K xi; x j
� � ¼ Φ xið ÞTΦ x j

� � ð9Þ
Typical kernel functions described in the bibliography

[13–20, 43, 44] are as follows:

& Radial basis function (RBF kernel):

k xi; x j
� � ¼ e−σ xi−x jk k2

ð10Þ
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& Polynomial kernel:

k xi; x j
� � ¼ σxi⋅x j þ a

� �b ð11Þ

& Sigmoid kernel:

k xi; x j
� � ¼ tanh σxi⋅x j þ a

� � ð12Þ

& where a, b, and σ are parameters defining the kernel’s
behavior.

In summary, to use an SVM to solve a regression problem for
data that is not linearly separable, firstly, we need to choose a
kernel and relevant parameters that can be expected to map the
nonlinearly separable data into a feature space where it is linearly
separable.

2.4 The Particle Swarm Optimization Algorithm

PSO is a mathematical optimization/search technique. The PSO
is usually used in search spaces with many dimensions. PSO
methods were originally attributed to the researchers Kennedy,
Eberhart, and Shi [21, 22]. They were initially conceived to
elaborate models of social behavior, such as the movement de-
scribed by living organisms in a flock of birds or a shoal of fish.
The algorithm was then simplified and proved to be suitable for
solving optimization problems. PSO allows amathematical prob-
lem to be optimized using a population of candidate solutions,
denoted as particles, moving throughout the search space accord-
ing to mathematical rules that take into account the position and
velocity of the particles. Themotion of each particle is influenced
by its best local position so far, as well as by the best global

positions encountered by other particles as the particles travel
through the search space. The theoretical basis of this perfor-
mance is to make the particle cloud converge quickly to the best
solutions. Furthermore, PSO is a metaheuristic technique, as it
assumes no hypotheses about the problem to be optimized and
can be applied in large spaces of candidate solutions.

Let S be the number of particles in the cloud, each of which
has a position xi ∈ℜn, in the search space and a speed vi ∈ℜn.
Similarly, we will represent the initial position of the particle as
x0i and its velocity as v0i , both chosen randomly. The best posi-
tions correspond to the best values of the fitness function evalu-
ated for each particle. Positions and velocities of each particle are
updated taking into account these values, as follows:

vkþ1
i ¼ ωvki þ ϕ1 gk−xki

� �þ ϕ2 Iki −x
k
i

� � ð13Þ

xkþ1
i ¼ xki þ vkþ1

i ð14Þ

The velocity of each particle, i, at iteration k, relies on three
components: (a) the velocity term in iteration k, vki , concerned by
the constant inertia weight, ω; (b) the term called cognitive
learning, which is the difference between the particle’s best po-

sition found up until now (called lki , local best) and the particle’s

current position xki ; and (c) the term of social learning, which is
the difference between the best overall position found up to now
in the whole swarm (called gk, global best) and the particle’s
current position xki . These two last terms are concerned in Eq.
(13) by factors ϕ1 = c1r1 and ϕ2 = c2r2. In these two multipliers,
c1 and c2 are constants, while r1 and r2 are random numbers
distributed uniformly in the interval [0, 1]. Besides, in this study,

Fig. 4 Regression with ε-insensitive tube for one-dimensional problem
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the Standard PSO 2011 [45] has been utilized. It implies some
improvements with respect to the preliminary implementations
[21–24, 45]. Therefore, here, the PSO parameters are chosen as:

ω ¼ 1

2ln2
and c1 ¼ c2 ¼ 0:5þ ln2 ð15Þ

TheswarmtopologydefineshowtheNpparticlesof theswarm
are connectedwith eachother to interchange informationwith the
globalbest. In theactualStandardPSO,eachparticle informsonly
K particles, usually three chosen at random. A pure pseudo-code
of the PSO algorithm is illustrated in Algorithm 1 below.

Algorithm 1. Pseudo-code of the PSO algorithm

Input: PSO population of particles
T

niii xx ,1, ,...,x for Npi ,...,1 ; Np is the number 

of particles in the population

Output: The best solution g and its corresponding objective function 

value xminmin ff

1: initialize_particles;

2: 0eval ;

3: while termination_condition_not_met do

4:     for 1i to Np do

5:         if evaluate_the_new_solution_objective_function ix ;

6:          1evaleval ;

7:           if ii IBestf then

8:               ;;xI iiii fIBest // save the local best solution

9:           end if

10:           if minffi then

11:              ;;xg min ii ff // save the global best solution 

12:           end if

13:           ix generate_new_solution_with_equations_13_and_14 ix ;

14:     end for

15:  end while
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2.5 Artificial Neural Network: Multilayer Perceptron

Artificial neural networks (ANNs) are a computational model
based on a large set of simple neuronal units (artificial neu-
rons), roughly similar to the behavior observed in axons of
neurons in biological brains [25–31]. The MLP is a kind of
ANNmade up of multiple layers that allows problems that are
not linearly separable to be solved. Indeed, the MLP consists
of an input layer and an output layer and one or more hidden
layers of nonlinearly activating nodes [25, 26, 46]. It is a
modification of the standard linear perceptron in that it uses
three or more layers of neurons (nodes) with nonlinear activa-
tion functions (Fig. 5).

The MLP neural network introduces the function

f : X⊂Rd→Y⊂Rc, which can be written as follows [25–31]:

f xð Þ ¼ ϕ ψ xð Þð Þ¼ ϕ∘ψð Þ xð Þ
ϕ : X⊂Rd→U⊂Rh

ψ : U⊂Rh→Y⊂Rc

ð16Þ

In Eq. (16), U is the space of hidden variables, termed the
characteristics space. Relying on the established architecture, we
have [25–31]:

& ψ j xð Þ ¼ ψ wT
j xþw j0

� �
: ψ is the activation function of

the neurons of the hidden layer, wj ∈ℜd is the vector of
parameters of the different neurons, and wj0 ∈ℜ is the

threshold value. The three types of activation function ψ
are sigmoid, logistic, and hyperbolic tangent.

& ϕ j uð Þ ¼ ϕ cTj uþc j0
� �

: ϕ is the activation function of the

neurons of the output layer, cj ∈ℜh is the vector of weights
of the neurons, and cj0 ∈ℜ is the threshold value. ϕ is
normally the identity function, Heaviside function, or a
dichotomous function.

The function concerned by the MLP is written as [25–31]:

f xð Þ ¼ ∑
h

j¼1
c jψ wT

j xþ wj0

� �
þ c0 ð17Þ

2.6 M5 Model Tree

The original algorithm M5 model tree was invented by Quinlan
[32]. The M5 model tree (M5Tree) combines a conventional

Fig. 5 Diagram of anMLP network with h neurons in the hidden layer, d
neurons in the input layer, and a single neuron in the output layer

Table 3 Set of physical-chemical input variables used in this study and
their names along with their mean and standard deviation

Input variables Name of
the variable

Mean Standard
deviation

SO2 (μg/m
3) Sulfur dioxide 26.50 9.42

NO (μg/m3) Nitric oxide 68.32 12.47

NO2 (μg/m
3) Nitrogen dioxide 264.33 28.79

CO (mg/m3) Carbon monoxide 48.21 34.83

PM10 (μg/m
3) Aerosol particles less than 10 μm 0.47 0.13

O3 (μg/m3) Ozone 1.24 0.23

Fig. 6 Flowchart of the new hybrid PSO-RBF-SVM-based model

Table 4 Optimal hyperparameters of the fitted PSO-RBF-SVM-based
model found with the particle swarm optimization (PSO) technique for
nitrogen dioxide (NO2) in the metropolitan area of Oviedo

Kernel Values of optimal hyperparameters

Linear Regularization factor C = 1.4206 × 10−1, ε = 6.0791 × 10−2

Quadratic Regularization factor C = 6.8125 × 101, ε = 2.9739 × 10−6,
σ = 1.4150 × 10−2, a = 4.7847 × 10−2, b = 2

Cubic Regularization factor C = 3.4989 × 101, ε = 3.1132 × 10−7,
σ = 5.1929 × 100, a = 8.6717 × 10−2, b = 3

Sigmoid Regularization factor C = 1.5314 × 10−1, ε = 1.3675 × 10−5,
σ = 2.1554 × 10−1, a = 1.3682 × 10−5

RBF Regularization factor C = 8.7135 × 100, ε = 1.3221 × 10−6,
σ = 3.2069 × 101
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decision tree with the possibility of linear regression functions at
the nodes (leaf) [33, 34]. The creation of the M5 model tree
requires two different phases [46, 47]. During the first period,
the dataset is divided into subsets so that a decision tree is built.
The splitting criterion uses the standard deviation of the class
values and the expected lowering in this error. The standard
deviation reduction (SDR) can be calculated as [32–34, 48]:

SDR ¼ sd Tð Þ−∑ Tij j
Tj j sd Tið Þ ð18Þ

where T is the set of instances that reach this node, Ti are the
sets that result from splitting the node according to the chosen
attribute, and sd is the standard deviation of the class values
[47, 48]. The splitting process finishes when the class values of
the instances that reach a node vary only slightly, that is to say,
when their standard deviation is only a small fraction (for in-
stance, less than 5%) of the standard deviation of the original
instance set. As a result of the splitting process, the data on the
secondary nodes have less standard deviation compared to the
parent nodes and thus are purer children. M5Tree chooses the
one that maximizes the expected error reduction after scanning
all possible divisions. This splitting often gives rise to an ex-
tremely large tree-like structure and may produce unsatisfacto-
ry performance. To address this problem, the huge tree is
pruned and the nodes of the tree are substituted by linear re-
gression functions in the second phase [49].

3 Results and Discussion

The physical-chemical input variables taken into account in
this research are shown in Table 3 [1–12, 35–37, 40–42]. The
total number of predicting variables used to carry out the re-
gression of the hybrid PSO-SVM-based model, MLP ap-
proach, and M5 model tree was 5. Besides, the total number
of output-predicted dependent variables was 3: NO2, SO2, and
PM10. Indeed, we have constructed three different models
taking as dependent variables NO2, SO2, and PM10, respec-
tively. Additionally, as independent input variables (predictor
variables), the other remaining variables listed in Table 3 were
also considered.

On the one hand, the SVM techniques are very dependent on
the values of their hyperparameters. Also, the number of
hyperparameters relies on the type of kernel chosen. Among
these, we can mention: the regularization factor C (Eq. 4), the
value of ε that defines the width of the insensitive tube (permitted
error), and the remaining hyperparameters commonly called a, b,
and σ. For instance, grid search, genetic algorithms, and artificial
bee colony (ABC) are optimization methods habitually used to
determine the appropriate SVR parameters of each kernel [19,
20]. The grid search method used by most computational codes
is a brute force method, and as such, almost any optimization

Table 7 Weights of the variables in the fitted PSO-RBF-SVM-based
model for the nitrogen dioxide (NO2) value in the metropolitan area of
Oviedo

Variable Weight

Nitric oxide (NO) 4.6232

Sulfur dioxide (SO2) 2.7424

Ozone (O3) − 2.7399
Carbon monoxide (CO) 0.0172

Aerosol particles less than 10 μm (PM10) − 0.0426

Table 5 The ANN parameters of the fitted multilayer perceptron
(MLP) for nitrogen dioxide (NO2) in the metropolitan area of Oviedo

Parameters Values

Number of hidden neurons 9

Learning rate 0.1

Momentum factor 1.0 × 10−10

Activation function Tangent sigmoid transfer function

Table 6 Coefficient of determination (R2) and correlation coefficient
(r) for the hybrid PSO-SVM-based models (with linear, quadratic, cubic,
sigmoid, and RBF kernels), multilayer perceptron (MLP) approach, and
M5 tree model fitted in this study for nitrogen dioxide (NO2) in the
metropolitan area of Oviedo

Model Coefficients of determination
(R2)/correlation coefficients (r)

Linear-SVM 0.71/0.84

Quadratic-SVM 0.74/0.86

Cubic-SVM 0.79/0.89

Sigmoid-SVM 0.71/0.84

RBF-SVM 0.98/0.99

Multilayer perceptron 0.76/0.87

M5 model tree 0.79/0.89
Fig. 7 Relative importance of the input variables to predict the nitrogen
dioxide (NO2) value in the metropolitan area of Oviedo in the fitted PSO-
RBF-SVM-based model
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method improves its efficiency. Specifically, in this study, we
have utilized the PSO optimization technique [21–24] for tuning
the SVR parameters so that a hybrid PSO-SVM-based model
was fitted to experimental dataset to predict the output-
dependent variables (NO2, SO2, and PM10) from the other re-
maining variables (input variables) in an air quality analysis
[35–37, 40–42] with success. As a statistical estimator of the
goodness of fit, the coefficient of determination R2 was used
successfully. Figure 6 depicts the flowchart of this new hybrid
PSO-SVM-based model implemented in this study.

If we now apply the PSO technique, the so-called particles
xi include the tuning parameters. For instance, if we choose
the RBF as the kernel, then the components of the particle are
written as xi = (Ci, εi, σi). According to the PSO algorithm, we
randomly initialize these parameters in the first stage. For the
next iterations, the particles evolve following Eqs. (13) and
(14). Then, the objective function value for all the particles is
determined in each iteration. Specifically, the objective func-
tion value is the minus tenfold cross-validation coefficient of
determination for each particle. If the termination criteria are
satisfied, the global best xi contains the optimized parameters.
Therefore, tenfold cross-validation was the standard tech-
nique used here for finding the real coefficient of determina-
tion (R2) [50–53]. The combination of the hyperparameters
with the best efficiency is termed optimal hyperparameters
[13–20, 52, 53].

The support vector regression has been carried out with the
SVR-ε method using the LIBSVM library [54], and the

hyperparameters have been optimized with PSO, utilizing
the standard PSO 2011 version [45, 55, 56]. The searching
in the parameter space has been done taking into account that
the SVM algorithm significantly changes its results when its
parameters increase or decrease in a power of 10. For instance,
in the case of RBF kernel, we have considered [−6, 2] × [−10,
2] × [−6, 2]. That is,C values (regularization parameter) varies
within the interval [10−6, 102], ε values within [10−10, 102],
and σ values within [10−6, 102] in the optimization stage.
The stopping criterion is met if there is no improvement in
the R2 after ten iterations, in combination with a maximum
number of iterations equal to 500.

Table 4 shows the optimal hyperparameters of the fitted
PSO-RBF-SVM-based model found with the PSO technique
for NO2 in the metropolitan area of Oviedo on a local scale.

An iMac with a 3.2-GHz Intel Core i5 CPU with 8 Gb of
RAM andMavericks as operating system was used. The stop-
ping conditions, ten iterations without improvement or a max-
imum of 300 iterations, were met after 75 iterations and 4 h
and 22 min for NO2.

Similarly, and for purposes of comparison, a MLP and M5
tree model have been fitted to the experimental data corre-
sponding to NO2 in order to predict its value in the metropol-
itan area of Oviedo on a local scale. In this sense, an ANN is
typically defined by three types of parameters [25–31]: the

Table 10 Coefficient of determination (R2) and correlation coefficient
(r) for the hybrid PSO-SVM-based models (with linear, superlinear,
quadratic, cubic, sigmoid, and RBF kernels), multilayer perceptron
(MLP) approach, andM5 tree model fitted in this study for sulfur dioxide
(SO2) in the metropolitan area of Oviedo

Model Coefficients of determination
(R2)/correlation coefficients (r)

Linear-SVM 0.50/0.71

Quadratic-SVM 0.64/0.80

Cubic-SVM 0.69/0.83

Sigmoid-SVM 0.50/0.71

RBF-SVM 0.94/0.97

Multilayer perceptron 0.67/0.82

M5 model tree 0.65/0.81

Table 11 Weights of the variables in the fitted PSO-RBF-SVM-based
model for the sulfur dioxide (SO2) value in the metropolitan area of
Oviedo

Variable Weight

Nitric oxide (NO) 3.3559

Nitrogen dioxide (NO2) 2.5972

Carbon monoxide (CO) 1.6660

Ozone (O3) − 1.6075
Aerosol particles less than 10 μm (PM10) 1.4966

Table 9 The ANN parameters of the fitted multilayer perceptron
(MLP) for sulfur dioxide (SO2) in the metropolitan area of Oviedo

Parameters Values

Number of hidden neurons 9

Learning rate 0.1

Momentum factor 0.001

Activation function Tangent sigmoid transfer function

Table 8 Optimal hyperparameters of the fitted PSO-RBF-SVM-based
model found with the particle swarm optimization (PSO) technique for
sulfur dioxide (SO2) in the metropolitan area of Oviedo

Kernel Values of optimal hyperparameters

Linear Regularization factor C = 1.8911 × 100, ε = 8.9098 × 10−2

Quadratic Regularization factor C = 3.5705 × 101, ε = 8.2453 × 10−2,
σ = 2.7744 × 10−1, a = 2.7525 × 10−2, b = 2

Cubic Regularization factor C = 2.3067 × 101, ε = 2.6629 × 10−2,
σ = 1.6104 × 100, a = 7.0757 × 10−1, b = 3

Sigmoid Regularization factor C = 8.6787 × 101, ε = 9.0458 × 10−2,
σ = 2.0674 × 10−3, a = 2.1430 × 10−3

RBF Regularization factor C = 3.1955 × 100, ε = 3.1654 × 10−8,
σ = 3.9841 × 101
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interconnection pattern between different layers of neurons
(Fig. 5), the learning process for updating the weights of the
interconnections, the momentum factor in order to avoid os-
cillating weight changes of the ANN, and the activation func-
tion that converts a neuron’s weighted input to its output acti-
vation. In this paper, the ANN optimal parameters for the
MLP are shown in Table 5.

Table 6 shows the determination and correlation coeffi-
cients for the PSO-SVM-based models for the five kernels
(linear, quadratic, cubic, sigmoid, and RBF kernels, respec-
tively), multilayer perceptron, and M5 tree model fitted here
for NO2 in the metropolitan area of Oviedo.

According to the statistical calculations, the SVM with the
RBF kernel function is the best model for estimating the con-
centration of NO2 in the metropolitan area of Oviedo on a
local scale, since the fitted SVM with RBF kernel function
has a coefficient of determination R2 equal to 0.9802 and a
correlation coefficient equal to 0.9900. These results indicate
an important goodness of fit, that is to say, a very good agree-
ment is obtained between our model and the observed data.
Furthermore, the importance ranking of the five remaining
input variables (Table 3) in order to predict the NO2 value
(output variable) in this nonlinear complex problem is shown
in Table 7 and Fig. 7.

Following the same methodology, fittings were also made
for SO2 and PM10 as dependent variables using the PSO-RBF-
SVM-basedmodel, MLP technique, andM5model tree, whose

results we show below. Indeed, Table 8 shows the optimal
hyperparameters of the fitted PSO-RBF-SVM-based model
found with the PSO technique for SO2 in the metropolitan area
of Oviedo on a local scale.

The stopping conditions, ten iterations without improve-
ment or a maximum of 300 iterations, were met after 84 iter-
ations and 5 h and 41 min for SO2.

In this paper, the ANN parameters of the fitted MLP for
SO2 in the metropolitan area of Oviedo are shown in Table 9.

Similarly, Table 10 shows the determination and correla-
tion coefficients for the PSO-SVM-based models for the five
kernels (linear, quadratic, cubic, sigmoid, and RBF kernels,
respectively), multilayer perceptron, and M5 tree model fitted
here for SO2 in the metropolitan area of Oviedo.

According to the statistical calculations, the SVM with the
RBF kernel function is the best model for estimating the con-
centration of NO2 in the metropolitan area of Oviedo on a
local scale, since the fitted SVM with RBF kernel function
has a coefficient of determination R2 equal to 0.9499 and a
correlation coefficient equal to 0.9746. These results indicate
an important goodness of fit, that is to say, a very good agree-
ment is obtained between our model and the observed data.
Furthermore, the importance ranking of the five remaining
input variables (Table 3) in order to predict the NO2 value
(output variable) in this nonlinear complex problem is shown
in Table 11 and Fig. 8.

Next, Table 12 shows the optimal hyperparameters of the
fitted PSO-RBF-SVM-based model found with the PSO tech-
nique for PM10 in the metropolitan area of Oviedo on a local
scale.

The stopping conditions, ten iterations without improve-
ment or a maximum of 300 iterations, were met after 69 iter-
ations and 4 h and 6 min for PM10.

In this paper, the ANN parameters of the fitted MLP for
aerosol less than 10 μm (PM10) in the metropolitan area of
Oviedo are shown in Table 13.

Similarly, Table 14 shows the determination and correla-
tion coefficients for the PSO-SVM-based models for the five
kernels (linear, quadratic, cubic, sigmoid, and RBF kernels,
respectively), multilayer perceptron, and M5 tree model fitted
here for aerosol less than 10 μm (PM10) in the metropolitan
area of Oviedo.

Table 12 Optimal hyperparameters of the fitted PSO-RBF-SVM-based model found with the particle swarm optimization (PSO) technique for
particulate matter less than 10 μm (PM10) in the metropolitan area of Oviedo

Kernel Values of optimal hyperparameters

Linear Regularization factor C = 1.3130 × 10−1, ε = 1.3493 × 10−1

Quadratic Regularization factor C = 6.6965 × 101, ε = 8.0252 × 10−2, σ = 1.2451 × 100, a = 7.5358 × 10−1, b = 2

Cubic Regularization factor C = 8.8805 × 102, ε = 5.7101 × 10−2, σ = 3.2484 × 10−1, a = 9.6975 × 10−1, b = 3

Sigmoid Regularization factor C = 3.7271 × 101, ε = 1.2589 × 10−7, σ = 2.6951 × 10−3, a = 1.1634 × 10−5

RBF Regularization factor C = 3.7120 × 100, ε = 1.1093 × 10−9, σ = 5.7759 × 101
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Fig. 8 Relative importance of the input variables to predict the sulfur
dioxide (SO2) value in the metropolitan area of Oviedo in the fitted PSO-
RBF-SVM-based model
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Additionally, according to the statistical calculations, the
SVM with the RBF kernel function is the best model for
estimating the concentration of PM10 in the metropolitan area
of Oviedo on a local scale, since the fitted SVM with RBF
kernel function has a coefficient of determination R2 equal to
0.8458 and a correlation coefficient equal to 0.9197.

Furthermore, the importance ranking of the five remaining
input variables (Table 3) in order to predict PM10 value (out-
put variable) in this nonlinear complex problem is shown in
Table 15 and Fig. 9.

From the results depicted in Table 7 and Fig. 7, it is possible
to observe that the most important variables for the prediction
of the NO2 (output variable) according to the PSO-RBF-SVM
model are in hierarchical order: NO, SO2, O3, CO, and PM10.
The influence of the variable PM10 was negligible, according
to the calculations. The most significant variable in NO2 pre-
diction is NO. This result is logical since NO2 typically arises
via the oxidation of NO by oxygen in air. Nitrogen dioxide is
formed in most combustion processes using air as the oxidant.

Similarly, the results shown in Table 11 and Fig. 8 indicate
that the most important variables for the prediction of SO2

(output variable) are NO, NO2, CO, O3, and PM10. Again,
the influence of the variable PM10 was the smallest, according
to the calculations. SO2 is the product of the burning of sulfur
or of burning materials that contain sulfur. Furthermore, sulfur

dioxide emissions are a precursor to acid rain and atmospheric
particulates.

From the results shown in Table 15 and Fig. 9, the most
important variables for the prediction of PM10 (output vari-
able) are NO, SO2, CO, NO2, and O3. The influence of the
variables NO2 and O3 was negligible, according to the calcu-
lations. Some particulates occur naturally, originating from
volcanoes, dust storms, forest and grassland fires, living veg-
etation, and sea spray. Human activities, such as the burning of
fossil fuels in vehicles, power plants, and various industrial
processes, also generate significant amounts of particulates
(anthropogenic aerosols). In this way, secondary particles are
derived from the oxidation of primary gases such as sulfur and
nitrogen oxides into sulfuric acid (liquid) and nitric acid (gas-
eous). The precursors for these aerosols (i.e., the gases from
which they originate) may have an anthropogenic origin (from
fossil fuel or coal combustion) and a natural biogenic origin.

Finally, this research allows the prediction of the concen-
trations of NO2 from 2013 to 2015 in agreement with the
actual experimental concentrations of NO2 observed using
the PSO-RBF-SVM-based model with great accuracy and
success. Indeed, Fig. 10 shows the comparison between the
NO2 values observed and predicted by using the M5 model
tree (Fig. 10a), MLP (Fig. 10b), and PSO-SVM-based model
with RBF kernel (Fig. 10c). It is necessary to use a SVM
model with RBF kernel in order to achieve the best effective
approach to nonlinearities present in this regression problem.
Obviously, these results again coincide with the outcome

Fig. 9 Relative importance of the input variables to predict the sulfur
dioxide (SO2) value in the metropolitan area of Oviedo in the fitted PSO-
RBF-SVM-based model

Table 15 Weights of the
variables in the fitted
PSO-RBF-SVM-based
model for the particulate
matter less than 10 μm
(PM10) value in the
metropolitan area of
Oviedo

Variable Weight

Nitric oxide (NO) 2.2389

Sulfur dioxide (SO2) 1.7814

Carbon monoxide (CO) 1.4004

Nitrogen dioxide (NO2) 0.6798

Ozone (O3) − 0.5785

Table 14 Coefficient of determination (R2) and correlation coefficient
(r) for the hybrid PSO-SVM-based models (with linear, quadratic, cubic,
sigmoid, and RBF kernels), multilayer perceptron (MLP) approach, and
M5 tree model fitted in this study for aerosol less than 10 μm (PM10) in
the metropolitan area of Oviedo

Model Coefficients of determination
(R2)/correlation coefficients (r)

Linear-SVM 0.12/0.35

Quadratic-SVM 0.20/0.45

Cubic-SVM 0.36/0.60

Sigmoid-SVM 0.11/0.33

RBF-SVM 0.85/0.92

Multilayer perceptron 0.32/0.57

M5 model tree 0.33/0.58

Table 13 The ANN parameters of the fitted multilayer perceptron
(MLP) for aerosol less than 10 μm (PM10) in the metropolitan area of
Oviedo

Parameters Values

Number of hidden neurons 11

Learning rate 0.1

Momentum factor 0.1

Activation function Tangent sigmoid transfer function
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Fig. 10 Comparison between NO2 values observed and predicted by the M5 model tree, the MLP approach, and the PSO-SVM-based model: a M5
model tree (R2 = 0.75), b MLP network (R2 = 0.80), and c PSO-SVM model with RBF kernel (R2 = 0.9802)
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Fig. 11 Comparison between SO2 values observed and predicted by the M5 model tree, the MLP approach, and the PSO-SVM-based model: a M5
model tree (R2 = 0.75), bMLP network (R2 = 0.80), and c PSO-SVM model with RBF kernel (R2 = 0.9499)
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Fig. 12 Comparison between PM10 concentrations observed and predicted by theM5model tree, theMLP approach, and the PSO-SVM-basedmodel: a
M5 model tree (R2 = 0.75), b MLP network (R2 = 0.80), and c PSO-SVM model with RBF kernel (R2 = 0.8458)
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criterion of ‘goodness of fit’ (R2) so that the PSO-SVM-based
model with a RBF kernel function was the best fitting.

Similarly, this study was also able to predict the concentra-
tions of SO2 and PM10 from 2013 to 2015 in agreement with
the actual experimental concentrations of SO2 and PM10 ob-
served using the PSO-RBF-SVM-based model with great ac-
curacy and success. Indeed, Figs. 11 and 12 below show the
comparison between the SO2 and PM10 values observed and
predicted by using the M5 model tree (Figs. 11a and 12a),
MLP (Figs. 11b and 12b), and PSO-SVM-based model with
RBF kernel (Figs. 11c and 12c), respectively. It is mandatory to
use a SVMmodel with RBF kernel in order to achieve the best
effective approach to nonlinearities present in this regression
problem. Obviously, these results again coincide with the out-
come criterion of ‘goodness of fit’ (R2) so that the PSO-SVM-
based model with a RBF kernel function was the best fitting.

4 Conclusions

Despite widespread success, the challenges to air quality man-
agement remain completely unresolved today. Based on the
experimental and numerical results, the main findings of this
research work can be summarized as follows:

& Firstly, all governments have announced plans for improv-
ing air quality in cities while minimizing the impact on
business. However, emission reduction strategies to avoid
litigation and satisfy the public and other stakeholders are
very difficult to carry out in practice, requiring perhaps
years of implementation. Furthermore, the diagnostic
techniques commonly used based on the traditional
methods (e.g., monitoring of pollutants through automatic
stations) are expensive, from both the material and human
points of view. Consequently, the development of alterna-
tive diagnostic techniques is necessary. In this sense, the
new hybrid PSO-SVM-based method with a RBF kernel
function used in this research is a very good choice for
evaluating the air quality in cities on a local scale.

& Secondly, the hypothesis was confirmed that air quality
diagnosis in the metropolitan area of Oviedo can be accu-
rately modeled by using a hybrid PSO-SVM-based model
with a RBF kernel function on a local scale.

& Thirdly, a hybrid PSO-SVM-based model with a RBF
kernel function was successfully developed to predict the
concentrations of NO2, SO2, and PM10 from the other
measured input operation pollutants, in order to lower
costs in the assessment of air quality in the metropolitan
area of Oviedo.

& Fourthly, high coefficients of determination equal to
0.9802, 0.9499, and 0.8458 were obtained when this hy-
brid PSO-SVM-based model with a RBF kernel function
was applied to the experimental dataset corresponding to

pollutants in the metropolitan area of Oviedo. Indeed, the
predicted results for this model have proven to be consis-
tent with the historical dataset of actual observed values of
the pollutants from 2013 to 2015 (Figs. 10, 11, and 12).

& Fifthly, the order of significance of the input variables
involved in the prediction of the concentrations of NO2,
SO2, and PM10 was set. This is one of the main findings in
this study.

& Sixthly, the influence of the kernel parameters setting of
the SVMs on the regression performance of the value of
the air quality was established.

& Finally, the results of this research concerning the devel-
opment of models of local pollutant concentrations will
prove to be a valuable tool for projects on the mitigation
of acid rain and for the research into the effects of partic-
ulate matter on human health. Furthermore, there is an
increasing interest in the use of mathematical models with
good physical properties to better understand the behavior
of the pollutants in the atmosphere so as to improve the air
quality and reduce the number of deaths. The results verify
that the hybrid PSO-SVM regression method significantly
improves the generalization capability achievable with on-
ly the SVM-based regressor. In this sense, this model can
be assembled inside other, more general models of the
atmosphere.

In summary, this innovative methodology could be suc-
cessfully applied to other cities or locations with similar or
different types of pollutants, but it is always mandatory to take
into account the specificities of each place. Consequently, an
effective PSO-SVM-based model is a practical solution to the
problem of the determination of the air quality in cities. This
methodology allows areas of each city where the air quality
problem is less serious to be labeled as clean air zones.
Furthermore, this paper presents examples of real applications
and simple explanations of statistical calculation for the selec-
tion of the best-fitted models.
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