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Abstract Classification and regression problems are a central
issue in geosciences. In this paper, we present Classification
and Regression Treebagger (ClaReT), a tool for classification
and regression based on the random forest (RF) technique.
ClaReT is developed in Matlab and has a simple graphic user
interface (GUI) that simplifies the model implementation pro-
cess, allows the standardization of the method, and makes the
classification and regression process reproducible. This tool
performs automatically the feature selection based on a
quantitative criterion and allows testing a large number
of explanatory variables. First, it ranks and displays the
parameter importance; then, it selects the optimal config-
uration of explanatory variables; finally, it performs the
classification or regression for an entire dataset. It can
also provide an evaluation of the results in terms of mis-
classification error or root mean squared error. We tested
the applicability of ClaReT in two case studies. In the first
one, we used ClaReT in classification mode to identify the
better subset of landslide conditioning variables (LCVs)

and to obtain a landslide susceptibility map (LSM) of the
Arno river basin (Italy). In the second case study, we used
ClaReT in regression mode to produce a soil thickness
map of the Terzona catchment, a small sub-basin of the
Arno river basin. In both cases, we performed a validation
of the results and a comparison with other state-of-the-art
techniques. We found that ClaReT produced better results,
with a more straightforward and easy application and
could be used as a valuable tool to assess the importance
of the variables involved in the modeling.
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1 Introduction

Methods for predicting a response variable given a set of
features are needed in numerous scientific fields related to
geosciences, including geomorphology [1], geochemistry
[2, 3], pedology [4], hydrology [5–7], atmospheric phys-
ics [8, 9], hydrogeology [10, 11], engineering geology
[12, 13], and environmental mapping [14, 15].

In particular, regression is used to predict continuous
values, whereas classification is used to predict which class
a data point is part of. Numerous techniques were devel-
oped to implement classification and regression proce-
dures: discriminant analysis [16–18], logistic regression
[19, 20], multivariate analysis [21–23], fuzzy linear regres-
sion [24], artificial neural network (ANN) [25, 26], and
random forest (RF) [27, 28]. Several authors have com-
pared these methods. In some cases, models based on clas-
sical statistics have been proven very effective for solving
relatively simple problems [29], whereas more sophisticat-
ed techniques give better results for more complex
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problems [30]. In other studies [31, 32], such methods
seem quite equivalent and produce similar results. King
et al. [33] reported that it was not possible to identify the
best algorithm for classification, as any comparative study
is by its nature limited and the best algorithm for a partic-
ular dataset depends on the features of that dataset.

This issue is of paramount importance when modeling
physical problems: Once a given technique has been selected,
results are still sensitive to model configuration [34]. In par-
ticular, several studies pointed out that the selection of condi-
tioning variables is essential for classification/regression prob-
lems (see, e.g., [54, 55]).

As an instance, concerning landslide susceptibility maps
(LSMs), there is an extensive literature on different statistical
implementation techniques and on the comparison of their
performances [35–37]. Moreover, the selection of the land-
slide conditioning variables (LCVs) is intensely debated:
Many authors have discussed about the number [30, 38–42]
and the type of the LCVs [35, 43–46]. The development of
tools that allow to automatically perform LSM is already stud-
ied. For example, Akgun et al. [47] presented MamLand, a
Matlab program, based on a fuzzy algorithm, for the assess-
ment of LSM.

Conversely, in other fields of geosciences, nothing has
been developed to automate the processes of feature selection
and modeling. For example, to assess the spatial distribution
of some physical properties of soil, such as soil thickness, the
scientific literature accounts for several techniques or proce-
dures [48–53], but none of them has generated a tool that
could be applied to a wide selection of case of studies.

The objective of this work is filling this gap and presenting
a tool, Classification and Regression Treebagger (ClaReT)
that automates the classification/regression procedures, in-
cluding the selection of the optimal set of explanatory vari-
ables based on an objective and quantitative standard.

We chose to base the tool on the RF method because it is a
flexible environment for testing model parameters as it per-
mits management of large amounts of data. In several appli-
cations [5, 32], it has shown numerous advantages, such as the
possibility of using both categorical and numerical variables
and the capability of accounting for interactions and nonline-
arities between variables. RF can be considered an established
technique in several fields of geosciences, including landslide
susceptibility studies [38, 54–56]. There are several software
and tools for random forest implementation, but their use in
some fields of geosciences could be troublesome, due to the
high quantity of data to manage. ClaReT overcomes this lim-
itation, since it is able to manage and elaborate large amounts
of spatial data such as those related to distributed
geoenvironmental modeling at regional scale.

ClaReT is developed inMatlab and automatically ranks the
variables according to their importance, selects the optimal
configuration for regression or classification problems,

applies that configuration to an input dataset, and provides a
validation of the results. Furthermore, the simple graphical
user interface (GUI) simplifies the model implementation,
which can be carried out even without knowing Matlab lan-
guage and environment.

As a test, we applied ClaReT to two case studies. In the first
one, we used ClaReT in classification mode to identify the
better subset of LCVs and to obtain a LSM of the Arno river
basin (9100 km2). In the second case study, we used ClaReT
in regression mode to produce a soil thickness map in the
Terzona catchment, a small (24 km2) sub-basin of the Arno
river basin.

In both cases, we performed a validation of the results and a
comparison with other state-of-the-art techniques. We used
the case studies also to discuss some additional features of
ClaReT: In the first case study, we examined the ranking and
visual display of the parameters’ importance, which could be a
valuable help in understanding the hierarchy of the variables
used to explain a given physical problem. In the second test
site, we discussed the implementation of models to real case
studies, explaining why ClaReT resulted to be more straight-
forward and easy to apply than other state-of-the-art methods.

2 Materials and Methods

2.1 Random Forest Technique

RF is a nonparametric multivariate technique based on a
machine-learning algorithm [27, 28]. It consists of a com-
bination of tree predictors, each grown on a bootstrapped
subsample of the training data. The data excluded from
the construction of the model are called out of bag
(OOB). For random forest construction, at each node,
the best split is selected among a random subset of the
predictors [57, 58].

Several studies investigated the influence of the number of
trees on the stability of the model: Catani et al. [38] and Diaz-
Uriarte and De Andres [59] proved that, beyond a certain
value (200 and 1000, respectively), the error evaluated con-
sidering only OOB data (out of bag error) is independent of
the number of trees.

The random forest technique has several advantages
[5, 38, 47].

1. It allows the employment of both categorical and numer-
ical variables.

2. No assumption is required about the statistical distribution
of the data.

3. It is capable of accounting for interactions and nonlinear-
ities between variables.

4. It can be considered robust with respect to changes in the
composition of the dataset.
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5. Prediction with OOB data avoids overfitting.
6. It allows exploring a large number of explanatory vari-

ables because it intrinsically emphasizes only those vari-
ables of high explanatory power at each node split.

7. It is robust with respect to noise features.

These properties are very useful in applications using var-
iables that have mutual nonlinear interactions, that may be
affected by measured errors or that have a mixed (numerical
and categorical) nature.

Furthermore, this method allows measuring variable im-
portance by assessing howmuch the prediction error increases
if the values of that variable are permuted across the OOB
observations [27, 47, 60].

In this work, we used the random forest treebagger (RFtb),
a RF implementation developed in Matlab.

2.2 ClaReT

ClaReT is a tool for classification and regression devel-
oped in Matlab and based on RFtb.

Explanatory variables selection influences the perfor-
mance of regression and classification models. ClaReT
uses the RFtb peculiarities to objectively assess the rela-
tive importance of each predictor variable throughout
OOBPermutedVarDeltaError, a Matlab function that mea-
sures the increase in prediction error if the values of that
variable are permuted across the OOB observations. This
measure is computed for every tree, then averaged over
the entire ensemble, and divided by the standard deviation
over the entire ensemble (http://www.mathworks.
it/it/help/stats/treebagger.oobpermutedvardeltaerror.html).

To evaluate the best configuration, the model is initially
applied to the training set with the entire set of features.
Subsequently, the model is run without the feature that
r e su l t ed to be the leas t impor t an t in t e rms of
OOBPermutedVarDeltaError. This procedure is iterated,
and after each run, the least important variable is excluded
and a reduced configuration is defined. ClaReT runs each
configuration 10 times, with the purpose of averaging any
discrepancy due to random components of the RFtb. The
variable set is applied to the test points, and the total error
is calculated. Once the iteration process gets to calculate
the error of the configuration composed by two variables,
the total errors of all the configurations are compared and
the configuration with the lowest error is selected.

ClaReT uses the optimal configuration to compute the
predicted response for the entire dataset, providing the cal-
culated value (for regression mode) or the membership
class (for classification mode).

In regression mode, the model also returns standard de-
viations of the computed responses over the ensemble of
the grown trees. In classification mode, it returns scores for

all classes, compiling a matrix with one row per observa-
tion and one column per class. For each observation and
each class, the score generated by each tree is the proba-
bility of this observation originating from this class
(http://www.mathworks.it/it/help/stats/treebagger.predict.
html).

The model performance is evaluated in terms of total
error: Comparing the real values and the predicted ones,
the tool provides the root mean square error (in the regres-
sion mode) and the misclassification error (in the classifi-
cation mode).

In the specific case of binary classification, the most
commonly used cutoff-independent performance technique
is the receiver operating characteristic (ROC) curve [61,
62]. ClaReT builds ROC curves comparing the estimated
membership class probability and the true class, showing
the true positive rate versus the false positive rate for dif-
ferent thresholds of the classifier output. ClaReT calculates
the area under the ROC curve (AUC), which can be used as
a metric to assess the overall quality of the model [63].
This threshold-independent measure of discrimination be-
tween both classes can have values between 0.5 (no dis-
crimination) and 1 (perfect discrimination) [64].

2.3 ClaReT Usage

ClaReT is constituted by a simple GUI. The GUI can be
easily used to choose the methodology (classification or
regression), to upload of the input data, and to visualize
the results. Figure 1 shows ClaReT GUI, and Fig. 2 reports
a flow diagram that summarizes the input files needed to
perform the analysis and the modeling and the outputs
provided.

The left block of the GUI (Fig. 1) is dedicated to feed and
set the model. First, the method (either classification or re-
gression) and the number of decision trees should be chosen.
Then, two files containing the training and the test data have
to be provided. These files must contain the same number of
columns, each corresponding to an explanatory variable, ex-
cept for the last column, which must contain the value of the
membership class (0–1 for classification) or the value of the
predicting response. Furthermore, the headers with explana-
tory variable names need to be provided, and categorical
variables should be clearly distinguished from the others.

At the end of the elaborations, the “output feature selec-
tion” panel (central block of Fig. 1) summarizes some relevant
information about the optimal configuration identified by the
model. The information includes how many and which vari-
ables are encompassed in the optimal configuration and the
error obtained applying this configuration to the test points.
ClaReToutputs include also a series of files that can be used to
characterize the configurations iteratively discarded by the
automated process. These files are identified by the number
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of explanatory variables used and contain the feature names,
the mean OOBPermutedVarDeltaError with its standard de-
viation, and the mean rank. For each configuration, the soft-
ware also saves a file with the mean and the maximum error
obtained by applying the model to the test points. In another
file, the rank of each feature in each configuration is reported.
This result is also illustrated in a graph where the rank of each

feature, at decreasing parameter number, is displayed accord-
ing to a color ramp; the variables discarded are shown in gray
(Fig. 1).

The right block of theGUI (Fig. 1) can be used to apply the
model, in its optimal configuration, to the entire dataset. The
parameters’ table relative to the entire study area can contain
features that do not belong to the optimal set, as the software

Fig. 1 ClaReT graphic user interface (GUI). The GUI is divided into
three blocks. Left block is dedicated to input parameters and model
settings; central block automatically provides information about the

optimal configuration and ranks all input parameters according to their
importance; right block is dedicated to model application to a full dataset,
including options to carry out a quantitative validation

Fig. 2 ClaReT flowchart
describing model inputs, outputs,
and user-defined settings
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automatically selects only the features required to apply the
model. The outputs consist of two tables contained in distinct
files. In the classification mode, these tables contain the pre-
dicted class and the membership class probability for each
row of the input table. In the regression mode, the tables
contain the predicted value of each observation and the stan-
darddeviations of the computed responses over the ensemble
of the grown trees. If actual observations of the dependent
variable are available, ClaReT carries out the comparison
between these ones and the model results. The total error
(the misclassification probability for classification trees or
themean squared error for regression trees) is then displayed
in the “output model” panel. For binary classification prob-
lems, the relatedROCcurve is depicted and theAUCvalue is
provided.

At present, the software can be requested contacting the
corresponding author.

3 Case Study 1, Classification Mode: Application
to Landslide Susceptibility Mapping

3.1 Description of the Area

The selected test site is the hydrographic basin of the Arno
River in Central Italy. The area is 9100 km2 wide, and it is
located in the northern Apennines, a complex thrust-belt sys-
tem composed of different tectonic units and sedimentary ba-
sins [38]. The relief is characterized by a succession of NW–
SE ridges, made up of Mesozoic/Tertiary flysches and calcar-
eous units, and Pliocene-Quaternary sedimentary basins with
cohesive and granular soils.

Landslides are very common in the study area. The geo-
logical settings and the lithological characteristics of the area
affect the typology and occurrence of landslides, which are
mainly constituted by slow-moving rotational slides [65–67].

The landslide inventory of the Arno river basin counts
about 27,500 landslides [67]. The most represented landslide
types are earth slides and solifluctions. The majority of the
landslides are reactivations of dormant slides, and the frequen-
cy of first-time landslides is very low. Consequently, landslide
susceptibility chiefly depends on the presence or absence of
known instability [38].

3.2 Landslide Susceptibility Mapping

To account for the variability of physiographic settings within
the study area, the Arno basin was split into three homoge-
neous domains (area 1, area 2, and area 3), in accordance with
the different lithological and geomorphological characteris-
tics. In particular, area 1 is mainly a hilly region characterized
by low to medium slope angles and relatively low elevations
(Fig. 3). Granular and cohesive soils are prevailing on the

other types of lithologies. Area 2 is similar to area 1 from a
geomorphological point of view: It has a heterogeneous geol-
ogy, with the presence of cohesive and granular soils, flysches,
and calcareous rocks. Area 3 is dominated by the Apennines
and is characterized by flysch formations, with higher slope
angles and elevations than other domains.

This division is necessary to test the model in almost ho-
mogenous zones and to verify the dependence of the perfor-
mance on geomorphological and geological characteristics.
Inside each domain, a training subset and a test subset have
been selected (Fig. 3). Training and test data were selected
carefully from the entire database of mass movements, to have
a representative sample of the total population. Moreover,
these areas were checked in the field for accuracy and com-
pleteness of the landslide inventory. The pixels of the areas
represented in Fig. 3 were randomly separated to obtain two
distinct datasets of test and training. In Table 1, the number of
training points, the number of total pixel of each area, and the
percentage of training points with respect to the entire area are
reported. To train the model, we used about 10% of the points
for each zone.

For each domain, ClaReTwas applied independently, using
pixels with a dimension of 100 × 100m as computational unit.
To speed up the computation and the preparation of input
parameters and to limit the analysis to the portion of the terri-
tory in which landslides may potentially occur, alluvial plains
were excluded from the analysis [38, 68].

In this work, we have considered two kinds of input
parameters: morphometric attributes and attributes derived
from thematic maps. The complete list of LCV parameters
is shown in Table 2.

To derive the morphometric attributes, a 20 × 20 m DTM
was available. For eachmorphometric variable, we considered
the average value inside the 100 × 00 m cell. Concerning the
thematic attributes (namely lithology and land cover), we used
a 1:100,000 lithotechnical map and a 1:50,000 land cover map
[51], and we estimated the most frequent value within
100 × 100 m cells. The variability of the features was taken
into account as well: for each 100 × 100 m cell, we calculated
the standard deviation for numeric variables and the variety
for the categorical ones. Most of the considered features are
dependent from each other, but the RF technique is capable of
accounting for interactions between variables. Therefore, as
explained in Sect. 2.1, preliminary studies on variables are not
required.

3.3 Results

Feature selection results are shown in Fig. 4, in which the
variable importance is plotted for each model configura-
tion. In Fig. 4, white box points out the optimal configura-
tion for each area, while the variables discarded at each
iteration are displayed in gray.
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For area 1, the full configuration (27 parameters) represents
the best configuration, with a misclassification probability value
equal to 0.11. Considering area 2, land use variety, combo cur-
vature variety, and combo curvature were discarded; thus, the
optimal configuration encompasses 25 features. The misclassi-
fication probability obtained applying this set to the test points is
0.007. For area 3, the optimal configuration encompasses 26
parameters: Land use variety and combo curvature were
discarded, obtaining a misclassification error equal to 0.16.

For each domain, the optimal parameter set was used to
classify the entire dataset. The output of these elaborations
was three tables (one for each domain) that were imported

into a GIS and converted into raster maps. The union of the
three maps represents the landslide susceptibility map of
the Arno basin (Fig. 6).

Sinceacompleteandhomogeneouslandslidedatabasewas
availablefor theentirestudyarea,weusedClaReTtocompare
themodel resultswith the ground truth, buildingROCcurves
and calculatingAUCvalues (Fig. 5).Weperformed a distinct
computation for each of the three domains, obtaining AUC
values of 0.75, 0.59, and 0.69 for area 1, area 2, and area 3,
respectively (Fig.5).

3.4 Benchmark Model for Comparison: Discriminant
Analysis

To have a benchmark for comparison, we carried out an-
other landslide susceptibility assessment based on discrim-
inant analysis [16], which is a more established technique
with a longer tradition of applications to landslide suscep-
tibility mapping than RF [69, 70] (Fig. 6).

First, we transformed categorical variables into dummy
variables, as needed in discriminant analysis. We obtained
nine additional classes for aspect, nine for combo curvature,

Fig. 3 Location of the Arno river
basin, subdivision into three
geomorphological domains, and
training/test zones

Table 1 Number of training points for each area

Number of
training points

Total number
of pixels

Percentage of
training points

Area 1 30,839 194,529 15%

Area 2 24,603 187,053 13%

Area 3 27,962 344,299 8%

The percentage of training points with respect to the entire area is reported
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nine for land use, and eight for lithology. This approach in-
creased to 59 the number of LCVs taken into account. Then,
the test areas were used to perform a stepwise analysis to
select the features required for the best possible susceptibility
assessment: We selected 33 features for area 1, 28 for area 2,
and 29 for area 3. Considering these configurations, we devel-
oped the three LSMs, obtaining performances worse than
using ClaReT: The AUC was 0.61, 0.53, and 0.61 in area 1,
area 2, and area 3, respectively.

4 Case Study 2, RegressionMode: Application to Soil
Thickness Mapping

4.1 Description of the Area

The study area for this application is the Terzona Creek basin
(about 24 km2), which is contained in the Arno river basin

(inset of Fig. 1). The area is located in the Chianti region and
is characterized by gentle hills made up of Pliocene and
Quaternary terrains, while in the eastern sector, the bedrock is
constituted by Paleocene and Eocene flysch, with rougher and
higher (up to 512 m) reliefs. The land is sparsely urbanized and
is covered by vineyards, olive groves, and small woods.

The study area is characterized by marked erosive pro-
cesses, and soil is generally rather shallow. Typically, the
thicker deposits are found in the valley floors (where they
can reach the maximum value of 1.5 m) and in some hill-
tops, where a paleosol is present [48].

4.2 Soil Thickness Regression

The input data used for the soil thickness regression are cur-
vature, planar curvature, profile curvature, combo curvature,
elevation, lithology (as derived from a 1:10,000 detailed geo-
logical map), flow accumulation, logarithm of flow

Table 2 Landslide conditioning
variables (LCVs) Parameter Description LCV Acronym

Curvature The second derivative
of elevation

Mean CU

Max CU_MAX

Standard deviation CU_STD

Planar curvature The second derivative of elevation
calculated orthogonally to the direction
of the maximum slope

Mean CPL

Max CPL_MAX

Standard deviation CPL_STD

Profile curvature The second derivative of elevation
calculated in the direction of the
maximum slope

Mean CPR

Max CPR_MAX

Standard deviation CPR_STD

Combo curvature Categorical variable obtained by the
combination of the values of plan
and profile curvature

Most frequent CCU

Variety CCU_VAR

Elevation DEM value Mean ELE

Standard deviation ELE_STD

Lithology Represented by eight classes Most frequent LIT

Variety LIT_VAR

Flow accumulation The upslope contributing area Mean FLA

Standard deviation FLA_STD

Log flow accumulation Logarithm of the flow accumulation Mean LFA

Standard deviation LFA_STD

Slope The first derivative of elevation Mean SLO

Max SLO_MAX

Standard deviation SLO_STD

Aspect Orientation in the space, represented
by nine classes

Most frequent ASP

Variety ASP_VAR

Topographic wetness index Ln(flow accumulation/tan slope) Mean TWI

Standard deviation TWI_STD

Land cover Represented by nine different classes Most frequent COV

Variety COV_VAR

For each parameter, the acronym used in the graphics is reported
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Fig. 4 Importance of LCVs for
each iteration of feature selection.
The white box highlights the best
configuration. At each iteration,
the least important parameter is
excluded from the model, and it is
shown in gray. The importance
(i.e., explanatory power) of each
parameter is graphically
represented according to the color
ramp shown on the right
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accumulation, slope gradient, aspect, topographic wetness in-
dex, land cover (derived from the same 1:50,000 map used in
the landslide susceptibility assessment), and geomorphologi-
cal units (after a geomorphological survey, the area was
subdivided into three domains according to the prevailing
geomorphological features). Topographic attributes were de-
rived from a 10-m resolution grid digital elevation model, and
their values were calculated on a pixel-by-pixel basis.

To calibrate and validate the regression model, we used a
database of direct soil thickness measurements performed by
Catani et al. [48] for similar purposes. As in Catani et al. [48],
soil thickness data were split into a calibration subset (55
measures) and a validation subset (162 measures).

Bymeans ofGIS analyses, at sample point locations, each
soil thicknessmeasurewas associatedwith thepixel value for
each input variable. Data were organized into tables, which
were fed into ClaReT (Fig. 7).

4.3 Results and Comparison with Other Models

After importing into a GIS the output table of ClaReT, it was
possible to draw the distributed soil thickness map of the
Terzona catchment (Fig. 8).

The soil thickness distribution is clearly influenced by the
geomorphological features of the area: The thickest values
are located in the main valleys, while mid-high values are in
the flat hilltops occupied by paleosols. The shallowest soils
can be found in the hillsides dominated by erosive processes
like creep and landsliding and in thehighest parts of the rocky
reliefs. The validation procedure demonstrated that this dis-
tribution is in good agreement with ground truth: The mean
absolute error is 9 cm, and the maximum error is −54 cm.
Since the Terzona catchment has long been used as a test site
for soil thickness modeling [48, 71], it was possible to com-
pare the results obtained by ClaReT with those obtained by
other state-of-the-art techniques (Fig. 9). The models used
for comparison are the following.

– Z model (linear correlation with elevation) [49]. This
approach is based on the assumption that soil thickness
and elevation are linked by an inverse correlation since
in higher portions of the relief, erosive processes prevail
over depositional processes,while at lower altitudes, the
opposite takes place.

– S model (linear correlation with slope gradient) [49].
This widely used approach is based on the assumption
that soil thickness and slope gradient are inversely cor-
related since in steep areas, erosive processes prevail
over depositional processes, while in flat areas, the op-
posite circumstance takes place.

– Sexp. As above, except for the fact that the correlation is
based on an exponential law. This is also a widely used
method to define spatially distributed soil thickness
maps [50, 72].

– GIST [48]. This is the model that since now had held the
better performances in Terzona basin [71]. It takes into

Fig. 5 ROC curves and AUC values obtained with ClaReT

Fig. 6 Landslide susceptibility map of the Arno river basin.White areas
represent flat zones

ATool for Classification and Regression Using Random Forest 209



account three morphometric attributes (profile curva-
ture, slope gradient, and relative positionwithin the hill-
slope profile).

Figure 9 shows that the most effective soil thickness
modeling is the one obtained by ClaReT: The distribution of
errors is centered on almost correct occurrences, negligible
errors are the majority, and the tails of the distribution (rele-
vant underestimations or overestimations) are more contained
than in the other models.

5 Discussion

5.1 Application to Landslide Susceptibility

The application to landslide susceptibilitymapping in a large
area (Arno river basin, 9100 km2) provided relevant out-
comes. The geomorphological heterogeneity was handled
subdividing the test area into three different domains ana-
lyzed and modeled independently; consequently, ClaReT
identified three different regressionmodels based on explan-
atory variable ensembles that show some differences.

Fig. 8 Soil thickness map
obtained using ClaReT in the
Terzona catchment

Fig. 7 ROC curves and AUC values obtained with the discriminant analysis
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Elevation is the most important parameter in all three geo-
morphological domains, while the other relevant (i.e., with
high rank) explanatory variables are different: In area 1 and
area 3, the most important are flow accumulation, planar
curvature, and topographic wetness index; in area 2, another
variable appears in the highest ranks (slope gradient) and
profile curvature is replaced by planar curvature. However,
the ranks of almost all variables noticeably vary from a do-
main to another. This outcome demonstrates the importance
of following an objective and quantitative criterion to select
the input parameters to be used in susceptibility mapping.

The model performances are very different for the differ-
ent domains. Area 2 shows the worst result (AUC = 0.59),
whereas in the other two domains, AUC values are 0.75 and
0.69.These values could be consideredmedium-high if com-
pared to the values that are reported in the landslide suscep-
tibility literature. However, discriminant analysis outcomes
havea similar trend (area2 isworse than theother two), and in
each zone, the RF technique shows better performance, in
terms of AUC, with respect to discriminant analysis. Since
discriminant analysis is awell-established technique, we can
conclude that the proposed tool is effective and that the low
AUC values obtained for area 2 could depend on other
factors.

The reasons beyond this performance can be investi-
gated making a comparison with the study of Catani
et al. [38], which applied in the same test area the same
susceptibility model based on treebagger random forest
algorithms used in this work. Using identical pixel reso-
lution (100 m) and landslide dataset, they obtained con-
siderably better performances in terms of AUC
(AUC = 0.88). The main difference between the two stud-
ies is the different sampling strategy: Catani et al. [38]
used a random selection of 10% of the pixels to train their
treebagger model, while in this work, we defined some
training areas, and all their pixels were used to train the
model. The training area is about 10% of the total area;
therefore, the worst performance is not linked to the di-
mension of the training sample. Therefore, we conclude

that the option to use a sampling strategy based on the
selection of testing areas led to worst landslide suscepti-
bility assessments than a random sampling over the entire
study area. This is valid especially in cases where the
landslide inventory has a good degree of homogeneity
and completeness.

The comparison with the application of Catani et al. [38]
leads to another outcome: In the present work, the ap-
proach of subdividing the study area into three geomorpho-
logical domains and to analyze each of them independently
does not improve the susceptibility assessment. Catani
et al. [38] analyzed the whole area with a single configu-
ration and obtained better results. This is a proof of the
robustness of the random forest technique: When the mod-
el is fed with enough and appropriate input parameters, the
subjective judgment can be reduced.

5.2 Application to Soil Thickness Regression

The advantages of using ClaReT in a regression problem
like soil thickness mapping were twofold.

First, the modeling based on the random forest
treebagger technique allowed for results that proved to be
better than any other model used in the same test site so far
(Fig. 9).

Second, ClaReT had the advantage of a very fast and
straightforward application. In fact, the only soil thick-
ness model with comparable quality of the results was
GIST (Fig. 9), which required extensive field works and
subjective interpretations to be conveniently applied. In
fact, according to the methodology described in [48], to
correctly parameterize the model, it is necessary to
devote a relevant part of the work toward the character-
ization of the typical soil catenas encountered in the area,
the identification of different landsurface units, and the
recognit ion of different typologies of hil ls lope
morphology.

Conversely, to apply ClaReT, it was sufficient to feed
the tool with state-of-the-art morphometric parameters and
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Fig. 9 Distribution of errors
obtained with five different soil
thickness models applied in the
Terzona catchment
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thematic attributes (as lithology and land use), regardless
of their correlations and mutual influences. The forward
selection of input parameters implemented in ClaReT is
sufficient to discard uninfluential or pejorative predictors
and to give the right weight to each parameter. In this
way, the use of ClaReT tool in soil thickness modeling
made possible that the only necessary preliminary step
was constituted by the GIS computations needed to cal-
culate the input features.

6 Conclusions

ClaReT tool can be used to automate the feature selec-
tion process and to identify and apply the optimal
classification/regression model. ClaReT is applicable to
a wide range of regression or classification problems
and can be used to manage large amounts of data with a
reduced computation time. The GUI permits the use of
RFtb without having to write Matlab code, and it assists
the operator in the model implementation. The tool is
based on a standardized procedure, making the classification
and regression process reproducible.

As a test, we applied ClaReT to two case studies. In
the first one, we used ClaReT in classification mode to
identify the better subset of LCVs and to obtain LSM of
the Arno river basin. In the second case study, we used
ClaReT in regression mode to produce a soil thickness
map of the Terzona catchment, a small sub-basin of the
Arno. In both cases, we also performed a validation of
the results and a comparison with other state-of-the-art
techniques, finding that ClaReT produced better results
with a more straightforward and easy application.

ClaReT can also be a valuable tool to perform anal-
yses on the dataset and on the variables used. As an
instance, an important feature of ClaReT is the ranking
and visual display of the parameters’ importance, which
may assist in understanding the hierarchy of the vari-
ables that explain any physical problem. The selection
of conditioning variables is essential for classification/
regression problems [73, 74], and ClaReT gives the op-
portunity to manage a large number of variables with an
automatic selection based on objective and quantitative
criteria.

However, even if ClaReT automates and standardizes
the process of classification and regression, it is impor-
tant to keep in mind that the result always depends on
the decisions of the operator, as the input data arrange-
ment is a fundamental step in classification/regression
problems. In landslide susceptibility mapping, for exam-
ple, the choice of the training set and of the working
scale influences the model performance [38, 75].
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