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Abstract Lake eutrophication is harmful and difficult to pre-
dict due to its complex evolution. As an alternative to existing
mechanistic models, a Markov chain model was developed to
predict the development of lake eutrophication based on an
11-year dataset in 41 lakes of the Yangtze River Basin. This
model was validated using a real-time update strategy and was
demonstrated to be reliable. Based on the dataset, the lake
eutrophication dynamics from 2000 to 2010 were analyzed.
Lakes with different trophic states from 2011 to 2050 and their
responses to different water management practices were sim-
ulated based on the developed model. The simulation results
show that lake eutrophication would worsen from 2011 to
2040; however, eutrophication could be significantly alleviat-
ed by changing 100 km2 of hypereutrophic lakes into eutro-
phic lakes per year from 2010 to 2020. The nutrient conditions
in most of the lakes in the Yangtze River Basin show that
phosphorus control would be more efficient than nitrogen
control in eutrophication management practices. This case
study demonstrates the utility of Markov chain models in
using prior information to predict the long-term evolution of
lake eutrophication at large spatial scales. The Markov chain
technique can be easily adapted to predict evolutionary pro-
cesses in other disciplines.
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1 Introduction

Lake eutrophication is a global environmental problem, which
has deleterious effects on aquatic ecosystems [23]. Predicting
trends in lake eutrophication in the near future would help us
understand the mechanisms of eutrophication in lake ecosys-
tems, and thus provide strategies for lake managers to control
lake eutrophication [16, 17]. For an individual lake, eutrophi-
cation indicators (e.g., chlorophyll a, total phosphorus, and
nitrogen) can be predicted using a wide range of existing lake
models [15, 21, 22, 32, 33]. However, lakes in watersheds are
strongly affected by connecting rivers [14]. These lakes
should bemodeled as a dynamic system (termed Blake chains^
in Hilt et al. [14]) rather than a group of individuals. Under-
standing the evolutionary patterns of lake eutrophication in a
watershed is necessary to predict the dynamics of the entire
system.

Markov chains were developed by a Russian mathemati-
cian Andrei Andreyevich Markov in 1907 and have a flexible
structure for describing the evolution of systems based on
prior information [3, 20, 38]. Markov chains, therefore, have
been widely used in predicting the time scales over which the
evolution of a dynamic system unfolds. For example, Markov
chains have been used to study forests [6, 30, 38], landscapes
[2, 12, 13], ecological networks [25], weather conditions [1],
and the evolution of populations [9, 27]. Markov chain
models provide a flexible transition probability matrix to de-
scribe the transformation of the system from one stage to the
next [3]. This feature allows Markov chain models to predict
the evolution of eutrophication of lakes in a watershed.
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A majority of Chinese freshwater lakes are located in the
Yangtze River Basin. During the last few decades, these aquat-
ic ecosystems have experienced accelerated levels of eutrophi-
cation [19, 24]. Eutrophication control of these lakes has been
among the top priorities for Chinese governments. Large-scale
predictions of lake eutrophication over long-time scales could
describe developing trends in the trophic state of lakes, and
have the potential to support integrated watershed manage-
ment. Such predictions are imperative for lake management
agencies. However, the evolutionary pattern of lake eutrophi-
cation over such a large spatial scale is difficult to predict
because there are a dearth of large datasets for the lakes in
the Yangtze River Basin.

The main objective of this paper is to predict the long-term
eutrophication dynamics of the lakes in the Yangtze River
Basin. Based on an 11-year dataset for 41 lakes, a Markov
chain model was developed by following the steps: (1) lake
trophic states were assessed using a trophic state index; (2) a
transition probability matrix was derived based on eutrophi-
cation assessment results from 2000 to 2010; and (3) the de-
velopment of lake trophic states from 2011 to 2050 was pre-
dicted using the transition probability matrix. Performance of
theMarkov chain in this case study and the implications of the
predictions for lake management were discussed.

2 Material and Methods

2.1 Study Area

The Yangtze River (length, 6300 km) is the longest river in
China and the third longest river in the world, with a total
drainage area of 1,808,500 km2 (approximately 18.8 % of

China’s territory) (Fig. 1). The distribution of precipitation in
the Yangtze River Basin is highly heterogeneous. The annual
mean precipitation varies from 270–500 mm in the western
region to 1600–1900 mm in the southeastern region [11].

There are 648 lakes with an area larger than 1 km2 in the
Yangtze River Basin. The total area of these lakes is 17,
178.5 km2, accounting for approximately 21.2 % of the sur-
face area of all of the lakes in China [31]. Most of these lakes
are rather shallow. The Yangtze River and the lakes in the
Yangtze River Basin have been listed in the Global Ecoregion
200 by the World Wildlife Fund (WWF) for conservation
[43]. These lakes in the Yangtze River Basin provide impor-
tant water resources for residential dwellings, industry, and
irrigation. Unfortunately, many of these aquatic ecosystems
have become eutrophic or are becoming eutrophic due to in-
tensive ecological stress (e.g., high nutrient loading and ex-
treme climate) in recent decades [19, 24]. To control lake
eutrophication, many water quality-monitoring programs
have been conducted by researchers and managers to obtain
data on water quality in these aquatic ecosystems.

2.2 Data

A total of five indicators were used for eutrophication assess-
ment of the lakes in the Yangtze River Basin, including chlo-
rophyll a (Chl a, μg/l), total phosphorus (TP, mg/l), total ni-
trogen (TN, mg/l), chemical oxygen demand (COD, mg/l) and
Secchi disk depth (SD, m). Water samples were collected and
analyzed by the Ministry of Environmental Protection of the
People’s Republic of China. This sampling program was con-
ducted at 173 sampling sites in 41 lakes (reservoirs) (Fig. 1
and Appendix A) of the Yangtze River Basin from 2000 to
2010. These lakes cover a total area of 12,741 km2 and are a

Fig. 1 Location of the Yangtze River Basin and sampling sites in 41 lakes (reservoirs)

234 J. Huang et al.



concern of researchers and government officials due to their
importance. The number of sampling sites for a lake was pos-
itively associated with its area and importance for the human
population. In other words, more samples were collected from
larger lakes that were more heavily used by the human popu-
lation. During this 11-year period, water samples were collect-
ed seasonally between 2000 and 2006, and monthly between
2007 and 2010. Annual average values of these five indicators
(i.e., Chl a, TP, TN, COD, and SD) were derived using sea-
sonal and monthly values.

2.3 Lake Eutrophication Assessment

Many eutrophication assessment methods have been proposed
to evaluate lake trophic state, e.g., the fixed boundary criteria
developed by the OECD [35], Carlson’s trophic state index
[5], fuzzy analysis [28], and artificial neural networks [39].
Among these methods, OECD’s criteria and Carlson’s trophic
state index have been most widely used. To obtain a more
reliable assessment of lake trophic state among different re-
gions, improved methods of indicator selection and parameter
optimization have been developed [4, 18, 28, 37, 41, 44].

Carlson’s trophic state index (TSI) has the advantage of
providing continuous numerical classes to represent lake tro-
phic state [5, 44], and was well suited for Chinese lakes [8, 18,
44–46]. The TSI ranges from 0 to 100 with a higher value
implying more severe eutrophication, and can be calculated by:

TSI ¼
Xm

j¼1

wjTSI j ð1Þ

where wj is the weight of the j-th indicator for the TSI, TSIj is
the trophic state index of the j-th indicator, andm is the number
of indicators. These assessment indicators for calculating TSI
include basic and additional indicators. A relation-weighting
index was used to determine the weights for all of these indi-
cators [18, 45].

wj ¼
r2i j

Xm

j¼1

r2i j

ð2Þ

where rij is the relation coefficient between the j-th indicator
and the base indicator. TSIj is calculated as follows [45]:

TSI j ¼ 10 aj þ bjlnC j

� � ð3Þ

whereCj is themeasured value of the j-th indicator; aj and bj are
constants, and can be calculated using the following equations:

aj ¼ −10
lnC jmin

lnC jmax−lnC jmin
ð4Þ

bj ¼ 10
1

lnC jmax−lnC jmin
ð5Þ

where Cjmin is the measured lowest value of the j-th indicator,
and Cjmax is the measured highest value of the j-th indicator.

The results of assessment (TSI values) critically depend on
indicator selection and the parameter values ofwj, aj, and bj. In
this study, chlorophyll a concentration (Chl a) was selected as
the base indicator due to its close relationship to lake trophic
state [45]. Total phosphorus (TP), total nitrogen (TN), chem-
ical oxygen demand (COD), and Secchi disk depth (SD) were
selected as additional indicators given their well representa-
tion of lake trophic states in China [18, 45]. The constants (wj,
aj, and bj) for these assessment indicators were determined
based on the large-scale survey data from a previous study
[18]. These values of wj, aj, and bj have been successfully
used in eutrophication assessment of Chinese lakes [10].
Thus, TSI for lakes in the Yangtze River Basin can be calcu-
lated by [10]:

TSI ¼ 0:1878TSITP þ 0:1794TSITN þ 0:1833TSICOD

þ0:1833TSISD þ 0:2662TSIChl

ð6Þ

where TSIj are obtained as follows [10]:

TSITP ¼ 10 9:436þ 1:624lnTPð Þ ð7Þ
TSITN ¼ 10 5:453þ 1:694lnTNð Þ ð8Þ
TSICOD ¼ 10 0:109þ 2:661lnCODð Þ ð9Þ
TSISD ¼ 10 5:118−2:117lnSDð Þ ð10Þ
TSIChl ¼ 10 2:5þ 1:086lnChlð Þ ð11Þ

The trophic states of 173 sampling sites at 41 lakes in the
Yangtze River Basin (Fig. 1) from 2000 to 2010 were assessed
using the TSI method. The TSI value (ranging from 0 to 100)
was then evenly divided into 10 trophic states (1–10) with an
interval of 10. The resulting TSI of a sampling site represents
the trophic state of an area (Sm) determined by the area (Slake)
and the number of sampling sites for the lake (nlake).

Sm ¼ Slake=nlake ð12Þ

For example, there are 23 sampling sites in Lake Taihu,
with an area of 2298 km2. The resulting TSI of each sampling
site represents the trophic state of an area (99.9 km2) in Lake
Taihu. Based on Eqs. 6–12, the lake area for each trophic state
can be calculated.

2.4 Markov Chain for Eutrophication Prediction

The Markov chain is widely used to predict the evolution of a
system, e.g., for forest [30, 38] and land use [2, 12]. In this
study, this technique was adapted to predict the time scales of
the evolution of lake eutrophication with a conceptual
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representation in Fig. 2. A Markov chain model was devel-
oped and applied by following the steps (Fig. 3);

1. Representation of
lake trophic states

All of the lakes in the Yangtze River
Basin were assumed to be a close sys-
tem. Their trophic states at time twere
represented by a matrix Xt.

X t ¼ S1t S2t … Snt½ � ð13Þ
where Sit (i∈{1,2,…,n}) is the total ar-
ea (km

2
) of lakes with a trophic state

of i at time t. n (n=10) is the number
of lake trophic states. The predicted
value of Xt using the Markov chain

model is represented by X̂ t.

X̂ t ¼ Ŝ1t Ŝ2t … Ŝnt
h i

ð14Þ

where Ŝit is the predicted value of Sit
using the Markov chain model.

2. Description of lake
trophic state dynamics

We assume that the predicted lake

trophic state X̂ tþΔt

� �
only de-

pends on the state of X
t

and not
on other previous states. Thus,
the temporal dynamics of the lake

trophic states X̂ tþΔt

� �
can be pre-

dicted using a transition probabil-
ity matrix P.

X̂ tþΔt ¼ X tP ð15Þ

P ¼
p11 p12 … p1n
p21 p22 … p2n
… … … …
pn1 pn2 … pnn

2
664

3
775ð16Þ

where pi jðpi j > 0; ∑
n

j¼1
pi j ¼ 1;

i; j∈ 1; 2;…; nf gÞ is the probabil-
ity that lake trophic state changes
from the i-th state to the j-th state
in a time step (Δt=1 year in this
study), i.e.,

pi j ¼
Sit; j tþΔtð Þ

Sit
ð17Þ

where Sit, j(t+Δt) is the total area
(km2) of lakes with a trophic state
of i at time t, and with a trophic
state of j at time t+Δt.

3. Estimation of the
transition probability matrix

The element of the transition
probability matrix (P

ij

) was
calculated based on the lake
eutrophication assessment
results from 2000 to 2010
(mentioned in Section 2.3).

Fig. 2 Conceptual diagram of the Markov chain model for predicting
lake trophic state. pij represents the probabilities that lake trophic state
changes from the i-th state to the j-th state in a time step (Δt)

Fig. 3 Flow chart of the Markov chain model for predicting the trophic
states of lakes in the Yangtze River Basin. P is the transition probability
matrix for the dynamics of the lake trophic state. Xt represents the lake

trophic state at year t. X̂ t represents the predicted lake trophic state at year t
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pi j ¼
Sit; j tþ1ð Þ

Sit
ð18Þ

where Sit,j(t+1)(i,j∈{1,2,…,
n}) is the area of lakes with
an i-th trophic state at year t,
and with a j-th trophic state
at year t+1.

4. Prediction of
lake trophic states

Based on the estimated P, a simulation
(SimBase) was implemented to predict
the trophic states of lakes in the Yangtze
River Basin from 2011 to 2050 using
Eq. 15. The initial condition of this sim-
ulation is from the assessment results of
lake eutrophication for the year 2010
(X

2010
). X dynamics are assumed to be

homogeneous in time, i.e., P is constant
during the simulation period.

5. Predicting the impacts
of water management
practices on lake
trophic states

In water management practices, the
hypereutrophic lakes are more of a
concern than other lakes due to their
deleterious impacts. Thus, lakeman-
agers have taken many measures
(e.g., reducing nutrient inputs and
sediment removal) to lower their tro-
phic states. To evaluate the benefits
of these measures on lake trophic
states, another three simulations
were implemented and compared
with the simulation of SimBase.
T h e s e t h r e e s i m u l a t i o n s
(SimChange10, SimChange50, and
SimChange100) assumed a speci-
fied area (10, 50, and 100 km

2
, re-

spectively) of lake where the trophic
state of level 8 was improved to lev-
el 7 (Section 2.5) per year from 2010

to 2020. Such an assumption was
described in the Markov chain mod-
el using a dynamic P by changing
the values of S8t,7(t+1) and S8t,8(t+1)
per year from 2010 to 2020.

S8t;7 tþ1ð Þ ¼ S8t;7 tþ1ð Þ þ s ð20Þ
S8t;8 tþ1ð Þ ¼ S8t;8 tþ1ð Þ−s ð21Þ

where s (s∈{10, 50, 100 km
2
})

is the specified area of the lake
where the trophic state of level 8
was improved to level 7 per year
from 2010 to 2020.

2.5 Model Validation

The performance of a Markov chain model is highly deter-
mined by the transition probability matrix (P). Thus, a reliable
estimation ofP is needed to achieve a successful simulation. A
real-time update strategy was used to validate the reliability of
the Markov chain model (Section 2.4) from 2006 to 2010. In
other words, the transition probability matrix was updated in
real time during the validation period (Fig. 4). The area of
lakes with different trophic states (levels 1–10) frommeasured
data were compared with that from the estimated results of the
Markov chain. Model fit was evaluated based on the follow-
ing error statistics of εit:

εit ¼
Ŝit−Sit
���

���
Xn

i¼1

Sit=n

ð22Þ

where Sit is the area of lakes with the trophic state level of i at
year t. Ŝit is the estimated area of lakes with the trophic state
level of i at year t. n is the number of trophic state levels (n=
10). εit is a dimensionless measure ranging from 0 to infinity.

Fig. 4 Validation of the Markov
chain model. Pt is the transition
probability matrix for predicting
lake eutrophication state in the
year t+1. Xt represents the lake

eutrophication state at year t. X̂ t

represents the predicted lake
eutrophication state at year t. εt is
the deviation betweenXt and X̂ t at
year t
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An εit value of 0 indicates that the estimated area (Ŝit) matches
the measured area (Sit).

3 Results

3.1 Lake Eutrophication From 2000 to 2010

The resulting TSI (ranging from 0 to 100) represents different
trophic states: oligotrophic (0–30), mesotrophic (31–60), eutro-
phic (61–70), and hypereutrophic (71–100) [44]. The area per-
centages of these four lake trophic states from 2000 to 2010 are
shown in Fig. 5. The area of hypereutrophic lakes decreased
from 2006 to 2010, and the area percentage decreased from
14.83 to 4.58%. However, the total area percentage of eutrophic
and hypereutrophic lakes did not change significantly between
2002 and 2010. Because the two largest lakes (Lake Poyang and
Dongting) in the Yangtze River Basin were mesotrophic, the
area of mesotrophic lakes accounted for a large proportion of
the area from 2000 to 2010. The area of the oligotrophic lakes
decreased from 2007 to 2010, and the area percentage decreased
from 7.65 to 1.27 %. There was a clear trend in oligotrophic
lakes becoming more mesotrophic from 2007 to 2010.

The trophic state index (TSI) in this study was calculated
by five indicators (Chl a, TP, TN, COD, and SD), suggesting
that high trophic state may result from different environmental
factors. For example, for Lake Poyang from 2003 to 2010, the
average TSI values of TP and TN were 59.3 and 53.5, respec-
tively, while the TSI value of Chl awas 16.9. The TSI value of
TN was significantly higher than that of TP (Fig. 6).

The trophic states of lakes in the Yangtze River Basin are
strongly affected by their locations and functions. Many of the
lakes in developed and underdeveloped regions had an in-
creasing trend toward eutrophication (e.g., Lakes Changdang,
Chaohu, and Poyang in Fig. 7 a, b). However, lake eutrophi-
cation in the developed regions (e.g., Lake Changdang) was

more severe than that in the underdeveloped regions (e.g.,
Lakes Chaohu and Poyang). For example, Lake Changdang,
located in one of the most developed regions (Jiangsu Prov-
ince) in China, had a TSI value of 70 in 2007, suggesting
severe eutrophication. The eutrophication of many lakes in
cities (e.g., Lake Xuanwu in Nanjing City and Lake Yushan
in Maanshan City) was severe. However, eutrophication of
these lakes was alleviated from 2000 to 2010 (Fig. 7 c). The
trophic states of many lakes used for drinking water (e.g.,
Dongpu Reservoir in Anwei Province) were relatively low,
and did not change significantly from 2000 to 2010.

3.2 Transition Probability Matrix for Predicting Lake
Eutrophication in the Yangtze River Basin

The area (Sit,j(t+1) in Eq. 18, km
2) of lakes from the i-th trophic

state to the j-th trophic state was calculated based on the re-
sults of lake eutrophication assessment from 2000 to 2010.
The assessment generated 10×10 matrix (Table 1), which
should be read as follows: (1) for row 3, column 4, the total
area of the lakes, whose trophic states changed from level 3 to
4 in a year, was 2493.4 km2; (2) for row 3, column 5, the total
area of the lakes, whose trophic states changed from level 3 to
5 in a year, was 98.9 km2.

Based on Eq. 18, the transition probability matrix (P) was
derived from the Sit,j(t+1) matrix (Table 1). The value of P
(Table 2) should be read as follows: (1) for row 7, column 4,
there is no probability for lake trophic state to change from level
7 to 4 in a year; (2) for row 7, column 6, there is a probability of
0.122 for lake trophic state to change from level 7 to 6 in a year.
The values on the diagonal line in Table 2 represent the prob-
ability of different lake trophic states to remain unchanged in a
year. The values at the upper right of Table 2 represent the
probability of different lake trophic states increasing in a year,
and the values at the lower left of Table 2 represent the proba-
bility of different lake trophic states decreasing in a year. The

Fig. 5 Area percentages of four
lake trophic states in the Yangtze
River Basin from 2000 to 2010
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Fig. 6 Trophic state index (TSI)
for five indicators (Chl a
chlorophyll a, TP total
phosphorus, TN total nitrogen,
COD chemical oxygen demand,
and SD Secchi disk depth) based
on all of the samples at 173
sampling sites of 41 lakes
(reservoirs) between 2000 and
2010

Fig. 7 The trophic state index (TSI) for different types of lakes from 2000 to 2010
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values in Table 2 revealed that the low trophic states (levels 2–
5) have a higher probability of increasing in any given year.
However, the high trophic states (levels 6, 8, and 9) have a
higher probability of decreasing in any given year.

3.3 Model Validation

The model fits of the Markov chain model during the valida-
tion period (2006–2010) were significantly different (Fig. 8).
In 2006, the ε value (Eq. 22) varied from 0 to 214 % with an
average value of 55.7 %, suggesting that the lake areas with
different trophic states were not adequately predicted. How-
ever, it was clear that model fit was improved for the period
from 2006 to 2010. In 2010, the estimated results agreed well
with the measured data, with an average ε value of 10.9 %.

This value (ε2010) showed a significant decrease of 44.8 %
compared with the ε value in 2006 (ε2006).

3.4 Lake Eutrophication From 2011 to 2050

The prediction results of SimBase show that the trophic state of
lakes in the Yangtze River Basin would worsen from 2011 to
2040 (Fig. 9) without implementing any mitigating measures.
There is a strong tendency to change from a mesotrophic state
to other trophic states from 2011 to 2025. The area of
hypereutrophic-state lakes would increase, while the area of
mesotrophic-state lakes would decrease. The area of
eutrophic-state lakes would decrease slightly during the first
2 years with a minimum value of 2163.7 km2 in 2013, and then
increase afterward. The area of oligotrophic-state lakes would

Table 1 The area (Sit,j(t+1) (km
2) in Eq. 18) of lakes from the i-th trophic state (row number) to the j-th trophic state (column number) in a year

Eutrophication level 1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0

2 0 0 117.4 11.6 0 0 0 0 0 0

3 0 0 2860.7 2493.4 98.9 0 0 0 0 0

4 0 0 1985.5 6843.2 4815.9 1444.2 0 0 0 0

5 0 0 149.5 2983.2 27,662.8 6380.4 41.6 0 0 0

6 0 0 112.4 495.9 5042.9 9584.6 1875.2 80.8 64.1 0

7 0 0 0 0 73.5 2106.0 12,854.1 2198.0 64.1 0

8 0 0 0 0 0 29.9 2993.4 7517.1 100.6 0

9 0 0 0 0 0 0 0 557.3 0 0

10 0 0 0 0 0 0 0 0 0 0

The area was calculated using the results from the lake eutrophication assessment from 2000 to 2010

Table 2 The estimated transition probability matrix using the results of lake eutrophication assessment from 2000 to 2010

Eutrophication 
Level 

1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0.910 0.090 0 0 0 0 0 0

3 0 0 0.525 0.457 0.018 0 0 0 0 0 

4 0 0 0.132 0.453 0.319 0.096 0 0 0 0

5 0 0 0.004 0.080 0.744 0.171 0.001 0 0 0 

6 0 0 0.007 0.029 0.292 0.554 0.109 0.005 0.004 0

7 0 0 0 0 0.004 0.122 0.743 0.127 0.004 0

8 0 0 0 0 0 0.003 0.281 0.707 0.009 0

9 0 0 0 0 0 0 0 1 0 0

10 0 0 0 0 0 0 0 0 0 0

The highest transition rate of each trophic level is colored dark gray. The values on the diagonal line represent the probability of different lake trophic
states remaining unchanged throughout the year
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increase rapidly in the first 7 years with a maximum value of
413.5 km2 in 2017, and then decrease slowly afterward.

SimBase required 30 years (2011–2040) for lake eutrophi-
cation to achieve a nearly steady state (Fig. 9). The areas of
lakes with different trophic states would remain stable in the
2040s with an average standard deviation of 4.2 km2 (0.13 %
of the total lake area). The stable lake areas of four different
trophic states (oligotrophic, mesotrophic, eutrophic, and
hypereutrophic) were 390.7; 8393.3; 2504.7; and
1261.1 km2, respectively. Compared to the trophic states in
2010, the area of mesotrophic lakes significantly decreased by
1080.2 km2, while the area of hypereutrophic lakes signifi-
cantly increased by 686.2 km2.

SimChange10, SimChange50, and SimChange100 showed
significantly different results in predicting the areas of mesotro-
phic, eutrophic, and hypereutrophic lakes (Fig. 9). The area of
hypereutrophic lakes decreased significantly with a stable area
of 315.1 km2 for the simulation of SimChange100. This area
had a decrease of 946.0 km2 in a simulation without any mea-
sures (SimBase). However, the areas of mesotrophic and eutro-
phic lakes increased. The area of oligotrophic lake showed no
significant difference among these four simulations (Fig. 9 (a)).

4 Discussion

4.1 Performance of the Markov Chain

Lake eutrophication dynamics are complex, and strongly affect-
ed by a wide range of anthropogenic (e.g., land use and point-
source pollution in its catchment area) and natural factors (geo-
graphic location, lake morphology, and climate conditions) [29,
34]. As an alternative to existing mechanistic models, a Markov
chain model was developed to predict lake eutrophication in this
study. The model validation results (Fig. 8) suggest that the
Markov chain model we developed in this study is reliable and

well suited to predict the eutrophication dynamics of a lake
community at such a large spatial scale. The successful applica-
tion of theMarkov chain is primarily attributed to the following:

1. The strength of the
Markov chain to embed
prior information into the
transition probability matrix

Evolutionary information from
prior data of various disciplines
can be easily described by the
transition probability matrix.
Moreover, this transition prob-
ability matrix could be updated
in real time for a more reliable
prediction.

2. The extensive
dataset used in
this study

The extensive data facilitated a reliable es-
timation of the transition probability matrix,
and thus improved model performance.
This conclusion was supported by the re-
sults of the model validation (Fig. 8). Mod-
el fit was relatively low in 2006, suggesting
that prior information (2000–2005) was still
not adequate to make reliable predictions
for eutrophication dynamics. However, the
fitting performance of this model improves
from 2006 to 2010 due to the increasing
amount of prior information used for the
Markov chain model (Fig. 8). Thus, ade-
quate prior information is needed to devel-
op a reliable model.

4.2 Possible Applications of the Markov Chain

Although theMarkov chain was used for a specific case in this
study, it could be easily adapted for predicting dynamic

Fig. 8 Error statistics of the
Markov chain model during the
validation period (2006–2010)
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systems in aquatic sciences or even in other scientific disci-
plines. Markov chains are capable of being adapted widely,
because their dynamics are rooted in statistics rather than in
mathematical descriptions of the eutrophication process. The
specific case in this study used the indicator of Sit (the lake
area with a trophic state) to represent the state of a dynamic

system (X). The transition probability matrix (P) represents
the increase or decrease of lake area from one trophic level
to another at each time step. Other indicators (e.g., phyto-
plankton biomass and species abundances) could be predicted
with a redefinition of X and P following the steps in Fig. 2.
Moreover, Markov chain models allow time steps to be

Fig. 9 The areas of lakes with different trophic states (oligotrophic,
mesotrophic, eutrophic, and hypereutrophic) in the Yangtze River Basin
from 2011 to 2050 predicted by the Markov chain model. SimChange10,
SimChange50, and SimChange100 represent simulations that assumed a

specified area (10, 50, and 100 km2, respectively) of lake where a trophic
state of level 8 was improved to level 7 per year from 2010 to 2020.
SimBase is the simulation without any improvement
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manipulated; any time step (e.g., 1 year, 1 month, or 1 day)
may be used, depending on the requirements for other specific
case studies.

The manual measures were successfully coupled to the
simulations of SimChange10, SimChange50, and
SimChange100. This success demonstrated the potential
of the Markov chain in modeling the impacts of water
management strategies on lake eutrophication. However,
to achieve a better Markov chain model, great efforts are
required to quantify the relationship between these mea-
sures and lake areas with different trophic states. More-
over, other unexpected disturbances, such as natural (e.g.,
extreme climate) and human (e.g., large-scale ecological
restorations) impacts, may alter the evolution of lake eu-
trophication considerably and were worth quantitatively
coupling in this model. For example, there was a plan to
build a dam at the outlet of Lake Poyang. This project
would alter the hydrodynamic conditions in a large area
of Lake Poyang significantly, and thus result in abrupt
shifts in lake eutrophication dynamics. To overcome this
weakness, system disturbances (e.g., nutrient reduction,
natural disasters, ecological restorations, and extreme cli-
mate) could be included in a Markov chain based on the
technical advances, such as the use of Markov decision
processes [36]. However, the relationship between distur-
bance and its resulting change in nutrient concentration
should first be quantified.

4.3 Implications for Lake Management

Lake eutrophication is highly concerned by lakemanagers and
researchers due to its deleterious effects. The results of lake
eutrophication assessment show that most of the lakes in cities
(urban lakes) are experiencing serious levels of eutrophication
due to the high loading of nutrients from waste water [19].
However, one encouraging fact is that the trophic states of
many urban lakes were under control from 2000 to 2010
(Fig. 7 c). This finding is attributed to substantial inputs
(e.g., ecological restorations and reductions in nutrient inputs)
for improving water quality of urban lakes due to their impor-
tant roles for cities. Compared with other types of lakes, lakes
used for drinking water were protected from water contami-
nation and had relatively low trophic-state level (Fig. 7 d).

Long-term predictions of lake eutrophication at a large
spatial scale provide a good overview of lake eutrophica-
tion evolution in the Yangtze River Basin. The long pe-
riods required for lake eutrophication to achieve a steady
state (Fig. 9) implied that the current trophic states of
lakes in the Yangtze River Basin are in an unstable state.
Although the trophic state predictions of the lakes in the
Yangtze River Basin are pessimistic from 2011 to 2050
(Fig. 9), the simulation results of SimChange10,
SimChange50, and SimChange100 revealed that some

management strategies could be taken to ameliorate the
eutrophication dynamics. Nitrogen and phosphorus con-
trol is one of the most important strategies for reducing
eutrophication in aquatic ecosystems [7]. Assessment re-
sults (Fig. 6) show that the TSI value of TP is lower than
that of TN. This implies that lake eutrophication in the
Yangtze River Basin is more limited by phosphorus than
by nitrogen. From this perspective, phosphorus control is
more effective for mitigating lake eutrophication for most
of the lakes in the Yangtze River Basin. However, for an
individual lake, N:P ratio calculations are required for
deducing that nitrogen or phosphorus is limiting
eutrophication.

Water retention time is widely recognized as a key factor
affecting lake eutrophication [40, 42]. Thus, water transfer has
been used to flush pollutants out of lakes, resulting in the
abrupt alleviation of lake eutrophication on short-time scales
[26]. In contrast, dam-building projects increase water reten-
tion time of the lake and may therefore facilitate
eutrophication.

5 Conclusions

A Markov chain model was developed to predict the time
scale of the evolution of lake eutrophication in the Yangtze
River Basin using an 11-year dataset. This study demonstrated
the successful application of a Markov chain for long-term
eutrophication prediction and provided an alternative method
for predicting eutrophication evolution. The high performance
of Markov chains depended on its strength of converting prior
information into transition matrices. Markov chain techniques
could thus be promising for uses in other disciplines with
adequate prior information. The prediction results from our
case study show a trend toward increased lake eutrophication
in the Yangtze River Basin from 2011 to 2050. However, such
trend could be gradually alleviated by taking appropriate con-
trolling measures. These prediction results could help lake
managers better understand the complex mechanisms of eu-
trophication and develop efficient eutrophicationmanagement
strategies to control lake eutrophication.
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Appendix

Table 3 shows the statistical information (area, number of
sampling sites, and trophic state index between 2000 and
2010) of lakes (reservoirs) surveyed in this study.

Table 3 Statistical information (area, number of sampling sites, and trophic state index between 2000 and 2010) of lakes (reservoirs) surveyed in this
study

Lake Area (km2) Number of sampling sites Sampling period

Lake Poyang 3677.51 4 2003–2010

Lake Dongting 2630.78 10 2000–2010

Lake Taihu 2297.92 23 2000–2010

Lake Chao 769.32 12 2000–2010

Dangjiang reservior 609.34 3 2000–2010

Lake Liangzi 349.03 6 2001–2010

Lake Honghu 337.09 8 2001–2010

Lake Zhelin 248.74 4 2008–2010

Lake Shijiu 219.98 1 2006–2010

Lake Gehu 191.06 4 2000–2010

Lake Changhu 142.99 5 2001–2010

Lake Futou 141.19 2 2000–2010

Lake Changdang 119.04 4 2000–2010

Lake Yangcheng 116.57 7 2000–2010

Lake Shengjin 95.56 2 2003–2010

Zhanghe reservior 84.18 2 2001–2010

Lake Taiping 75.31 3 2000–2010

Lake Dazhi 73.53 5 2000–2010

Lake Dianshan 58.59 13 2000–2010

Xujiahe reservoir 55.97 2 2007–2010

Lake Baoan 45.26 2 2000–2010

Lake Tangxun 44.66 2 2000–2010

Lake Hougong 40.63 1 2001–2010

Lake Xiannv 39.45 4 2008–2010

Lushui reservior 39.19 4 2001–2010

Lake Gucheng 36.32 1 2006–2010

Lake Zhangdu 36.03 1 2000–2010

Lake Donghu 34.05 5 2000–2010

Bailianhe reservior 32.68 1 2000–2010

Fuqiaohe reservior 31.16 1 2000–2010

Lake Houhu 18.57 1 2000–2010

Dongpu reservior 15.53 2 2003–2010

Foziling reservoir 14.49 5 2001–2010

Chengxi reservoir 6.10 1 2000–2010

Qingshan reservoir 5.65 1 2000–2010

Lake Xuanwu 3.44 2 2000–2010

Lake Tianjing 1.41 3 2000–2010

Lake Guijia 1.09 3 2000–2010

Lake Yushan 0.68 10 2000–2010

Lake Nanhu 0.53 1 2001–2010

Huanglong reservoir 0.32 2 2000–2010

In total 12,740.96 173
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