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Abstract To improve the description of long-term changes
in water quality, a weighted regression approach devel-
oped to describe trends in pollutant transport in rivers was
adapted to analyze a long-term water quality dataset from
Tampa Bay, Florida. The weighted regression approach
allows for changes in the relationships between water qual-
ity and explanatory variables by using dynamic model
parameters and can more clearly resolve the effects of both
natural and anthropogenic drivers of ecosystem response.
The model resolved changes in chlorophyll-a (chl-a) from
1974 to 2012 at seasonal and multi-annual time scales while
considering variation associated with changes in freshwater
influence. Separate models were developed for each of the
four Bay segments to evaluate spatial differences in patterns
of long-term change. Observed trends reflected the known
decrease in nitrogen loading to Tampa Bay since the 1970s.
Although median chl-a has remained constant in recent deca-
des, model predictions indicated that variation has increased
for upper Bay segments and that low biomass events in the
lower Bay occur less often. Dynamic relationships between
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chl-a and freshwater inputs were observed from the model
predictions and suggested changes in drivers of primary pro-
duction across the time series. Results from our analyses
have allowed additional insight into water quality changes in
Tampa Bay that has not been possible with traditional mod-
eling approaches. The approach could easily be applied to
other systems with long-term datasets.
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1 Introduction

Eutrophication has been documented in aquatic systems
worldwide and is of particular concern for coastal waters
that support numerous aquatic life and human uses.
Eutrophication is defined as an increase in the rate of
supply of organic matter [26] and is typically caused by
elevated nitrogen and phosphorus loads. Although nutrients
are necessary for growth of primary producers, excessive
anthropogenic inputs can have serious consequences for the
structure and function of aquatic systems. Eutrophication of
coastal systems has been associated with depletion of dis-
solved oxygen from the decomposition of organic matter
[10], increases in the frequency and severity of harmful algal
blooms [13], and reduction or extirpation of seagrass com-
munities [11, 41]. System-wide changes can occur as the
effects of eutrophication on primary production propogate
to upper trophic levels [29].

The effects of nutrient enrichment are generally well
understood, particularly for freshwater systems. Conse-
quences of nutrient pollution were increasingly obvious by
the 1960s such that eutrophication became a central focus
of limnological research [6]. However, the importance of
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understanding the effects of eutrophication on coastal sys-
tems were not realized until several decades later. For exam-
ple, Rosenberg [31] described the future hazards of coastal
eutrophication nearly 20 years after similar issues were the
focus of intense study in freshwater systems. Approaches
for describing nutrient dynamics in coastal systems have
relied heavily on freshwater eutrophication models that may
not adequately describe idiosyncratic behaviors of individ-
ual estuaries. For example, Cloern [6] suggests that system-
specific attributes modulate coastal response to nutrient
inputs, such that more appropriate conceptual models that
recognize linked changes in relevant state variables are needed.
To date, empirical models that are flexible and appropri-
ate for site-specific conditions have not been extensively
applied to describe nutrient-response dynamics in estuaries.

The increasing availability of long-term, high-resolution
datasets has further underscored the need to develop quanti-
tative nutrient-response models given the potential to extract
detailed information on system dynamics. In many cases
[3, 14], long-term datasets have been used to describe only
general trends in response to changing nutrient regimes or
seasonal dynamics, falling short of the full potential of the
data. For example, temporal variations in phytoplankton
growth dynamics are often apparent by season with typi-
cal late summer blooms in temperate or tropical systems
[5], and climate variation contributing substantial deviation
in growth patterns between years [17]. Spatial heterogene-
ity in algal response to nutrients is common across salinity
gradients such that effects of nutrients are most apparent
near freshwater inflows [5]. Simple statistical models that
are constrained by assumptions of linearity and stationarity
of variables through time may not adequately characterize
subtleties in the variation of nutrient-response measures at
different scales. Novel techniques that leverage the descrip-
tive potential of large datasets are needed to improve our
understanding of temporal and spatial variation in chloro-
phyll dynamics as a measure of eutrophication.

Use of simple descriptive statistics to evaluate the effects
of water quality management may be ill-advised given that
general trends in monitoring data may reflect both manage-
ment actions and natural variation in system characteristics.
Hirsch et al. [16] developed the weighted regressions on
time, discharge, and season (WRTDS) approach to model
pollutant concentration in rivers and address these issues
and shortcomings of previously developed models. WRTDS
enables a flexible interpretation of water quality changes by
estimating multiple parameters that are specific to a given
season, year, and level of freshwater discharge across the
time series. This allows for a more detailed description
of water quality changes than standard regression models,
which characterize trends using a single set of parame-
ters. Accordingly, WRTDS addresses the need to focus on
descriptions of change in relation to water quality variables

across time, rather than hypothesis testing. The approach
has been applied to model pollutant delivery from tributary
sources to Chesapeake Bay [16, 25, 45], Lake Champlain
[24], and the Mississippi River [36]. The successful applica-
tions to water quality trends in rivers suggest the approach
could potentially be applied to estuaries to characterize and
better understand long-term changes in water quality. Better
resolution of these changes may improve our understand-
ing of linkages between drivers and water quality responses
over time.

Water quality data have been collected in the Tampa Bay
estuary (Florida, USA) for approximately 40 years. The
natural history of Tampa Bay and the corresponding data
provide a useful opportunity to apply quantitative meth-
ods to model nutrient dynamics. Nitrogen loads in the mid
1970s were estimated at 8.2× 106 kg year−1, with approxi-
mately 5.5×106 kg year−1 entering the upper Bay alone [14,
27]. Reduced water clarity associated with phytoplankton
biomass contributed to a dramatic reduction in the areal cov-
erage of seagrass [41] and development of hypoxic events,
causing a decline in benthic faunal production [32]. Exten-
sive efforts to reduce nutrient loads to the Bay occurred by
the late 1970s, with the most notable being improvements
in infrastructure for wastewater treatment in 1979. Improve-
ments in water clarity and decreases in chlorophyll-a (chl-a)
were observed Bay-wide in the 1980s, with conditions
generally remaining constant to present day. Although the
nutrient management program has clearly been successful
in improving water quality, variation in water quality drivers
over time has clouded assessments of progress to some
degree. TheWRTDSmethod could provide additional infor-
mation on system dynamics that would help evaluate the
results of management actions.

The goal of the analysis was to describe changes in
algal biomass in an estuary in relation to time, season,
and freshwater inputs. We adapted the WRTDS approach
developed by Hirsch et al. [16] and refined in Hirsch and
De Cicco [15] to describe water quality trends using a
multi-decadal dataset from Tampa Bay, Florida. The analy-
sis addressed four main objectives. First, we described the
weighted regression model and provided a rationale for its
adaptation to estuaries. Second, we applied the model to
the time series in different segments of Tampa Bay to char-
acterize trends in the median response of chl-a. We also
addressed the frequency of occurrence of extreme events
using quantile regression, a completely new extension of the
WRTDS model. Third, additional factors related to water
quality were used to describe the unexplained variance
in chl-a growth patterns not characterized by the model.
Specifically, model residuals were compared with varia-
tion in seagrass coverage, El Niño-Southern Oscillation
(ENSO) effects, and nitrogen load and concentrations in the
Bay. Finally, we developed informed hypotheses to explain
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temporal and spatial patterns in chl-a growth in response to
large-scale drivers that affect water quality. Results from the
analysis provide a natural history of water quality changes
in Tampa Bay that is temporally consistent with drivers
of change. This analytical approach is of broad interest
because it could be used for many applications involving
analysis of long-term environmental change.

2 Methods

2.1 Data

We compiled a time series of chl-a concentration (μg L−1)
in Tampa Bay using data from the Hillsborough County
Environmental Protection Commission (EPC) [38]. Data are
monthly at mid-depth for each of 50 stations throughout the
Bay (Fig. 1) from 1974 to 2012, producing approximately
456 observations per station (Fig. 2). Stations were visited
on a rotating schedule such that one third of all stations
were sampled each week. Bay segments represent manage-
ment units of interest with distinct chemical and physical
differences (Table 1, [22]). Accordingly, station data were
aggregated by median values within each of four Bay seg-
ments resulting in n = 1820 observations. In addition to
chl-a, salinity data were also aggregated by segment and
used as an integrative tracer of freshwater influence on water
quality. We expected that salinity was an important fac-
tor influencing interpretation of chl-a trends relative to the
effects of additional factors (e.g., date, nutrient load, sea-
grass, etc.). Salinity data were converted to dimensionless
values that represent the fraction of freshwater [12], such
that:

Salff = 1 − Salobs

Salref
(1)

where Salobs is the observed salinity for a given station
and Salref is salinity at the seaward reference station for
each observation date. Station 94 in the Gulf of Mexico
(Fig. 1) was used for reference salinity. Chlorophyll data
were ln-transformed because observations were skewed
right, similar to a log-normal distribution. Kolomogorov-
Smirnov tests indicated that the raw data were not signifi-
cantly different from theoretical log-normal distributions.

2.2 Weighted Regression

WRTDS was adapted to relate chlorophyll concentration to
salinity and time:

ln (Chl) = β0 + β1t + β2Salff + β3 sin (2πt)

+β4 cos (2πt) + ε (2)

where the natural log of chl-a is related to decimal time
t , salinity Salff , and unexplained variation ε. Salinity and
time are linearly related to chl-a on a sinuisoidal annual
time scale (i.e., cylical variation by year). The parameters
β0, . . . , β4 are estimated for each observed salinity at time t

such that multiple sets of parameters are used to character-
ize the period of observation. Decimal time was calculated
as the year and month of each observation as an equiv-
alent decimal (e.g., July 1974 as 1974.5). Although data
were typically not collected on the first of each month, we
considered the decimal time coincident with the period of
observation. Quantile regression models [2] were used to
characterize trends at both the median and extreme con-
ditional distributions of the data. Specifically, we adapted
the weighted regression approach to model the conditional
response at the 10th, 50th, and 90th quantiles (τ = 0.1,
0.5, and 0.9, respectively) of the chlorophyll distribution.
Quantile regression is analogous to ordinary least-squares
(OLS) regression such that a set of β parameters is estimated
that minimizes the objective function (the sum of squared
residuals as in OLS regression). However, the objective
function is the sum of the weighted absolute deviations of
the fitted values from the observed quantile rather than the
conditional mean response as in OLS regression. A general
interpretation of the fitted values is the distribution of chl-a
conditional upon time and salinity for low (τ = 0.1) or high
(τ = 0.9) biomass events. The median values (τ = 0.5)
can be considered a model estimation of the central ten-
dency of chl-a over time, although this is quantitatively
distinct from mean models that characterize average chl-a.
Additionally, bias associated with back-transformation of
predicted values in log-space to a linear space does not occur
because estimates from quantile regression are equivariant
to non-linear, monotonic transformations [18].

The WRTDS approach obtains fitted values of the
response variable by estimating regression parameters for
each unique observation. Specifically, a quantile regression
model was estimated for each point in the period of observa-
tion for each Bay segment [15, 16]. Each regression model
was weighted by month, year, and salinity such that a unique
set of regression parameters for each observation in the
time series was obtained. For example, a weighted regres-
sion for October 2003 weights other observations in the
same year, month, and similar salinity with higher values,
whereas observations for different months, years, or salini-
ties receive lower weights (Fig. 3). This weighting approach
allows estimation of regression parameters that vary in rela-
tion to observed conditions. Hirsch et al. [16] used a tri-cube
weighting function:

w =
{ (

1 − (d/h)3
)3

if |d| ≤ h

0 if |d| > h
(3)
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Fig. 1 The Tampa Bay estuary
located on the west coast of
central Florida. The Bay is
separated into four segments
defined by chemical, physical,
and geopolitical boundaries
[22]. Monthly water quality
monitoring stations are also
indicated by their identification
number [1]
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where the weight w for each observation is defined by the
distance d from the current observation within a window h.
The weights are diminishing in relation to the current obser-
vation until the maximum window width is exceeded and a
weight of zero is used. The weight for each observation is
the product of all three weights assigned to month, year, and
salinity. Window widths of 6 months, 10 years, and half the
range of Salff for each Bay segment were used (Fig. 3).
Window widths were increased by 10 % increments during
model estimation until a minimum of 100 observations with
non-zero weights was obtained [16].

The adapted WRTDS approach was used to model and
interpret chl-a trends from 1974 to 2012 for each of the four
Bay segments. In contrast with Hirsch et al. [16], estimates
were made using monthly rather than daily observations
given the available data for Tampa Bay. Particular attention
was given to trends that have not been previously described.
Following Hirsch et al. [16], predicted values were based on
interpolation matrices for each model type (10th percentile,
50th percentile , and 90th percentile ) to reduce computation
time. Specifically, a sequence of 20 salinity values based on

the minimum and maximum values for each segment were
used to predict chl-a using the observed month and year.
Model predictions were then taken from the grid using the
salinity value closest to the actual for each date. Hirsch et al.
[16] notes that the introduction of bias associated with using
imprecise values from a grid in place of actual observations
to estimate predictions was minimal.

A common issue with water quality data is the pres-
ence of observations that occur beyond the detection limit
of the method used to measure the variable of interest. The
most recent version of WRTDS method accounts for cen-
sored data by using a “survival analysis” technique [15, 25],
which is an adaptation of the weighted Tobit model for left
censored data [40]. Chlorophyll data for Tampa Bay are
multiply left censored with the most common lower detec-
tion limit being 2.4 μg L−1 for individual survey years.
A censored quantile regression approach was used based
on methods described in Portnoy [28] and Koenker [18].
The method builds on the Kaplan-Meier approximation for
a single-sample survival function by generalizing to con-
ditional regression quantiles. The quantreg package in
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Fig. 2 Observed chl-a data for Tampa Bay segments by (a) year and (b) month aggregations. Each box is bisected and colored by the median.
Boxes represent the IQR (25th to 75th percentile). Outliers are present beyond whiskers (1.5· IQR) and were observed beyond 50 μg L −1

Table 1 Summary of characteristics for Tampa Bay segments

Segment Area (km2) Shoreline length Average depth Watershed area Chlorophyll-a Salinity

(km) (m) (km2) (μg L−1)

HBa 105.3 128.6 3.2 3319.9 7.1 25.9

OTB 200.7 339.8 2.8 874.4 6.4 23.7

MTB 309.9 262.8 4.1 1062.7 4.1 27.5

LTB 246.6 121.6 3.8 330.5 3.1 32.5

Median chlorophyll and salinity data for 2012 are shown. Sources: [21, 22]
aHB: Hillsborough Bay, OTB: Old Tampa Bay, MTB: Middle Tampa Bay, LTB: Lower Tampa Bay
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Fig. 3 Example of weighting
for one observation in
Hillsborough Bay. The top plot
shows all data weighted for
October 2003 when the
proportion freshwater was 0.39.
Point size and color are in
proportion to weights (small
blue points = 0, large red points
= 1). The bottom plots show the
individual weights for month,
year, proportion freshwater, and
all weights combined
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R [19] employs this method using recursive estimation
of linear conditional quantile functions. Censored quantile
regression models were used with the adapted weighted
scheme to model observed chl-a in each segment. Data were
based on median values for all stations within a segment
such that the lower detection limits that applied to observa-
tions at individual stations were preserved in the aggregated
data. A segment median at a given time step was considered
censored if it was less than or equal to the known detection
limit for a given year. The lower detection limits were iden-
tified by parsing the station data by year to identify values
that were flagged accordingly in the original data [38]. The
percentage of observations that were censored by segment
was 1.8 for Hillsborough Bay, 3.6 for Old Tampa Bay, 4.3
for Middle Tampa Bay, and 24.8 for Lower Tampa Bay.

Model fit was evaluated using the quantile regression
goodness of fit described in Koenker and Machado [20].
This measure has a similar interpretation as the standard
R2 for mean regression models, although it differs funda-
mentally by describing the relative success of the model
at a specific quantile using the weighted sum of absolute
residuals. Using notation in Koenker and Machado [20]:

R1 (τ ) = 1 − V̂ (τ ) /Ṽ (τ ) (4)

where R1 (τ ) is the proportion of explained variance of the
model at quantile τ . Values for V̂ (τ ) and Ṽ (τ ) describe the
sum of residual variance of the fully parameterized model
and a null model (i.e., the non-conditional quantile of the
response). The residual variance for each WRTDS model
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was based on an accumulation of residuals for each regres-
sion model specific to each observation. Additionally, root
mean square error (RMSE) was calculated as an alternative
measure of performance such that:

RMSE =

√√√√√
n∑

i=1

(
yi − ŷi

)2
n

(5)

where n is the number of observations for a given seg-
ment, yi is the observed value of ln (Chl) for observation
i, and ŷi is the predicted value of ln (Chl) for observation
i. RMSE values closer to zero represent model predictions
closer to observed. The performance of weighted models
was compared to non-weighted quantile models that fit a
single parameter set to the entire time series for each seg-
ment. In this context, “performance” describes the measure
of fit to the observed data and is considered a relatively
narrow definition of overall model value.

The WRTDS approach was also used to normalize pre-
dicted values for a given explanatory variable. Normaliza-
tion is used to remove the variance in the response that
is attributed to a predictor variable, allowing interpretation
of trends that are independent of confounding sources of
variation. For example, water quality trends that are poten-
tially related to management actions can be more precisely
evaluated if changes in pollutant concentrations due to nat-
ural variation in discharge are removed. Hirsch et al. [16]
used the approach to normalize trends by flow, whereas
our adapted approach was used to normalize by the degree
of river influence, as indicated by the fraction of freshwa-
ter, Salff . Normalized predictions were obtained for each
observation date by assuming that Salff values for the same
month in each year were equally likely to occur across the
time series. That is, Salff is assumed to be uniformly dis-
tributed within the range of observed values for the same
month between years. For example, normalization for Jan-
uary 1st 1974 considers all salinity values occurring on
January 1st for each year in the time series as equally likely
to occur on the observed data. A normalized value for Jan-
uary 1st 1974 is the average of the predicted values using
each of the Salff values as input, while holding month
and year constant. Normalization across the time series is
repeated for each observation to obtain salinity-normalized
predictions.

2.3 Evaluation of Model Residuals

Additional factors that were not explicitly included in the
weighted regression were evaluated for their ability to
describe unexplained variation in the response (ε, Eq. 2).
Specifically, residuals for each model in each Bay segment
were related to seagrass coverage, ENSO climate effects

by season and year, and nitrogen load and concentrations,
all variables of considerable management interest. ENSO
effects were included to evaluate the potential effects of this
climate cycle other than effects caused by river discharge,
which is directly addressed in the model. El Niño/La Niña
events have been associated with extreme variation in rain-
fall that influences freshwater discharge into Tampa Bay
[34]. Although salinity as a model predictor may account for
this variation, the ENSO effects were evaluated to identify
potentially unexplained changes in chl-a related to extreme
climate events as compared to seasonal changes in fresh-
water inputs. Conventional statistics, such as correlation
coefficients and linear regression, were used to describe
these relationships.

Seagrass coverage in Tampa Bay has been estimated
biennially since 1988 [41]. Coverage data are based on inter-
pretation of aerial photos to produce vector coverages with
polygons coded as continuous (>75%) or patchy (25–75%)
coverage [35]. Areal coverage of seagrass for years with
available data (n = 12) was estimated by considering sea-
grass as present (continuous or patchy) or absent within each
Bay segment. ENSO data obtained from the Climate Pre-
diction Center [9] were based on a 3-year running-average
of sea surface temperature (SST) anamolies in the Niño 3.4
region of the Pacific Ocean (5◦ N–5◦ S, 120◦–170◦ W).
SST index values greater (less) than 0.4 (−0.4) were con-
sidered El Niño (La Niña) conditions, neutral otherwise.
SST index values were categorically and quantitatively sum-
marized by year and season using designations in Lipp
et al. [23]: winter—January, February, March; spring—
April, May, June; summer—July, August, September; fall—
October, November, December. Finally, monthly loads for
total nitrogen (TN, kg/mo) from 1985 to 2007 were obtained
[27, 30, 44], in addition to TN concentration from mon-
itoring data [38]. Nitrogen loads are based on estimated
and measured contributions from nonpoint sources, point
sources, atmospheric deposition, groundwater, and losses of
fertilizer from industrial operations.

3 Results

3.1 Observed Trends in Chlorophyll-a

Observed chl-a for all dates indicated median val-
ues decreasing from Hillsborough (long-term median
11.9 μg L−1), to Old (7.9), to Middle (6.5), and to Lower
Tampa Bay (3.6). Observed trends from 1974 to 2012
indicated a consistent decrease from 1974 to present as
previously documented, with the most dramatic declines
observed in the 1980s (Fig. 2a). Annual peaks in chl-a
have also been associated with El Niño [14] in the mid-
1990s. For example, 28.3 μg L−1 of chl-a was observed for
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Fig. 4 Predicted (lines) and
observed (circles) chl-a
concentrations for Tampa Bay
segments in January (dry
season) and July (wet season)
(see supplements for all
months). Predicted values are for
the weighted regression models
fit through the median response
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Observed seasonality of chl-a was consistent with the
behavior observed in many estuaries [42]. Maximum
concentrations were generally observed in late summer,

whereas minimum concentrations were observed in mid
winter (Fig. 2b). Median concentrations for the entire Bay
were highest (11.9 μg L−1) in September and lowest
(4 μg L−1) in February. Seasonality was similar among
Bay segments except that the amplitude of seasonal peaks
diminished with proximity to the Gulf. For example, median

Table 2 Expected changes in chlorophyll (μg L−1, percent in parentheses) from 1974 to 2012 and 2005 to 2012 from each model and Bay
segment at low, moderate, and high values for fraction of freshwater (Salff ).

Models 1974–2012 2005–2012

Low Moderate High Low Moderate High

HBa

0.1 τ −9.4(−46.9) −6.4(−32.2) 0.4 (2.3) 1.7 (19.7) 0.9 (6.9) 9.8 (94.7)

0.5 τ −16.7(−60.6) −10.8(−39.2) −2.8(−9.8) −1.6(−12.9) −0.5(−2.8) 6.0 (30.7)

0.9 τ −29.0(−74.4) −24.7(−57.2) −13.4(−32.8) −10.2(−50.5) −9.5(−33.8) −7.6(−21.8)

OTB

0.1 τ −0.5(−6.0) 1.5 (18.7) 6.8 (100.8) 0.9 (11.9) 0.7 (7.4) 3.5 (34.7)

0.5 τ 0.2 (1.1) 0.4 (2.4) 2.0 (13.3) 4.6 (40.3) 2.7 (21.2) 1.9 (12.8)

0.9 τ 11.5 (50.2) 6.2 (26.4) 9.6 (42.1) 12.4 (56.4) 3.8 (14.8) −0.2(−0.7)

MTB

0.1 τ −2.0(−31.7) 0.9 (14.2) 0.2 (2.1) −0.1(−2.7) 1.5 (27.0) 3.1 (43.8)

0.5 τ −3.6(−36.2) −1.5(−14.4) −0.4(−2.9) −0.6(−8.8) 0.6 (6.8) 2.2 (22.2)

0.9 τ −6.3(−43.1) −3.5(−23.4) 0.2 (1.1) −1.5(−14.9) −0.4(−3.3) 1.0 (6.7)

LTB

0.1 τ 1.8 (78.6) 2.3 (82.6) 4.5 (157.4) 0.8 (22.8) 1.5 (41.2) 2.5 (52.0)

0.5 τ 0.6 (15.4) 2.2 (47.1) 5.0 (108.5) −0.03(−0.7) 0.7 (11.6) 1.5 (19.0)

0.9 τ 0.05 (0.9) 1.1 (13.5) 3.7 (40.5) −1.0(−14.4) −2.2(−19.5) −5.3(−29.0)

Values are the estimated differences in predicted chl-a concentrations for July in each year. Low, moderate, and high are relative values for each
segment for all years during July
aHB: Hillsborough Bay, OTB: Old Tampa Bay, MTB: Middle Tampa Bay, LTB: Lower Tampa Bay
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Table 3 Model performance by Bay segment comparing non-weighted (Non-wtd) and weighted (Wtd) regression

Statistic 0.1 τ 0.5 τ 0.9 τ

Non-wtd Wtd Non-wtd Wtd Non-wtd Wtd

HBa

R1 (τ ) 0.31 0.43 0.34 0.43 0.32 0.46

RMSE 0.76 0.72 0.46 0.41 0.77 0.65

OTB

R1 (τ ) 0.33 0.45 0.36 0.45 0.29 0.43

RMSE 0.71 0.64 0.40 0.35 0.65 0.61

MTB

R1 (τ ) 0.32 0.44 0.38 0.47 0.31 0.51

RMSE 0.61 0.56 0.38 0.33 0.64 0.52

LTB

R1 (τ ) 0.26 0.31 0.28 0.27

RMSE 0.74 0.71 0.37 0.35 0.58 0.54

Performance is evaluated using a quantile regression goodness of fit (R1 (τ )) described in Koenker and Mochado [20] and RMSE. Goodness of
fit for the 10th percentile models in Lower Tampa Bay is not shown because the null quantiles were inestimable with censored regression
aHB: Hillsborough Bay, OTB: Old Tampa Bay, MTB: Middle Tampa Bay, LTB: Lower Tampa Bay

September and February concentrations for Lower Tampa
Bay were 6.5 and 2.5 μg L−1, whereas concentrations in the
same months for Hillsborough Bay were 20 and 7.2 μg L−1.
Relationships between chl-a and salinity (as Salff ) across
all segments had a higher proportion of freshwater associ-
ated with higher chl-a (Pearson ρ = 0.6, p < 0.005, all
observations). Correlations between chl-a and salinity by
Bay segment were similar (Pearson ρ ≈ 0.4, p < 0.005
for all), with a slightly lower correlation for Old Tampa Bay
(ρ = 0.32, p < 0.005).

3.2 Modeled Trends in Chlorophyll-a

Predicted values obtained from the adapted WRTDS model
accounted for the effects of time and salinity on chl-a and
generally followed visually observable trends (Figs. 4 and
S1, Table 2). Weighted regressions were generally more
precise than non-weighted regressions for all model types,
except the 90th percentile model for Lower Tampa Bay
which was comparable (Table 3). Median explained vari-
ance using R1 (τ ) for all Bay segments was 0.44, 0.44,
and 0.45 for the 10th, 50th, and 90th percentile weighted
regression models, respectively, compared to 0.32, 0.33,
and 0.3 for the non-weighted models. Mean error using
RMSE for all Bay segments was 0.66, 0.36, and 0.58 for the
10th, 50th, and 90th percentile weighted regression models,
respectively, compared to 0.71, 0.4, and 0.66 for the non-
weighted models. The improvement in performance from
non-weighted to weighted models was slightly higher for

the extreme models (10th, 90th) compared to the median
models (Table 3).

Substantial variation in chl-a response from the median
predicted values was observed despite high explained vari-
ance (Fig. 4). Observed values close to the median response
were fit well by the median model, whereas extreme obser-
vations at low or high ends of the distribution (i.e., low or
high biomass “events”) were better predicted by the quan-
tile models. For example, Fig. 5 shows the predicted and
observed values for a 2-year period in Hillsborough Bay
such that model fit varies depending on the month of obser-
vation. Model fit for peak observed chl-a in August and
September of 1994 is best fit by the 90th percentile mod-
els, whereas a seasonal minimum observed in the winter
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of 1994 was best fit by the 10th percentile model. Larger
differences between the predicted values for the 90th and
10th models were also observed early in the time series,
such that the period from 1974 to 1980 had larger varia-
tion in predicted chl-a, in addition to higher median values
(Fig. 4).

Aggregation of model results by year allowed an evalu-
ation of annual trends for predicted and salinity-normalized
concentrations (Fig. 6). Predicted values illustrated response
of chlorophyll by model type, whereas salinity-normalized
estimates indicated annual trends by model segment, inde-
pendent of variation due to freshwater influence. In general,
trends were similar for the 10th percentile, 50th percentile,
and 90th percentile predictions. An exception is the 90th
percentile distribution, which showed that early in the time
series, high chl-a events were more common. A decrease
in the variability of chl-a in Lower Tampa Bay in recent
years is also apparent such that the 90th percentile model
decreased, the 10th percentile model increased, and the
median model was not changing. An annual peak in pre-
dicted chl-a in 1998 was previously reported in Fig. 4
for all Bay segments, but was absent from the salinity-
normalized predictions, suggesting this peak is tied to large
amounts of freshwater discharge. Further aggregation of the
salinity-normalized results described trends on decadal and
seasonal time scales (Table 4). In particular, trends prior to
reductions in point source pollution during 1974–1980 indi-
cated high or increasing chl-a for all segments and model
types, excluding the 10th percentile predictions for Hillsbor-
ough Bay, which declined in that period (Fig. 6). In contrast,
the most dramatic declines in chl-a were estimated from
1980 to 1990 for all Bay segments. Accordingly, median
chl-a concentrations from 1980 to 1990 were less than

during the previous time period. A slight positive increase
for the 10th percentile model and a slight decrease for the
90th percentile model for Lower Tampa Bay in recent years
is also evident on a decadal time scale. Seasonal trends in
salinity-normalized estimates indicated higher chl-a con-
centrations in warmer months and generally decreasing
concentrations throughout the time series in both summer
and winter (Fig. 4).

Changes from year to year in salinity-normalized esti-
mates indicate change not associated with discharge varia-
tion. Specifically, intra-annual variation in chl-a estimates
for each model indicated that the annual range has not been
constant throughout the time series (Table 5, Fig. 7). Max-
imum within-year variability (as annual standard deviation
divided by the mean) for all models was generally observed
in recent years, with exceptions for models in Lower Tampa
Bay where maximum within-year variability was observed
in 1993 (41.8 %) for the median model, 1975 (41.7 %) for
the 90th model, and 1989 (41.9 %) for the 10th percentile
model. Increasing intra-year variability throughout the time
series was particularly pronounced for the 90th percentile
model for Old Tampa Bay with annual variation ranging
from 25.2 % in 1977 to 63.4 % in 2012. Between-year
variability by seasons in salinity-normalized chl-a estimates
were comparable, although variability was lower in sum-
mer (Table 5). Additionally, high variability was observed
for Hillsborough Bay in winter and for Lower Tampa Bay
in fall.

3.3 Response to Freshwater Inflow

Changes in the response of chl-a across salinity gradi-
ents for each Bay segment can be interpreted by plotting

Fig. 6 Weighted regression
predictions and salinity-
normalized results aggregated
by year for the 10th, 50th, and
90th quantile (τ ) distributions
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Table 4 Decadal and seasonal summaries of salinity-normalized chl-a (μg L−1) trends by Bay segment

Models 1974–1980 1980–1990 1990–2000 2000–2012

Median � chl-a Median � chl-a Median � chl-a Median � chl-a

HBa

0.1 τ 16.24 −0.55 ∗ ∗ 10.13 −0.46 ∗ ∗∗ 7.21 −0.01 6.59 0.08

0.5 τ 23.76 0.06 17.69 −0.86 ∗ ∗∗ 11.64 −0.11 9.73 0.02

0.9 τ 39.41 1.55* 30.66 −2.00 ∗ ∗∗ 18.27 −0.11 14.46 −0.15

OTB

0.1 τ 8.27 0.56** 7.25 −0.23 ∗ ∗ 4.86 0.03 6.18 0.07

0.5 τ 12.15 0.55 10.69 −0.31∗ 7.62 0.06 8.26 0.12

0.9 τ 19.43 0.72* 16.54 −0.36∗ 12.55 0.13 13.49 0.16

MTB

0.1 τ 6.93 0.46** 6.45 −0.14 4.81 −0.05 4.39 0.05

0.5 τ 10.42 0.78*** 9.76 −0.34 ∗ ∗∗ 7.01 −0.04 6.05 0.01

0.9 τ 15.30 1.26*** 15.97 −0.64 ∗ ∗∗ 10.15 −0.11 8.74 −0.04

LTB

0.1 τ 2.47 0.22** 2.25 −0.10 ∗ ∗ 2.08 0.09*** 2.58 0.07***

0.5 τ 4.21 0.33** 3.92 −0.11∗ 3.58 0.08 3.76 0.02

0.9 τ 6.82 0.43 6.99 −0.13 6.61 0.14 6.00 −0.13 ∗ ∗
Winterb Spring Summer Fall

Median � chl-a Median � chl-a Median � chl-a Median � chl-a

HB

0.1 τ 4.72 −0.32 ∗ ∗∗ 8.30 −0.21 ∗ ∗∗ 13.96 −0.19 ∗ ∗∗ 8.85 −0.26 ∗ ∗∗
0.5 τ 8.08 −0.45 ∗ ∗∗ 11.63 −0.44 ∗ ∗∗ 21.36 −0.34 ∗ ∗∗ 14.93 −0.39 ∗ ∗∗
0.9 τ 14.76 −0.72 ∗ ∗∗ 17.92 −0.97 ∗ ∗∗ 36.08 −0.79 ∗ ∗∗ 28.55 −0.56 ∗ ∗∗
OTB

0.1 τ 3.06 −0.07 ∗ ∗∗ 6.24 −0.06 ∗ ∗∗ 9.67 −0.07 ∗ ∗∗ 6.33 −0.09 ∗ ∗∗
0.5 τ 4.85 −0.10 ∗ ∗∗ 8.56 −0.13 ∗ ∗∗ 15.03 −0.07 ∗ ∗∗ 10.32 −0.12 ∗ ∗∗
0.9 τ 8.93 −0.19 ∗ ∗∗ 13.44 −0.11 ∗ ∗∗ 24.88 0.16*** 18.80 −0.22 ∗ ∗∗
MTB

0.1 τ 3.07 −0.08 ∗ ∗∗ 5.01 −0.11 ∗ ∗∗ 8.80 −0.10 ∗ ∗∗ 4.97 −0.05 ∗ ∗
0.5 τ 4.36 −0.13 ∗ ∗∗ 6.92 −0.18 ∗ ∗∗ 12.02 −0.15 ∗ ∗∗ 7.98 −0.12 ∗ ∗∗
0.9 τ 7.97 −0.26 ∗ ∗∗ 10.32 −0.28 ∗ ∗∗ 17.47 −0.23 ∗ ∗∗ 13.18 −0.22 ∗ ∗∗
LTB

0.1 τ 1.72 0.01*** 2.11 0.00 3.86 0.01 2.73 0.00

0.5 τ 2.60 −0.01 ∗ ∗∗ 3.38 −0.01∗ 6.16 0.00 4.57 −0.05 ∗ ∗∗
0.9 τ 4.83 −0.05 ∗ ∗∗ 5.77 −0.03 ∗ ∗∗ 10.16 −0.04 ∗ ∗ 8.29 −0.15 ∗ ∗∗

Trends are evaluated for models fit through the 10th, 50th, and 90th percentile (τ ) distributions. Median and slope (� chl-a) estimates are
aggregated by year or season categories using monthly results. Slopes indicate the change in chl-a with increasing time for each year or season
category

*p < 0.05; **p < 0.01; ***p < 0.001
aHB Hillsborough Bay, OTB Old Tampa Bay, MTBMiddle Tampa Bay, LTB Lower Tampa Bay
bwinter: JFM, spring: AMJ, summer: JAS, fall: OND
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Table 5 Variability in chl-a (μg L−1) for Bay segments by year and seasons using salinity-normalized predictions

Models 1974–1980 1980–1990 1990–2000 2000–2012

HBa

0.1 τ 16.6 34.8 45.9 48.6

0.5 τ 13.3 32.1 41.0 44.9

0.9 τ 24.5 37.2 40.6 48.6

OTB

0.1 τ 35.0 35.4 46.2 43.8

0.5 τ 33.4 34.8 41.6 47.3

0.9 τ 26.3 30.3 42.9 54.0

MTB

0.1 τ 30.9 33.8 43.2 38.9

0.5 τ 27.3 30.3 41.8 39.3

0.9 τ 24.8 26.2 37.2 38.9

LTB

0.1 τ 36.8 37.7 36.3 33.9

0.5 τ 34.8 35.0 37.9 36.3

0.9 τ 37.7 32.5 35.9 35.7

Winter b Spring Summer Fall

HB

0.1 τ 65.3 35.6 21.4 44.4

0.5 τ 53.1 41.7 20.5 40.1

0.9 τ 47.9 55.4 29.9 35.5

OTB

0.1 τ 29.1 31.0 13.5 33.2

0.5 τ 23.2 29.3 13.8 30.4

0.9 τ 24.1 25.6 20.0 31.3

MTB

0.1 τ 30.5 29.4 19.0 32.6

0.5 τ 32.8 32.8 18.3 32.8

0.9 τ 38.2 36.2 20.2 32.1

LTB

0.1 τ 13.2 20.9 16.0 27.8

0.5 τ 12.1 18.2 13.3 26.6

0.9 τ 17.1 17.0 17.1 29.4

Variability (%) was quantified as the standard deviation of predictions by year (or season) category divided by the mean of predictions by year
(or season) category. Trends are evaluated for models fit through the 10th, 50th, and 90th percentile (τ ) distributions
aHB Hillsborough Bay, MTBMiddle Tampa Bay, OTB Old Tampa Bay, LTB Lower Tampa Bay
bwinter: JFM, spring: AMJ, summer: JAS, fall: OND

chl-a against Salff for different dates using results from
the weighted regressions (Fig. 8). This showed that the
response of chl-a in Hillsborough Bay with increasing fresh-
water input for early years was minimal, whereas a strong
positive relationship is observed in later years. Higher fresh-
water inputs in some recent years caused a saturation effect

such that chl-a concentrations did not increase beyond a
given value (e.g., 0.40 Salff ). Other Bay segments also
show changes in the relationship between chl-a and fresh-
water inputs. For example, Lower Tampa Bay shows a
stronger relationship between chl-a and Salff for recent
years.
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Fig. 7 Salinity-normalized
results for the 10th, 50th, and
90th quantile (τ ) distributions.
Note changes in intra-annual
variability by Bay segment
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3.4 Evaluation of Model Residuals

Correlations of residuals to additional explanatory vari-
ables indicated that chloropyhll response was generally
not attributed to factors other than time and salinity
(Table 6). Only a few correlations were significant, although
the results may have been related to type I error given
the large number of tests. Significant correlations were
observed with TN for all segments except Lower Tampa
Bay. Residuals from the median model in Hillsborough Bay,
the 90th percentile model in Middle Tampa Bay, and the
10th percentile model in Old Tampa Bay were positively
correlated with TN concentration. Only the 90th percentile
model for Old Tampa Bay was positively correlated with
TN load. Correlations with seagrass coverage and ENSO

index values binned by year and season were not signifi-
cant, except the 10th percentile model for Hillsborough Bay
which was positively correlated to ENSO year (Table 6).
Regression models relating residuals to ENSO categories by
year and season (e.g., El Niño fall) were unable to resolve
variance in the residuals.

4 Discussion

Application of the weighted regressions on time, discharge,
and season (WRTDS) model to a analyze a long-term
record of chl-a in four segments of Tampa Bay pro-
vided an improved quantitative description of long-term
changes relative to commonly applied methods. Because the

Fig. 8 Variation in the
relationship between chl-a and
salinity as fraction of freshwater
(Salff ) across time series for
Tampa Bay. Data are for July
months to reduce seasonal
variation. Only the median
response models are shown
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Table 6 Correlations between model residuals for each Bay segment and potential drivers of chl-a (μg L−1) independent of season, year, or
salinity effects.

Models ENSO TN

Seagrass Annual Season Load Conc.

HB a

0.1 τ −0.29 0.34* 0.06 0.00 0.06

0.5 τ −0.25 0.26 0.04 0.07 0.15*

0.9 τ −0.08 0.12 −0.01 −0.03 0.04

MTB

0.1 τ −0.04 0.09 −0.11 −0.09 0.11

0.5 τ −0.30 0.05 −0.10 −0.05 0.10

0.9 τ −0.27 0.02 −0.07 0.08 0.14*

OTB

0.1 τ 0.22 0.10 −0.05 0.12 0.12*

0.5 τ 0.33 0.10 −0.02 0.05 0.11

0.9 τ 0.37 0.07 −0.07 0.14* 0.09

LTB

0.1 τ −0.15 −0.05 −0.13 −0.01 0.11

0.5 τ 0.11 −0.05 −0.10 −0.08 0.05

0.9 τ 0.29 −0.01 −0.04 −0.04 −0.10

Residuals were compared with seagrass area (hectares), median ENSO index values by season and year, and total nitrogen load (kg·mo−1) and
concentration (μg L−1). Samples sizes for correlations were 11 for seagrass area, 156 for ENSO index by season, 156 for ENSO index by year,
275 for nitrogen load, and 303 for nitrogen concentration with slight variation by segment depending on data availability

*p < 0.05; **p < 0.01; ***p < 0.001
aHB Hillsborough Bay, MTBMiddle Tampa Bay, OTB Old Tampa Bay, LTB Lower Tampa Bay

descriptions are conceptually related to expected causes, the
results enabled generation of informed hypotheses regard-
ing ecosystem behavior and change and could suggest a
potential approach for developing quantitative thresholds
for water quality management. These conclusions are sup-
ported by several key aspects of the results. First, the
WRTDS model provided improved predictions of chl-a rel-
ative to non-weighted regression, measured as both higher
R1 (τ ) and lower RMSE (Table 3). Second, adaptation
of WRTDS to predict extreme quantiles in addition to
the median response provided information about long-term
shifts in phytoplankton dynamics that are ecologically infor-
mative. Third and most important, WRTDS results for
segments of the Bay that were historically most impacted
by nutrient loading pointed to shifts in the response of
chl-a to freshwater inflows. An example is provided by
Hillsborough Bay where both the chl-a concentration and
the relationship with freshwater inflow changed over sev-
eral decades. Specifically, concentrations were high and
unresponsive to changes in freshwater inflow in the begin-
ning of the time series, whereas concentrations decreased
and showed a strong positive relationship with freshwater

inflow later in the time series (top left, Fig. 8). This sug-
gests a period of nutrient repletion followed by increasing
nutrient limitation. Additional shifts were also apparent, as
in Lower Tampa Bay where increasing positive relation-
ships between chl-a and inflow were observed later in the
time series (bottom right, Fig. 8). These results indicate
that the WRTDS application to tidal waters can be used
to describe complex relationships between water quality
variables over time, leading to hypotheses regarding causal
factors.

4.1 Improved Description of Chl-a Using WRTDS

The primary advantage of applying the WRTDS approach
to the Tampa Bay dataset was an empirical description of
water quality trends that accounted for variation in fresh-
water inflows over time, as well as temporal changes in
the response to flow. The approach allows for modeling
of observed trends with more accuracy (Figs. S1 and 4),
as well as the ability to predict chl-a response to changes
in freshwater inputs for different periods of observation
(Table 2). The increased predictive abilities of the WRTDS
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approach were apparent by comparison with an unweighted
linear model (Table 3). Hirsch et al. [16] indicated simi-
lar improvements with application to Chesapeake Bay river
inputs such that an increase in R2 from 35 to 56 % was
observed using the weighted approach. Relative increases in
predictive performance were not as dramatic for the Tampa
Bay dataset, although improvements were observed [16].
This improvement in performance emphasizes that tradi-
tional regression assumes model parameters are constant
throughout the time series, whereas WRTDS allows for
dynamic interactions between response and predictor vari-
ables. Improved model fit through flexible parameterization
increases the ability of the model to describe historical
patterns, but reduces application to predicting future chl-
a. If drivers of chl-a are changing over time, predicting
future chl-a while assuming that drivers are not changing
could be of limited value. For example, WRTDS showed
that the relationship between chl-a and freshwater forcing
changed over time, such that predictions of chl-a in the
near future would by necessity be based on the most recent
estimates of the ecosystem response to freshwater forcing
rather than the long-term average response. As such, the
primary use of the WRTDS is a description of historical
change that can lead to post hoc formulation of hypothe-
ses. Hirsch et al. [16] also usedWRTDS to quantify changes
in ecological drivers, pointing to long-term changes in the
strength and direction of discharge effects on nutrient con-
centrations in rivers. Watershed drivers of changes described
by Hirsch et al. [16] suggests similar conclusions can be
made regarding drivers of observed changes in chl-a in
Tampa Bay.

Pollutant sources for Tampa Bay have changed over time
with an increasing dominance of non-point sources in recent
years [30]. Changes in pollutant sources may affect the
relationship between freshwater inputs, nutrient concentra-
tions, and chl-a. Nutrient concentrations and discharge are
correlated regardless of pollutant sources, whereas the rela-
tionship between nutrient loading and discharge may vary.
Increasing discharge with non-point sources of pollution
is related to both increasing load and decreasing concen-
tration of nutrients. Conversely, increasing discharge with
point-sources of pollution may only be related to decreasing
concentration since total load remains constant. Reduction
of point sources of pollution in Tampa Bay and increasing
dominance of non-point sources suggests that chl-a rela-
tionships with discharge may change over time. Application
of the WRTDS model to the Tampa Bay dataset provided
evidence of these shifts. The shifts were most apparent for
Bay segments that received large tributary inputs (Fig. 8).
For example, the relationship of inflow with chlorophyll
for Hillsborough Bay during earlier periods indicated no
trend, whereas a positive trend was present for later peri-
ods. However, a primary distinction between the original

WRTDS method and our adapted approach is the use of
fraction of freshwater, rather than discharge, as a primary
predictor of water quality response. Fraction of freshwa-
ter incorporates the effects of tidal exchange, in addition
to variation in freshwater inflows. Hirsch et al. [16] devel-
oped the WRTDS approach for rivers and streams where
discharge effects are considered the primary variable affect-
ing interpretation of water quality trends. Therefore, salinity
effects were included in Eq. 2 as being more appropriate for
estuaries and the results should be interpreted in the context
of natural variation in both tidal flow and freshwater inputs
from tributaries [5].

The final objective of the analysis was to develop
informed hypotheses regarding temporal and spatial pat-
terns of chl-a growth in response to drivers of eutrophication
in Tampa Bay. The change over time in the distribution of
chl-a with respect to freshwater inputs (as Salff ) is possi-
bly the most compelling change that was revealed (Fig. 8).
Early in the time series for Hillsborough Bay, high chl-a
across a range of Salff could be interpreted as reflecting
the Bay being saturated with nutrients, whereby production
and biomass were limited by self-shading rather than nutri-
ent limitation (e.g., Wofsy [43]). By the 2000s, chl-a had
decreased by nearly 50 % at low Salff , and the relationship
changed such that higher freshwater inflows were associ-
ated with higher chl-a (Fig. 8). This pattern is consistent
with a shift to greater nutrient limitation and flow-associated
nutrient loading, as would be expected from a shift toward
non-point source, rather than point-source nutrient loading.
In the late 2000s, the relationship between Salff and chl-a
also illustrates a plateau in chl-a above ∼0.40. The sen-
sitivity of chl-a to Salff also increased in Lower Tampa
Bay, with a key difference being that chl-a levels associ-
ated with low freshwater influence were similar across the
entire time series. Only in recent years are larger increases
in chl-a associated with increased freshwater (Fig. 8). As
we have noted, we can only suggest hypotheses regarding
the possible biological causes of the observed changes. The
key point is that the analysis makes it possible to recognize
that relationships between chl-a and freshwater influence
have changed over time and could continue to change into
the future. Resolving and recognizing these changes may
prompt further studies to better understand the associated
drivers and mechanisms. Moreover, assuming that these
relationships are constant could lead to errors in evaluating
discharge-corrected trends, which is an often used assump-
tion to evaluate the long-term progress of environmental
management actions.

4.2 Changes in Chl-a Variability

Most analyses of changes in water quality focus on changes
in mean water quality over time. Linear models generally fit
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a constant seasonal cycle, a constant response to freshwater
inflow, and a linear trend to describe the long-term change.
The flexible parameterization of the WRTDS approach can
substantially improve descriptions of water quality trends by
addressing limitations of simple models. Predicted values
from WRTDS results are appropriate for evaluating change
in direction of the response. Salinity-normalized values are
useful for evaluating changes independent of confound-
ing effects of hydrologic changes. Direction and magnitude
of change were primarily in agreement with expectations,
whereas changes in variation over time have not been pre-
viosly described. Salinity-normalized predictions suggested
that the variability of chlorophyll response between-years
has generally been increasing, i.e., variability for most Bay
segments has become larger than during the most heav-
ily polluted periods in the 1970s (Table 5 and Fig. 7).
Differences were also observed by median or extreme quan-
tile response, particularly for the 90th percentile model in
Old Tampa Bay. Mechanisms describing heterogeneity of
chlorophyll between years are uncertain, although increas-
ing variation in water quality parameters has been suggested
as an indicator of ecological transition in lakes [4]. Vari-
ation in chlorophyll could be an indication of impending
changes despite constant median values for several decades.
We emphasize that characterization of between-year vari-
ation is only possible with methods such as WRTDS.
Less complex approaches that are not data-driven may
be unable to resolve this variation (e.g., additive seasonal
models, [7]).

The inclusion of quantile models represents an impor-
tant extension of the WRTDS approach by allowing insight
into conditional response of chl-a not described by median
models. Quantile models are particularly useful for char-
acterizing response variables that exhibit considerable het-
erogeneity about the central tendency [2, 39]. Practical
interpretation of the quantile models are such that the
90th percentile models show variation in the occurrence of
extreme events, whereas the 10th percentile models char-
acterize low productivity events. Quantification of extreme
events may provide a more informative measure of progress
towards ecosystem change in response to management. For
example, a previous description for developing numeric cri-
teria for Florida waters used the 90th percentile value from
cumulative distribution models of chlorophyll for multiple
coastal segments [33]. The exact upper percentile for crite-
ria definition is unimportant provided there is consistency
among methods for computing and assessing criteria. Sim-
ilarly, variation in low productivity events could provide
information of system departure from baseline or refer-
ence conditions [37]. For example, variation in the 10th
percentile model for Lower Tampa Bay in recent years sug-
gests a consistent decrease in events with low chlorophyll
concentrations (Fig. 6).

4.3 Limitations and Future Applications

The adaptation of the WRTDS approach to quantify chl-a
trends in estuaries shows promise, although our analysis dif-
fers in several key aspects from the original model. First,
issues of spatial scale will continue to have relevance given
specific research objectives. The application of the WRTDS
approach to Tampa Bay considered individual segments as
being most relevant given our goal to provide a quantitative
history of eutrophication that has importance for regional
planning. Different research objectives may warrant the
use of Bay segments as inappropriate since phytoplankton
growth patterns can be characterized at multiple scales. Clo-
ern [5] reviews spatial patterns of phytoplankton growth in
estuaries such that longitudinal, lateral, and vertical dynam-
ics are commonly observed. Growth dynamics may also be
evident at scales ranging from meters to several kilome-
ters. More subtle differences in spatial patterns are likely
observed at individual stations in the Bay, which could
serve as a focus for additional evaluation. Similarly, phy-
toplankton dynamics may be evident at different temporal
scales. Hirsch et al. [16] developed the WRTDS approach
for daily water quality observations, although the Tampa
Bay dataset prohibits analysis at time scales shorter than
a month.

Additional considerations not unique to our adaption of
the WRTDS approach deserve further investigation. The
WRTDS method currently does not provide measures of
uncertainty associated with model predictions, although
development is in progress (R. Hirsch, personal communi-
cation May 2014). Lack of confidence in model predictions
is a primary disadvantage of the approach that distinguishes
it from alternative methods. For example, Moyer et al.
[25] compares the WRTDS methods with ESTIMATOR,
an alternative regression-based approach [8]. Although
WRTDS provided more accurate and precise descriptions,
indications of uncertainty provided by ESTIMATOR sug-
gested that variation may be considerable in some cases.
Moreover, the determination of appropriate window widths
for defining model weights has been an issue of concern
since initial development of the approach. A systematic
evaluation of different combinations of window widths for
reducing prediction error could be conducted to identify
optimal widths. However, results may be specific to individ-
ual datasets and computational time may be excessive such
that the increase in predictive performance may be trivial
relative to time spent defining optimum widths. Regardless,
the window widths used for our analysis produced useful
results and could be used for additional applications.

The lack of correlation between model residuals and
additional variables was unexpected, particularly for the
seagrass and ENSO data. Previous analyses have illus-
trated the effects of precipitation events associated with
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ENSO on Tampa Bay. For example, Schmidt and Luther
[34] described ENSO effects on salinity profiles for Tampa
Bay such that high precipitation events (i.e., El Niño spring
or winters) were correlated with depressed salinity pro-
files. Our analyses indicated that residuals were not related
to ENSO variation. The WRTDS model included salinity
effects such that residual variation accounts for changes in
freshwater inputs, which likely explains the lack of cor-
relation with ENSO. Additionally, the normalized chl-a
estimates in Fig. 6 differ substantially from predicted val-
ues in 1998 for all segments. High rainfall associated with
an El Niño event in the winter of 1997–1998 contributed
to increased discharge and nutrient inputs into the Bay,
as indicated by higher predicted chl-a values. Normalized
values that removed the effects of freshwater inputs show
chl-a values independent of discharge, suggesting the model
performs as expected by quantifying and removing this vari-
ation through normalization. However, the variation in chl-a
response attributed to unique seasonal changes in discharge
cannot be distinguished from extreme climate events using
salinity as a proxy for freshwater inputs. Lack of correla-
tion with seagrass data and nitrogen parameters was also
unexpected, which further suggests that chl-a variation is
primarily affected by discharge within the constraints of
the model. These results may also be explained by tempo-
ral trends in chl-a that parallels changes in these variables,
such that changes in nitrogen and seagrass coverage are
statistically indistinguishable from the response variable.

The WRTDS and the adaptation to modelling quantile
distributions provides an approach for generating hypothe-
ses describing factors that act as system drivers of change.
Application of WRTDS to the Tampa Bay dataset allowed
a temporally consistent description of water quality leading
to the generation of such hypotheses. Alternative analysis
methods may be more appropriate for different research
or management objectives, particularly given sample size
constraints or the need to predict future water quality
trends under hypothetical scenarios. For example, general-
ized additive models or locally estimated (loess) regression
are similar methods for describing conditional response
within discrete periods of time. Such methods may provide
similar improvements in the fit of the predicted values to the
observed data, although predictive performance as indicated
in Table 3 is a relatively simple metric that inadequately
describes the true value of a model. The true value of an
analysis technique depends more on its ability to address a
specific question of interest. For example, WRTDS may be
most appropriate for describing historical patterns to better
understand drivers of change, given the ability to remove
flow effects and describe relationships that change over
time. Quantitative comparisons of WRTDS with other tech-
niques in the context of providing historical descriptions
could clarify the relative merits of different approaches,

although this falls beyond the scope of the current analysis.
Moreover, the adaptation to modelling conditional quantile
distributions with WRTDS provides a descriptive advantage
that may not be possible with alternative techniques.

4.4 Conclusions

Management over several decades has been successful
in improving water quality in Tampa Bay from heavily
degraded to more culturally desirable conditions [14]. These
changes have been most dramatic for Bay segments that
receive a majority of nutrient pollution from tributary or
point-sources, particularly Hillsborough and Old Tampa
Bay. The general effects of management actions are there-
fore obvious, although quantitative descriptions of these
changes that consider the effects of confounding variables
on water quality dynamics have been lacking. Establish-
ing direct links between management actions and changes
in water quality are critical to inform the prioritization of
limited resources for future decisions. Application of the
WRTDS to Tampa Bay has provided a novel description of
eutrophication dynamics that can be evaluated in the context
of observed changes over time. Conclusions from the analy-
sis showed that (1) improved statistical performance can be
obtained using WRTDS as compared to traditional regres-
sion models, (2) the results reflected dynamic relationships
between chl-a and salinity over time that suggested tempo-
ral shifts in nutrient forcing, and (3) considerable variation
in chl-a response can be described by quantile distribu-
tions. Overall, the ability to describe the data and aspects
of long-term changes has been improved by adaptation
of the WRTDS approach to Tampa Bay. Such techniques
are critical for informing the nutrient-response paradigm in
coastal systems, providing an incentive for validation with
additional long-term datasets.
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