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Abstract The aim of this study is to propose a method
for constructing Artificial Neural Network (ANN) models
and evaluating their performance based on the application
of two methods for the selection of the ANN topology:
the dynamic division method (cross-validation or dynamics-
split) (DDM) and the static-split method (SSM). The two
methods are compared and applied to predict the amount
of organic matter in an up-flow anaerobic sludge blanket
(UASB) reactor operated at full scale. The performance
of the ANN models was assessed through the coefficient
of multiple determination (R2), the adjusted coefficient of
multiple determination (R2

adj ), and the root mean square
error (RMSE). The comparison reveals that the DDM accu-
rately selects the best model and reliably assesses its quality.
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1 Introduction

Anaerobic digestion is a complex biochemical process car-
ried out by microorganisms belonging to the Archaea and
Bacteria domains that work interactively to promote stable
and self-regulating fermentation. The application of anaer-
obic digestion to treat waste and wastewater conventionally
converts organic matter into a mixture of methane, car-
bon dioxide, hydrogen, and biomass by specific metabolic
processes occurring in sequential stages.

The up-flow anaerobic sludge blanket (UASB) reactor,
developed in the 1970s by Lettinga and co-workers in the
Netherlands [63], is one of the most popular anaerobic
systems used in the treatment of various types of wastew-
ater [28, 30–33]. The application of a UASB reactor for
domestic wastewater treatment has several benefits, espe-
cially when applied in warm climates, as is the case for
most Brazilian municipalities. In these conditions, there are
multiple benefits, such as high application rates of organic
loads, short hydraulic retention times, and low energy
demands. These positive aspects therefore characterize a
compact system with low operation costs, and low sludge
production. Despite the advantages, UASB reactors have a
limited capacity to convert organic matter and thus require a
post-treatment step to satisfy the requirements of Brazilian
environmental legislation for treated effluent [10].

Anaerobic digestion in UASB reactors is very suscep-
tible to fluctuations in process inputs (organic load, flow,
temperature, and presence of inhibitors) in the environment
of the system (decreasing in pH value, alkalinity consump-
tion, and accumulation of volatile fatty acids) and output
(composition, biogas production, removal of organic mat-
ter, which is usually measured as biological oxygen demand
(BOD), total organic carbon (TOC), and chemical oxygen
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demand (COD). Therefore, to better understand the pro-
cess and achieve higher pollutant removal, a UASB reactor
must be continuously monitored and controlled by means of
costly laboratory analyses.

Mathematical models associated with an analysis of the
response and the stability or instability of the system are
powerful tools for the elucidation and determination of the
behavior of transient phenomena. They are used to represent
the main aspects of any system, improving its understand-
ing, the formulation and validation of some hypotheses,
the prediction of the system’s behavior under different
conditions, and finally, reducing the experimental informa-
tion, costs, risk, and time [14]. In order to achieve better
performances in anaerobic digestion in UASB reactors,
several investigations have been made in the fields of phe-
nomenological modeling [11, 27, 35–37, 49, 52]. Among all
the existing models, the Anaerobic Digestion Model No.1
(ADM1) developed by the IWA Task Group for Mathe-
matical Modelling of Anaerobic Digestion Processes was
designed to reach a common basis for anaerobic digestion
model development and validation studies [2]. However, its
large number of parameters (86 parameters) and unmeasur-
able states (especially a large number of types of biomasses)
hinder its use in the development of control applications
[22]. These quantities vary widely depending on the type
of process and the operational and environmental condi-
tions. The kinetics involved in the anaerobic process are
extremely complex due to the intricate interaction network
formed from a mixture of complex substrates and the var-
ious microbial populations involved. Statistical models are
typically used to model a system when the system is not so
complicated, but when the complexity of a system increases,
other methods are required. In such cases, artificial neural
networks have been successfully used. Furthermore, when
the behavior has to consider linguistic rules, a fuzzy method
can be a reliable alternative. Recent research has considered
uncertainties in Artificial Neural Network (ANN) models
such as those reported by Srivastav et al. [57] and Shrestha
et al. [56].

ANN has been investigated and successfully applied to
identification and control problems over the last twenty
years. In predicting organic matter systems in particular,
ANN have been used to help the control engineer to deter-
mine the required loading capacity in the subsequent treat-
ment units [3, 12, 13, 20, 23, 25, 26, 29, 62, 64, 66, 68]. The
main advantages of ANN are that they require no knowledge
of the reaction mechanisms and experimental measurements
for a multitude of parameters to monitor the operating con-
ditions and performance of an anaerobic treatment process
(UASB) at a large scale facility. However, artificial neu-
ral network models have also been criticized for a lack of
dependence upon physical relationships and a poor capacity
for extrapolation. Thus, ANNs can be applied, for example,

in the prediction of organic matter in cold climate regions
because the model is built from observations of input-output
in the desired process.

Hybridization of ANN and fuzzy has been implemented
to increase the capability of Fuzzy and ANN. Fuzzy-logic
[8, 61], adaptive neuro-fuzzy inference systems [16, 45] are
some methods proposed in the literature. No application in
bioprocesses has been found in the literature.

The use of ANN modeling involves two main steps:
fitting the parameters with the measured data and select-
ing the best model. The parameter fitting step uses an
adjustment strategy where the capabilities of the network
are improved by modifying all the weights. The selec-
tion of a network structure with optimal choices of the
free design parameters, such as the number of hidden lay-
ers, the number of hidden nodes, the activation function,
and the input representation, are crucial for the perfor-
mance of the network in application [53]. For example, a
network with too few hidden nodes cannot represent the
system satisfactorily and a network with too many hidden
nodes overlearns the particular runs presented in the train-
ing set instead of learning the underlying dynamics of the
process.

A variety of methods can be used to decide how to choose
the best model or best set of models [34, 48]. A common
way is the static-split method (SSM) which evaluates the
network performance on the training data itself by means of
statistical methods. In SSM, the available data are divided
into three sets; training, validation and testing. The training
set is used to adjust the connection weights. The valida-
tion set is used to check the performance of the network
at various stages of learning, and training is stopped once
the error in the validation set increases. The testing set is
used to evaluate the performance of the model once train-
ing has been successfully accomplished. However, the main
limitation in the application of the SSM method is the need
for large amounts for data for training, validation, and test-
ing, especially in systems where measured data are limited,
expensive, or hard to collect. Very small training and val-
idation sets lead to unsatisfactory training of the network,
and a very small test set cannot accurately evaluate the
performance of the model [53].

A promising alternative to conventional SSM is cross-
validation, or the dynamic division method (DDM), also
called cross-validation or dynamics-split [53, 59, 65]. DDM
consists of a cyclic allocation of the available data to the
training and the test set, which allows the use of an arbi-
trarily large part of the data in each cycle as the training
set and uses the complete data once in the test set. This
method can be applied to many algorithms in (almost)
any framework, such as regression [59, 60], leave-one-
out [19], V-fold cross validation [58], and density estima-
tion [51]. Since these algorithms can be computationally
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Fig. 1 Neural network with a
single layer (a), its processing
unit (b), and its diagram (c)

demanding or even intractable, derived closed-form for-
mulas for the Loo estimator of the risk of histograms
or kernel estimators are used [5, 51]. These results have
been recently extended to the leave-p-out cross-validation
by Celisse and Robin [9]. However, the main limitation
in the application of the DDM method is the need for
repeated training networks, which require computational
effort.

The aim of this article is to propose a method for the
construction and testing of models based on ANNs. The pro-
posed method is based on the application of the SSM and
DDM for the selection of the network topology to assess
which is the most appropriate strategy to obtain the mod-
els that best represent the process. The main difference and
innovation of the proposed method lies in the fact that the
test data set is split by using statistical criteria to ensure
that it is representative of the population. This same con-
sideration applies to the training set and validation (all are
representative of the population). As a case study, both
methods were applied to predict the organic matter concen-
tration (COD) of effluent from a UASB reactor operating at
full scale.

2 Method

2.1 Model Structure: Characteristics of the Used Neural
Network

Since Rosenblattf [50] first employed them, ANNs have
been used to model and simulate nonlinear systems of a

diverse nature in digital computers or in hardware boards.
According to Masson and Wang [41], the topology of
an artificial neural network can be expressed through a
directed graph characterized by a set of vertices, a set of
directed arcs, and a set of weights assigned to these arcs
(W ) (Fig. 1a). Each vertex in the graph represents a pro-
cessing unit. A processing unit has u1, u2, ..., uR inputs.
Based on these inputs and the set of synaptic weights,
W1,1, ...,WS,R , the neurons are evaluated, generally through
an activation function applied to a weighted sum of inputs
using the synaptic weights as weighting factors [41]. A net-
work with a single layer having S neurons with an arbitrary
activation function and with R inputs is shown in detail
in Fig. 1, which also illustrates its processing unit (neu-
ron). Neural networks frequently have one or more hidden
layers of sigmoid neurons (for example, tansig, or logsig)
[43, 44, 69]:

– one hidden layer with SI sigmoid neurons with biases
b1, which are associated with each neuron;

– one layer with SL output neurons activated by a linear
function with biases b2, which are associated with each
neuron.

By using a sufficient number of neurons (SI ) in the
hidden layer of a two-layer network, it is possible to approx-
imate any function with a finite number of discontinuities
with an accuracy that is arbitrarily specified [42, 54]. This
structure is shown in Fig. 2, and it can be used as a universal
approximator of functions.

The applied DDM and SSM consider one hidden layer
with a sigmoid transfer function and one output layer with
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Fig. 2 Structure of a network with one hidden layer with a sigmoid
function and an output layer with a linear function (function universal
approximator)

a linear transfer function, suitable for continuous variables
such as COD. The proposed architecture is shown schemat-
ically in Fig. 3.

2.2 Data Preparation

The data set used for the modeling was obtained from
a full-scale UASB reactor treating domestic wastewater
[6, 7, 47]. The reactor was operated at a temperature
which ranged from 13 to 33 ◦C for winter and sum-
mer, respectively. The input variables (predictors) were
the total suspended solids (TSS), volatile suspended solids
(VSS), chemical oxygen demand (CODi), alkalinity and
volatile fatty acids (VFA) concentration, temperature (T),
and pH in the influent, whereas the output variable (pre-
dicted) is the chemical oxygen demand (CODe) con-
centration of the effluent. For each set of predictors

Fig. 3 BP network architecture for the DDM and SSM methods

and predicted variables, 131 measurements were per-
formed. Table 1 presents the descriptive statistics for these
variables.

Due to the large difference in the order of quantities
for the values shown in Table 1, the data set for the pre-
dictor variables was standardized between 0.1 and 0.9 [15,
70]. The aim of this normalization step is to adjust the
input dynamic range of the activation functions of the
neural network, in this case, the sigmoid function. There-
fore, this procedure equals the numerical magnitude of
the input variables because very high values can satu-
rate the activation function, impairing the convergence of
the neural network. Values with a greater order of mag-
nitude for an input variable dominate over the weights
of the network, making it difficult for the algorithm to
converge.

2.3 Separation of the Test Set

There is no clear rule for dividing up the experimental data
set, so one can find a neural network with an enhanced
generalization ability in any of the cases (DDM and SSM).
In contrast, it is necessary that the sets obtained by divid-
ing the experimental data represent the entire population
[4, 39, 55]. The experimental data set was initially divided
into two groups: a model development group (G1) and
a test group (G2). Random samples were taken from the
total data set to form each group in order to obtain more
robust results in predicting organic matter with tempera-
tures data ranging from 13 to 33 ◦C. The set G1 was used
to define the topology and network training, whereas the
set G2 was designed to evaluate the generalization ability
of ANNs obtained from both methods. The rule applied
for this division was to obtain a set G2 with the minimum
number of samples but statistically representative of the
population (G1 + G2). The nonparametric Mann-Whitney
test (an alternative to Student’s t test) was used to statisti-
cally assess the average difference of sets G2 and (G1 + G2)
[18, 40, 67]. The confidence level applied to the Mann-
Whitney test was 90 %.

2.4 Dynamic division method

The methodology adopted in the DDM establishes which
neurons in the hidden layer ANN (SI ) should be determined
by symmetrically dividing the data set G1 at random into
two subsets A and B (of equal size, i.e., 50 % of the sam-
ples in each). Once obtained the subsets A and B, the ideal
neural network topology must be evaluated by varying the
number of neurons in the hidden layer (i = 1,...,n). For each
i amount of hidden neurons (or topology) i, the network is
trained with data subset A and then simulated with data sub-
set B (ŷi,A,B ), generating the loss function (or performance
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Table 1 Descriptive statistics of the variables considered in the construction of models

Variables Units Maximum Minimum Mean SDa p valueb p valuec

Predictors variable

TSS (mg L−1) 847.00 54.00 222.64 101.54 0.00 0.00

VSS (mg L−1) 788.00 28.00 79.51 98.62 0.00 0.00

CODi (mgO2 L−1) 1146.00 125.00 581.32 214.01 0.04 0.00

T (◦C) 33.00 13.00 22.27 4.68 0.24 0.05

pH (−) 9.00 6.40 7.40 0.63 0.01 0.00

Alkalinity (mg L−1 CaCO3) 929.00 44.00 251.20 238.40 0.00 0.00

VFA (mg L−1) 1448.00 12.00 204.73 317.63 0.00 0.00

Predicted variable

CODe (mgO2 L−1) 768.00 49.00 274.60 139.92 0.00 0.00

aSD Standard deviation
bJarque-Bera test
cLilliefors test

criteria) Ji,A,B (the sum of squares of prediction errors from
the simulation of the data subset B with a network trained
with data set A). The loss function Ji,A,B is given by Eq. 1.

Ji,A,B = ŷi,A,B − yB. (1)

Likewise, the loss function Ji,B,A is given by Eq. 2. The
total loss function of topology i is the sum of the results of
each simulation (Eq. 3).

Ji,B,A = ŷi,B,A − yA, (2)

Ji = Ji,A,B + Ji,B,A, (3)

where yA and yB represent the experimental value of the
subset A and B, respectively; Ji,B,A, is the sum of squares
of prediction errors from the simulation of the data subset

A with a network trained with data set B; and ŷi,B,A is the
estimate of the simulated with data subset A.

Topologies with different numbers of hidden neurons
were evaluated and compared using the total loss of their
functions, and the topology with the minimum total loss
function was adopted [38]. This is for the network topology
with a smaller number of neurons, which best represents the
process with the data set G1.

2.5 Static-Split Method

The methodology adopted in the static-split method (SSM)
establishes that the subdivision of G1 data should be made
at random, with two distinct sets statistically representa-
tive of the population (G1 + G2). These sets are called
the training set and the validation set. The training set
should be used to estimate the network parameters (synap-
tic weights and levels of “bias”), and the validation set

Fig. 4 Effect of the number of
hidden neurons on Ji (summed
over all parameters)
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Fig. 5 Effect of the number of
hidden neurons on
EQMopt (t, i) (summed over all
parameters)
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must be used iteratively during training to check the effi-
ciency of the network and its generalization capacity. After
processing each epoch t (presentation to the neural net-
work for all elements of the training set and the adjust-
ment of synaptic weights and levels of “bias”), the mean
squared error of the validation set EQMva(t) is estimated
(Eq. 4).

EQMva(t) =
∑k

t=1(ŷvat − yt )
2

k
, (4)

where ŷvat and yt represent, respectively, the predicted and
measured values in the validation set evaluated after each
epoch presented (training set), k is the number of training
examples. The maximum number of epochs, learning rate,
and error tolerance value were 1000, 0.05, and 1 × 10−50,
respectively. The value EQMva(t) for the validation set is
expected to decrease at the beginning of the training until
a local or global minimum is reached. When EQMva(t)

values start to show an increasing trend, this is indicative
of early overfitting of the ANN. At this point, the training
should be stopped by adopting the values (synaptic weights
and levels of “bias”) as adjusted parameters of the model
[46, 59]. The EQMopt value is defined as the smallest error
obtained in the validation set for all epochs (t = 1,...,tmax)
(Eq. 5).

EQMopt = min EQMva(t) (5)

There is little consistency in the literature about the meth-
ods to be applied to the data division into the validation
and training data sets. Therefore, to find an appropriate
proportion for this division, we varied the proportions of
the training and validation sets, performing a sensitivity
analysis based on statistical representativeness and evalu-
ating the impact of this ratio on the performance of the
model. [55] performed a similar sensitivity analysis by
varying the size of the training and validation sets and

found that there is a significant impact on the results, even
taking into account the mean hypothesis test of the sam-
ple statistical property samples at the 95 % confidence
interval.

The best network topology and consequently the model
that represents the process through the SSM method was
estimated by varying the number of neurons in the hid-
den layer (i = 1,...,n) for each i and obtaining a single
EQMopt (i), given in Eq. 6.

Topi = min EQMopt (i) (6)

2.6 Evaluation of model predictability

Three statistical criteria were used to evaluate the perfor-
mance of the ANN models by using the DDM and SSM:
the coefficient of multiple determination (R2), the adjusted
coefficient of multiple determination (R2

adj ), and the
root mean square error (RMSE) (Eqs. 7–9, respectively).

Table 2 Modeling results for the SSM

Data proportions and sets R2 R2
adj RMSE /(mg L−1)

10 (80–20)

Training set 0.71 0.68 64.12

Testing set (G2) 0.73 0.71 62.14

Validation set 0.83 0.82 57.44

10 (70–30)

Training set 0.60 0.56 75.23

Testing set (G2) 0.65 0.64 68.11

Validation set 0.83 0.82 58.91

10 (60–40)

Training set 0.77 0.76 67.90

Testing set (G2) 0.68 0.67 63.95

Validation set 0.72 0.71 67.97
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Table 3 Best results for the DDM and SSM

Data proportion Method R2 R2
adj RMSE/(mg L−1)

of set G2 (%)

10 % DDM 0.94 0.93 28.43

10 % SSM 0.73 0.71 62.14

These were derived by comparing the measured and pre-
dicted values of COD.

R2 = 1 − SSE

SSE + ∑n
i=1(yi − ŷi )2

(7)

R2
adj =

1− SSE
n−Nw

SSE+∑n
i=1(yi−ŷi )

2

n − 1
(8)

RMSE = 1

n

√
√
√
√

n∑

i=1

(yi − ŷi )2 (9)

where SSE is the sum of the quadratic residues
∑n

i=1(yi −
ŷi )

2. The determination coefficient represents the propor-
tion of the overall variance explained by the model. This
coefficient makes it possible to evaluate the performance of
different models, and is widely used for this purpose. Nev-
ertheless, R2 can be manipulated by increasing the number
of independent variables to explain the dependent variable
that would result in an R2 of one for the training data set.
In contrast to R2, the R2

adj only increases if the additional
model parameters (connection weights) improve the results
significantly to compensate for the increase in the regression
degrees of freedom [17].

The RMSE is a measure of the remaining measure-
ment variance not explained by the model. Some studies
have reported the use of these statistical parameters for the
evaluation of ANN models [1, 17, 24].

3 Results

3.1 Dynamic division method results

Figure 4 presents the value of the total loss function (Ji),
summed over all parameters, defined by Eq. 3, and esti-
mated for each group of hidden neurons tested. Based on
the minimum value, the topology comprising seven hidden
neurons was then selected and trained again with the whole
experimental data set. This procedure resulted in a model
with a total of 64 parameters (synaptic weights and biases
of the ANN).

The predictive performance was evaluated for data set G2
(10 % of the data). Values of R2, (R2

adj ), and RMSE equal to

0.94, 0.93, and 28.43 mg L−1, respectively, were obtained.
Good agreement between the experimental data and model
predictions is observed.

3.2 Static-split method results

Figure 5 presents the mean square error of valida-
tion (EQMopt (i)) for each ANN model by using the
data set G1 and varying the number of hidden neu-
rons. By considering the minimum EQMopt (i), the topol-
ogy (Topmin) comprising six hidden neurons was then
selected and trained again with the entire experimental
data set. The topology estimated by the DDM and SSM
are very close: six and seven neurons in the hidden layer,
respectively. With the purpose using equal requirements

Fig. 6 Correlations between
predicted and measured for the
data sets (G1 + G2): (a) DDM
and (b) SSM
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Fig. 7 Time series of the
measured and predicted COD
using the best DDM and SSM
models
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when comparing the results, the topology adopted in the
implementation and comparison between the methods was
seven neurons in the hidden layer.

The model performances obtained when different pro-
portions of the experimental data set (G1 + G2) were used
for the training set, validation set, and test set (G2) are
summarized in Table 2. A code is used to differentiate the
proportions of training, validation, and testing. The first
number represents the percentage of the data set extracted
from the experimental data set (G1 + G2) and used for the
test, whereas the second and the third numbers (in brack-
ets) represent the ratio of the training set and validation
set extracted from “G1,” respectively. The best results are
obtained when 80 and 20 % of G1 were used for training
and validation, respectively, with R2, (R2

adj ), and RMSE

equal to 0.72, 0.71, and 62.14 mg L−1, respectively. The
results also indicate that there is significant variation in the
statistical parameters depending on the sample size of the
training and validation even when their size is statistically
significant.

3.3 DDM versus SSM

The DDM model was compared with the best SSM
model, and the results are shown in Table 3. As can be
observed, the results obtained with the DDM are better
than those determined with the SSM for predicting COD
in the UASB reactor outflow. This result is confirmed by
Fig. 6, which shows good agreement between the pre-
dicted and observed experimental data values for the DDM
model. This result is attributed the ability of the DDM
to extract the maximum of the process characteristic dur-
ing the training of the network. This happens because the
adjustment process of the synaptic weights and levels of
“bias” is not interrupted until the maximum information

about the phenomenology is extracted from the entire G1
data set.

Overtraining of the DDM model is avoided through the
use of a proper definition of the network topology and
not through the interruption of training, as considered in
the SSM. This ensures that the network (during training)
extracts the maximum amount of information from the
experimental data.

Figure 7 shows a graphical representation of the time
series comparing the measured and predicted COD for
the G1 and G2 sets using the DDM and SSM for both
the G1 and G2 data sets. Although the SSM results fol-
low the variability of the experimental data, the DDM
results are closest to the same data ever for the high
pics.

4 Conclusions

Anaerobic digestion processes in UASB reactors involve a
complex and nonlinear system that is known to be unstable.
In such a case, a neural network is used to model this sys-
tem because this method has proved to be able to capture
the nonlinear features and generalized structure of the entire
data set.

This study presented a methodology for the construction
and testing of ANN models using two methods for select-
ing the optimal structure of ANNs: the DDM, based on the
division of the dynamic G1 data set, and the SSM, based on
the split static G1 data set. The two methods were applied
to predict the organic matter concentration (COD) effluent
from a UASB reactor operated at full scale.

The identification procedure, including the selection of
the optimal number of hidden neurons, was efficient and
provided consistent results for the DDM and SSM, giving a
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good description of the system dominant dynamics without
degradation of the output prediction.

The DDM showed better results with the highest deter-
mination coefficient (R2 = 0.94) and minimum RMSE,
which suggests that ANNs are a useful tool to represent
the complexity of the UASB reactor. This method can be
successfully applied, particularly when there is a limited
amount of data for the construction of ANN models because
every data set can be used for training [21]. The disadvan-
tage of this method is the need to train several networks,
which requires computational effort.
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