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Abstract We address the problem of optimal selection
of sites to constitute a nature reserve which ensures that
a given set of species has fixed survival probabilities.
This classic problem has already been considered in the
literature of conservation biology. The originality of this
article is to consider that the values of the survival
probabilities of each species in each potential site may
be subject to a certain error while assuming that the
number of sites where these probabilities are wrong is
limited. We thus define a set of possible survival prob-
ability values in each site. We then show how to deter-
mine, by solving a relatively simple mixed-integer linear
program, an optimal robust reserve, i.e., a reserve which
ensures that each species has a certain survival proba-
bility whatever the values taken by the survival proba-
bilities in each site, in the set of possible values. The
fact of being able to formulate the search for an optimal
robust reserve by a mixed-integer linear program pro-
vides an easy way to take into account additional con-
straints on the selection of sites such as, for example,
spatial constraints. We report some computational experi-
ments carried out on many hypothetical landscapes to illus-
trate the concept of robust reserve and show the effectiveness
of the approach.

Keywords Conservation planning . Reserve selection . Site
selection algorithm . Uncertainty . Integer programming .

Experiments

1 Introduction

The growth of the human population and economic develop-
ment lead to large-scale destruction of natural habitats of
many animal and plant species resulting in a significant loss
of biodiversity. Protected areas are an important tool for
biodiversity conservation because they directly aim at the
protection of biodiversity components which present a high
degree of risk of extinction. The available resources for im-
plementation and management of protected area systems be-
ing obviously limited, it is important to use them optimally.
So, many optimization problems and models associated with
the design of nature reserves have been proposed in the
conservation biology and operations research literature. The
reader can refer, for example, to the references [6, 11, 15, 18,
22, 23, 25, 27, 29–33, 35, 36]. Many models associated with
the determination of optimal nature reserves are based on the
assumption that the species that will survive in the long term
in a protected site—integrated to the reserve—is exactly
known. In reality, this information is not always available.
Thus, probabilistic models have been proposed to take ac-
count, to some extent, of uncertainty regarding the survival of
species in protected sites (see, e.g., [12, 24, 34, 38]). In these
models, the survival probabilities of the species in each
protected site are assumed to be known. Some authors then
propose methods to determine, under different constraints, a
reserve that maximizes the expected number of species that
will survive in this reserve [2, 4, 5, 28] or to determine a
reserve which ensures that each species has a survival proba-
bility greater than or equal to a certain threshold [1, 17, 31]. A
common feature of all these approaches is that the data are
assumed to be perfectly known. It is therefore assumed that
there is no uncertainty about their value when in fact there are
almost always errors in the determination of such data.
Ignoring uncertainty can lead to retain reserves that are far
from being interesting if some data errors were proven. We
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focus in this article to determine a robust reserve, i.e., a reserve
for which certain characteristics remain relatively independent
of data errors. The reader can refer to the comprehensive
article of Moilanen et al. (2006) [24] for an overview of the
robustness regarding nature reserves. The goal of their article
is to provide terminology and a methodological basis for
robust reserve planning. They show how uncertainty analysis
for reserve planning can be implemented within a framework
of information-gap decision theory. The precise problem we
are interested here is the problem mentioned above of deter-
mining a reserve which ensures that all species have a survival
probability greater than or equal to a predefined threshold. The
determination of the survival probabilities in each site is obvi-
ously a difficult task, and it is likely that the values retained are
not perfectly accurate. We consider that there may be a certain
percentage of errors on these probabilities and show how to
account for this form of uncertainty on the survival probabil-
ities to define a robust reserve of minimum cost. Specifically,
we seek to determine a reserve of minimum cost such that the
survival probability of each species in this reserve is greater
than or equal to a certain threshold regardless of the value taken
by the survival probabilities (in a set of possible values). If we
call “scenario” a set of fixed values for the survival probabil-
ities of each species in each site—among the possible values—
then the problem is to seek protection against uncertainty in the
worst case scenario and therefore in all scenarios. Of course,
this protection has a cost that depends on the amount of
uncertainty, and we will see later in the article that this cost
can be high. We show that the optimal reserve can be

determined by a mixed-integer linear program. The main no-
tations used throughout the article are presented in Table 1.

2 The Basic Probabilistic Problem and its Modeling
by a 0-1 Linear Program

We consider a set of potential sites that can be selected to form
a nature reserve. To simplify the presentation, we assume that
these sites form a grid of square sites (see Fig. 1). Each site
is designated by a pair of indices (i,j), and we denote by
M={(i,j):i=1,…,m;j=1,…,n} the set of sites. Note that the
proposed approach would apply without difficulty to any
other set of sites. Note also that the sites of the grid are not
necessarily all eligible. The problem is to select among poten-
tial sites those that will form the reserve and those that will be
assigned to other activities such as agricultural, industrial, or
urban development. We are interested in a set of Ns rare or
endangered species present on these sites. Each species will be
designated by an index s∈{1,…,Ns}, and the set of species
under consideration will be denoted by S={1,…,Ns}. We
know for each site the list of species present on this site and
for each species, the probability of its long-term survival in
this site if it is selected. For each species s, we denote by Ms

the set of sites where the species s is present, and we denote by
pijs (0≤pijs<1) the probability that species s survives in the site
(i,j) if it is selected. Of course, pijs=0 if the species s is not
present on the site (i,j). We assume that these probabilities are
independent, i.e., that the survival probability of a species in a

Table 1 Symbols and notation

Symbol Explanation

M Set of sites; for ease of presentation, they are represented by a matrix of dimension m×n, i.e., M={(i,j):i=1,…,m;j=1…n}

S Set of species

Ns Number of species, so S={1,…,Ns}

s Index for species

Ms Set of sites where species s is present

pijs Probability that species s survives in site (i,j) if selectedepi js Nominal value of pijs
δijs Possible variation of the survival probability of species s with respect to its nominal value, i.e., pijs∈ [epi js−δi js;epi js ]
es Coefficient corresponding to a way of defining δijs:δi js ¼ esepi js=100 with es∈[0,100]

e Value of es for all s in the experiments

bs Threshold value for the survival probability of species s in the reserve

b Value of bs for all s in the experiments

Γs Maximal number of sites of Ms where the survival probabilities of species s may differ from their nominal values

rs Coefficient corresponding to a way of defining Γs: Γs=⌊rs |Ms|/100⌋ with es∈[0,100]
r Value of rs for all s in the experiments

cij Cost of protecting site (i,j)

ρ Upper bound on the perimeter-to-area ratio
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selected site does not depend on the decisions taken regarding
the other sites.With each site, (i,j) is assigned a cost cij, and we
classically define the cost of a reserve as the sum of the costs
of the sites that constitute it. We seek to identify a reserve of
minimum cost which ensures that all considered species have
a certain survival probability. More specifically, we try to
select a set of sites to form a reserve such as the survival
probability of each species s in this reserve is greater than or
equal to a certain threshold value denoted by bs (0<bs<1).
Associate with each site of the grid a Boolean variable xij that
is equal to 1 iff the site (i,j) is part of the reserve. Given a
reserve—defined by the values of the variables xij—the sur-

vival probability of the species s in this reserve is equal to 1−

∏ i; jð Þ∈Ms
1−pi jsxi j

� �
. The constraint which imposes that this

probability is greater than or equal to the predetermined

t h r e s h o l d b s c a n t h e r e f o r e b e w r i t t e n a s 1−

∏ i; jð Þ∈Ms
1−pi jsxi j

� �
≥bs . This type of constraint is consid-

ered in [24] to illustrate the robustness concept. Using the
logarithmic function and putting αijs=log(1−pijs) and
βs=log(1−bs), this inequality becomes ∑ i; jð Þ∈Ms

αi jsxi j ≤βs

[17]. The equivalence between the last two inequalities is true
only because the variables xij are Boolean. Indeed, in that case,
log(1−pijsxij)=xijlog(1−pijs). Note thatαijs and βs are negative

or null. The problem of looking for a reserve of mini-
mal cost, ensuring that each species has a minimum survival
probability can therefore be formulated by the 0-1 linear
program (PR1).

PR1ð Þ

min
X
i; jð Þ∈M

ci jxi j

s:t:

X
i; jð Þ∈Ms

αi js xi j≤βs s ∈ S 1:1ð Þ

xi j ∈ 0; 1f g i; jð Þ∈M 1:2ð Þ

������

8>>>>><
>>>>>:

Table 2 List of the sets Ms corresponding to the landscape of Fig. 1

s Ms

1 (1,1) (1,6) (2,5) (8,3)

2 (1,7) (1,8) (4,3) (6,1) (7,1) (8,4) (8,6)

3 (1,2) (2,6) (3,4) (5,5) (6,5) (7,5) (8,3) (8,5)

4 (1,7) (4,4) (5,4) (6,2) (6,7) (7,5) (8,4)

5 (1,4) (2,4) (5,7) (6,8) (8,7)

6 (1,5) (7,8) (8,4) (8,8)

7 (1,8) (2,6) (3,7) (5,5) (5,6)

8 (1,1) (1,4) (5,6) (7,3) (7,6)

9 (2,2) (2,3) (3,6) (4,2) (4,6) (6,2)

10 (1,1) (1,5) (1,8) (3,4)
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Fig. 1 A landscape represented
by a 8×8 grid with 10 species, the
corresponding survival
probabilities and the associated
costs in each site
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3 Taking into Account Uncertainty on the Survival
Probabilities

Consider now that there is uncertainty regarding the
estimation of some survival probabilities pijs. Recall that
for each species s, we denote by Ms the set of sites
where the species s is present. So, we assume that for
all sites of Ms, it is possible that there is an error on the
retained value of the survival probability of species s
that we call nominal value and that we denote by epi js .
Thus, the only thing we know with certainty is that the

value of the survival probability pijs belongs to the interval
[epi js−δi js;epi js þ γi js ] with δijs≥0, δi js≤epi js , γijs≥0, and epi js
þγi js≤1 . Such a definition of uncertainty on the survival

probabilities is suggested in [24]. The considered problem
then consists in determining an optimal robust reserve, i.e., a
reserve of minimum cost in which the survival probability of
each species s is greater than or equal to the threshold bs,
regardless of the values taken by the uncertain probabilities
pijs in the interval [epi js−δi js;epi js þ γi js ]. As outlined in [24], a

reserve that is optimal with respect to the nominal values epi js
is often not robust to uncertainty. Note that in the search for a

Table 3 Results for the
landscape of Fig. 1 when the
survival probability imposed for
each species, b, is equal to 0.8 or
0.9 and for different values of e
and r

En dashes represent no feasible
solution

b e r Cost of the optimal
robust reserve

Number of sites
selected

Associated figure

0.8 10 0 40 11 Fig. 2a

20 47 13 Fig. 2b

30 51 15

100 53 14

20 0 40 11

20 50 14 Fig. 2c

30 53 14

100 70 16

0.9 10 0 69 15 Fig. 2d

20 77 16 Fig. 2e

30 80 17

100 – –

20 0 69 15

20 84 20 Fig. 2f

30 – –

100 – –

(a) 

(d) (e) (f) 

0,8.0 == rb (b) 20,10,8.0 === reb (c) 20,20,8.0 === reb

Fig. 2 Optimal robust reserves
for some instances of Table 3
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robust reserve as we have defined it, we can consider that the
values of the survival probabilities only belong to the interval
[epi js−δi js;epi js ]. For example, there might be a maximum error

of es%on the probability epi js , i.e., δi js ¼ esepi js=100 . If we do
not make other assumptions, the optimal robust reserve
is obtained by the program (PR1) in which the proba-
bilities pijs are fixed to their minimum value, epi js−δi js ,

for all species s and for all sites (i, j) of Ms. This gives
a reserve with maximum robustness [24]. Indeed, what-
ever the values taken by the survival probabilities in the
interval [epi js−δi js;epi js ] the survival probability of each

species s will be greater than or equal to bs. However,
this very pessimistic hypothesis can result in retaining
an unduly costly reserve. Thus, we will consider, following an
idea proposed by Bertsimas and Sim [3] and included in
numerous publications on robust optimization, that it is un-
likely that there are errors on the values of all uncertain
probabilities. In our problem, we assume that, for a given
species s, the probabilities pijs may differ from their nominal
value epi js in at most Γs sites of Ms. For example, Γs may

correspond to a proportion of the number of sites in Ms:
Γs=⌊rs |Ms|/100⌋ where rs is a constant between 0 and 100.

This means that setting rs to 0 is equivalent to considering that
there is no uncertainty about the survival probabilities of
species s and, on the contrary, setting rs to 100 amounts to
considering that all the survival probabilities of species s
different from 0 can take the value epi js−δi js instead of their

nominal value epi js . The resolution of these two extreme cases

comes down to solving a problem without uncertainty about
the value of the survival probabilities: when Γs=0, everything
happens as if the survival probability of the species s in the site
(i,j) was definitely set at epi js and when Γs=Ms, everything

happens as if this probability was set at epi js−δi js . In the

intermediate cases (0<rs<100), for each species s, the νs sites
of the retained reserve R corresponding to the highest values of

δi js= 1−epi js� �
will have in fact a survival probability equal to

epi js−δi js with νs=min{Γs,|Ms∩R|}. Indeed, using the Boolean

variable zijs that is equal to 1 if the survival probability
of the species s in the site (i, j) is equal to epi js−δi js
instead of epi js , the problem of minimizing the survival

probability of species s in the reserve according to the uncer-
tainty can be formulated as the problem of maximizing its
extinction probability, i.e.,

max
zi js∈ 0;1f g i; jð Þ∈Ms∩Rð Þ

∏
i; jð Þ∈Ms

T
R

1−epi js þ zi js δi js
� �

:
X

i; jð Þ∈Ms

T
R

zi js≤νs

8><
>:

9>=
>; ð1Þ

We are going to show that the solution of the maximization
problem (1) is achieved by setting to 1 the νs variables corre-

sponding to the νs largest values of δi js= 1−epi js� �
. By using

the logarithmic function and taking into account that the

variable zijs can only take the values 0 or 1, (1) is equivalent

to the following maximization problem:

max
zi js∈ 0;1f g i; jð Þ∈Ms∩Rð Þ

X
i; jð Þ∈Ms

T
R

log 1−epi js þ zi js δi js
� �

:
X

i; jð Þ∈Ms

T
R

zi js≤νs

8><
>:

9>=
>;

or

max
zi js∈ 0;1f g i; jð Þ∈Ms∩Rð Þ

X
i; jð Þ∈Ms

T
R

log 1−epi js� �

þ
X

i; jð Þ∈Ms

T
R

log 1−epi js þ δi js
� �

−log 1−epi js� �h i
zi js :

X
i; jð Þ∈Ms

T
R

zi js≤νs

8>>>><
>>>>:

9>>>>=
>>>>;
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which is itself equivalent to

max
zi js∈ 0;1f g i; jð Þ∈Ms∩Rð Þ

X
i; jð Þ∈Ms

T
R

�
log 1þ δi js

1−epi js
0
@

1
Azi js :

X
i; jð Þ∈Ms

T
R

zi js≤νs

8><
>:

9>=
>; ð2Þ

since the constant ∑
i; jð Þ∈Ms∩R

log 1−epi js� �
has no play into the

maximization problem. The optimal solution to (2) and thus to
(1) is obtained by setting to 1 the νs variables zijs correspond-

ing to the νs largest values of δi js= 1−epi js� �
.

4 Modeling the Search for an Optimal Robust Reserve
by a Mixed-Integer Linear Program

Let us consider a reserve which is defined by the Boolean
matrix xi j; i; jð Þ∈M . The site (i,j) belongs to the reserve if

and only if xi j ¼ 1 . As mentioned above, denote by zijs the
Boolean variable which equals 1 if the survival probability of
the species s in the site (i,j) is equal toepi js−δi js instead ofepi js ,
the extinction probability then being equal to 1−

epi js−δi js� �
. When zijs=0, the survival probability is

equal to epi js and the extinction probability is equal to

1−epi js . To ensure that the extinction probability of each

species s in this reserve is less than or equal to the
threshold 1−bs regardless of the values taken by the
survival probabilities—in the set of possible values—
the following condition must be verified for all s:

max
zi js∈ 0;1f g i; jð Þ∈Msð Þ

∏
i; jð Þ∈Ms

1− epi js−zi js δi js� �
xi j

h i
:
X
i; jð Þ∈Ms

zi js ≤ Γ s

8<
:

9=
;≤1−bs ð3Þ

Using the logarithmic function, this condition can also be
written

max
zi js∈ 0;1f g i; jð Þ∈Msð Þ

X
i; jð Þ∈Ms

log 1− epi js−zi js δi js� �
xi j

h i
:
X
i; jð Þ∈Ms

zi js ≤ Γ s

8<
:

9=
;≤ log 1−bsð Þ ð4Þ

By rewriting the objective function to be maximized in the
constraint (4), we get

X
i; jð Þ∈Ms

log 1− epi js − zi js δi js
� �

xi j
h i

¼
X
i; jð Þ∈Ms

xi jlog 1 −epi js þ zi js δi js
� �

because xi j∈ 0; 1f g
� �

¼
X
i; jð Þ∈Ms

xi jlog 1−epi js� �
þ

X
i; jð Þ∈Ms

xi jzi js log 1 −epi js þ δi js
� �

−log 1−epi js� �h i
because zi js∈ 0; 1f g� �

¼
X
i; jð Þ∈Ms

xi jlog 1−epi js� �
þ

X
i; jð Þ∈Ms

xi jzi jsΔi jswith Δi js ¼ log 1 −epi js þ δi js
� �

− log 1−epi js� �
ð5Þ
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Finally, we can express the fact that the extinction probability
of each species s—in the reserve defined by x—is less than or

equal to the threshold, whatever the values taken by the
survival probabilities, by the following inequality:

X
i; jð Þ∈Ms

xi jlog 1−epi js� �
þ max

zi js∈ 0;1f g i; jð Þ∈Msð Þ

X
i; jð Þ∈Ms

xi jzi jsΔi js :
X
i; jð Þ∈Ms

zi js≤Γ s

8<
:

9=
;≤ log 1−bsð Þ ð6Þ

In the maximization problem appearing in the con-
straint (6), the integrality constraints zijs∈{0,1} can be
relaxed, i.e., replaced by 0≤zijs≤1. In fact, a solution of
this maximization problem (with zijs∈{0,1} or with 0≤
zijs≤1) is to fix to 1 the νs variables zijs corresponding

to the νs largest values of xi jΔi js with νs ¼ min

Γ s; Ms∩ i; jð Þ : xi j ¼ 1
� ��� ��� �

. The maximization prob-

lem in (6) then becomes a continuous linear program.

As we have just seen, it admits a finite optimal solution.

Its dual therefore also admits a finite optimal solution and is

written as

min
λs ≥0;μi js ≥0 i; jð Þ∈Msð Þ

X
i; jð Þ∈Ms

μi js þ Γ sλs : λs þ μi js≥Δi js xi j i; jð Þ∈Msð Þ
8<
:

9=
; ð7Þ

where λs is the nonnegative dual variable associated with
the constraint ∑

i; jð Þ∈Ms

zi js ≤Γ s and μijs is the nonnegative dual

variable associated with the constraint zijs≤1. Since by duality,

the optimum value of the maximization problem appearing in

(6) is equal to the optimum value of the minimization problem

(7), the constraint (6) can be rewritten as

X
i; jð Þ∈Ms

xi jlog 1−epi js� �
þ

min
λs ≥0;μi js ≥0 i; jð Þ∈Ms

X
i; jð Þ∈Ms

μi js þ Γ sλs : λs þ μi js≥Δi jsxi j i; jð Þ∈Msð Þ
8<
:

9=
;≤ log 1−bsð Þ

We can now write the mixed-integer linear program (PR2)
corresponding to the search for a robust optimal reserve:

PR2ð Þ

min
X
i; jð Þ∈M

ci jxi j

s:t:

X
i; jð Þ∈Ms

xi jlog 1−epi js� �
þ

X
i; jð Þ∈Ms

μi js þ Γ sλs≤ log 1−bsð Þ s ∈ S 2:1ð Þ

λs þ μi js≥Δi jsxi j i; jð Þ∈Ms; s∈S 2:2ð Þ
μi js≥ 0 i; jð Þ∈Ms; s∈S 2:3ð Þ
λs≥ 0 s ∈ S 2:4ð Þ
xi j ∈ 0; 1f g i; jð Þ ∈ M 2:5ð Þ

������������

8>>>>>>>>>>><
>>>>>>>>>>>:
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Let x be an optimal solution of (PR2). The optimal
reserve includes the sites (i, j) such that xi j ¼ 1 , its cost
is equal to ∑

i; jð Þ∈M
ci jxi j , and the worst scenario

is defined by the worst survival probabilities in
the νs sites of the reserve corresponding to the νs

maximum values of δi js= 1−epi js� �
with νs ¼ min

Γ s; Ms∩ i; jð Þ : xi j ¼ 1
� ��� ��� �

. In the particular case

where Γ s ¼ rs Msj j
100

j k
for all s and δi js ¼ es

100epi js for all

(i, j) and for all s, the program (PR2) becomes

PR20ð Þ

min
X
i; jð Þ∈M

ci jxi j

s:t:

X
i; jð Þ∈Ms

xi jlog 1−epi js� �
þ

X
i; jð Þ∈Ms

μi js þ
rs Msj j
100

	 

λs≤ log 1−bsð Þ s ∈ S 2:10ð Þ

μi js þλs≥ log 1 −epi js 1 −
es
100

� �h i
−log 1 −epi js� �n o

xi j i; jð Þ∈Ms; s∈S 2:20ð Þ
μi js≥ 0 i; jð Þ∈Ms; s∈S 2:3ð Þ
λs≥ 0 s ∈ S 2:4ð Þ
xi j∈ 0; 1f g i; jð Þ ∈ M 2:5ð Þ

��������������

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

5 Example

We illustrate in this section the application of the method to an
hypothetical landscape represented by a 8×8 grid with 10
species. The data are presented in Fig. 1. For each site (i,j),
the list of species present on the site and the associated nominal
values of the survival probabilities epi js are indicated. The cost
of each site is shown in the corresponding cell in the lower
right. To facilitate the review of this example, we give in
Table 2 the sets Ms. We seek to determine a reserve which
provides a survival probability for each species equal to 0.8 and
then to 0.9, that is to say, bs=b=0.8 and then bs=b=0.9 for all s.
The level of uncertainty Γs is defined by a percentage rs of the
number of sites where the species s is present, i.e., Γs=⌊rs|Ms|/
100⌋where ⌊y⌋ is the integer part of y. For example, the species
3 being present in eight sites on 64, if r3=30, then the maxi-
mum number of sites where the survival probability of this

species may differ from its nominal value is equal to Γ3=⌊30×
8/100⌋=2. In these experiments, we supposed that rs=r for all s
and we considered four different values of r: r∈{0,
20, 30, 100}. We also supposed that δi js ¼ esepi js=100 with
es=e for all s, and we considered two values of e: e∈{10, 20}.

The mathematical program (PR2) has been implemented
by using the modeling language AMPL [16] and solved by the
mixed-integer linear solver CPLEX 12.5.0 [9]. The experi-
ments have been carried out on a PC with an Intel Core i-5
2.60 GHz processor and 8 GB of RAM. The obtained results
are shown in Table 3. Some reserves corresponding to in-
stances of Table 3 are shown in Fig. 2.

Details of the results corresponding to Fig. 2b are shown in
Table 4. Taking into account the value of r, there can be no
error as regards the species 1, 6, and 10, and there may be
errors in only one site as regards other species. Let R* be the
set of sites selected to form the optimal robust reserve,

Table 4 Details of the results
corresponding to Fig. 2b Species (s) |Ms|

r Msj j
100

j k R*∩Ms Sites where survival probability
of species s takes its worst
value epi js−eepi jk=100

Ps(R*)
P e

s R*ð Þ

1 4 0 (1,6), (8,3) – 0.8 0.8

2 7 1 (1,8) (1,8):0.9 → 0.81 0.81 0.9

3 8 1 (5,5), (8,3) (5,5):0.8 → 0.72 0.916 0.94

4 7 1 (6,2), (6,7) (6,2):0.8 → 0.72 0.916 0.94

5 5 1 (1,4), (5,7), (8,7) (8,7):0.7 → 0.63 0.8668 0.892

6 4 0 (1,5), (7,8) – 0.8 0.8

7 5 1 (1,8), (5,5), (5,6) (1,8):0.6 → 0.54 0.885 0.9

8 5 1 (1,4), (5,6) (5,6):0.8 → 0.72 0.888 0.92

9 6 1 (2,2), (6,2) (2,2):0.8 → 0.72 0.916 0.94

10 4 0 (1,5), (1,8) – 0.94 0.94

390 A. Billionnet



P e
s R*ð Þ the survival probability of the species s in this

reserve with the nominal values of the survival probabilities
in each site, and Ps(R*) the survival probability of the species
s, in the reserve, in the worst case scenario. Now, consider the
instance where the threshold value for the survival probability
of each species s is defined again by b=0.8 but without taking
into account the uncertainty on the survival probabilities in
each site. This produces the optimal reserve presented in
Fig. 2a and costing 40. The survival probabilities of each
species in this reserve, computed from the nominal values of
the survival probabilities, are given in Table 5.

Always consider the reserve of Fig. 2a but now take into
account the uncertainty on the survival probabilities in each site
when e=20 and r=20. This means that in up to ⌊20|Ms|/100⌋
sites, the true values of the survival probabilities of the species s
are equal to only 80% of their nominal value (see values in bold
in Table 6). In this context, the worst case scenario corresponds
to the survival probabilities of each species in the reserve that
are given in Table 6. As expected all these probabilities are less
than or equal to those of Table 5, but the survival probabilities of

the species 2, 4, 5, 7, 8 and 9 fall below the threshold of 0.8 (see
shaded lines in Table 6). The considered reserve is therefore not
at all robust. Recall that, in this context of uncertainty, the
optimal robust solution is given by the reserve of Fig. 2c whose
cost is equal to 50. So, we can say that for this hypothetical
landscape, the protection against the uncertainty, defined by e=
20 and r=20, increases the cost of the optimal reserve of 25 %.

Now, consider the following problem which is suggested in
[24] where it is called “the robustness question”: howwrong canepi js be, without jeopardizing the required performance of a

given reserve? Here, we consider a slightly different problem:
how wrong can epi js be without jeopardizing the required

performance of any reserve? We will see that the cost of the
optimal robust reserve increases with uncertainty over epi js until

there is no longer a robust reserve satisfying the required per-
formance. Consider again the landscape described in Fig. 1 with
b=0.9 and r=30 and find out the greatest value of e for which
there exists a robust reserve that is to say a reserve that ensures a
survival probability in the reserve of all species greater than or
equal to b in the worst case scenario. One can readily formulate
this problem by replacing in (PR2′) the objective function to
minimize by the expression e to maximize (in this case e
becomes a variable). However, the resulting optimization prob-
lem is very difficult because the variable e appears in the

nonlinear term, log 1−epi js 1− e
100

� �h i
xi j , of the constraint

(2.2). Another way to determine this limit value of e is to solve
(PR2′), gradually increasing the value of e until there are no
more feasible reserves. In this case, the survival probability in all
reserves of at least one species falls below b in the worst case

Table 5 Survival probabilities of each species in the reserve of Fig. 2a
when there is no uncertainty on pijs

s Survival probabilities of species s in the reserve of Fig. 2a

1 1-(1-0.6)(1-0.5)=0.8

2 1-(1-0.9)=0.9

3 1-(1-0.8)(1-0.7)=0.94

4 1-(1-0.7)(1-0.4)=0.82

5 1-(1-0.4)(1-0.7)=0.82

6 1-(1-0.6)(1-0.5)=0.8

7 1-(1-0.6)(1-0.5)=0.8

8 1-(1-0.8)=0.8

9 1-(1-0.8)=0.8

10 1-(1-0.7)(1-0.8)=0.94

Table 6 Survival probabilities of each species in the reserve of Fig. 2a
in the worst case scenario when e=20 and r=20

s Survival probabilities 
of each species 

100
sMr

1 0 1-(1-0.6)(1-0.5)=0.8 
2 1 1-(1-0.72)=0.72
3 1 1-(1-0.72)(1-0.7)=0.916 
4 1 1-(1-0.56)(1-0.4)=0.736 
5 1 1-(1-0.4)(1-0.56)=0.736
6 0 1-(1-0.6)(1-0.5)=0.8
7 1 1-(1-0.48)(1-0.5)=0.74
8 1 1-(1-0.64)=0.64 
9 1 1-(1-0.64)=0.64 
10 0 1-(1-0.7)(1-0.8)=0.94

Table 7 Cost of the optimal robust reserve for the landscape of Fig. 1
when b=0.9, r=30 and for different values of e

e Cost of the optimal robust reserve

e=0 69

e∈{1,…,6} 75

e∈{7,…,9} 77

e∈{10,…,12} 80

e≥13 no feasible robust reserve

Table 8 Cost of the optimal robust reserve for the landscape of Fig. 1
when b=0.9, e=20 and for different values of r

r Cost of the optimal robust reserve

r∈{0,…,12} 69

r∈{13,14} 70

r∈{15,16} 75

r∈{17,…,19} 76

r∈{20,…,24} 84

r≥25 no feasible robust reserve
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scenario. Table 7 shows the results obtained by this approach.
Clearly, in this case, there are feasible robust reserves when e≤
12 but there are no more feasible robust reserves when e≥13.

Similarly, it may be interesting, when b and e are fixed to
determine the highest value of r for which there exists a robust
reserve. Here too, the mathematical problem is difficult since it
consists to solve (PR2′) with the objective “minr” instead of
“max ∑

i; jð Þ∈M
ci jxi j .” When e and b are fixed, all the constraints

of (PR2′) are linear except the constraint (2.1′) which contains
the quadratic term rλs. As previously, we determine this limit
value of r by solving (PR2′) and gradually increasing the value
of r until there are no more feasible reserves. In this case, the
survival probability in all reserves of at least one species falls
below b in the worst case scenario. Table 8 shows the results
obtained by this approach when b=0.9 and e=20. Clearly, in
this case, there are feasible robust reserves when r≤24, but
there are no more feasible robust reserves when r≥25.

6 Experiments on Larger Landscapes

We have studied the behavior of the resolution of (PR2)
on many instances, and we present in this section the corre-
sponding experimental results. In this study, the landscapes

are defined by four parameters: the number of sites, the cost of
protecting each site, the number of species, and the survival
probabilities of each species in each site. In these experiments,
we have assumed that 50 species were present in the land-
scapes, and we have considered two possibilities for each of
the other three parameters thus obtaining eight types of land-
scapes. We have considered landscapes represented by 15×15
− and 20×20− matrices and protection costs randomly gen-
erated between 1 and 10 and also between 1 and 20.
Finally, in a first case, each species appears randomly in
5 % of the sites and in these sites, its survival proba-
bility is drawn at random from the set {0.5,0.6,0.7,
0.8}; in a second case, each species appears randomly
in 4 % of the sites and in these sites, its survival probability is
drawn at random from the set {0.7,0.8}. The characteristics of
these eight types of landscapes are summarized in Table 9.

For each of the eight landscape types, we have considered
five different landscapes by modifying the seed of the random
number generator thus obtaining 40 different landscapes. As
in the experiments of “Section 5”, Γs=⌊r |Ms|/100⌋, bs=b, and
δi js ¼ eepi js=100 . For each of the 40 landscapes, we have

studied the resulting solutions for the following values of the
different parameters: b∈{0.85,090,0.95}, e∈{10,20}, and
r∈{20,30,100}. For each of the 40 landscapes, we have also
studied the case without uncertainty, i.e., we have solved
(PR2) with b∈{0.85,090,0.95} and r=0.We have thus solved
a total of 840 instances of (PR2). Recall that when r=100,
everything happens as if there were no uncertainty, provided
that epi js is replaced by epi js−δi js . All instances were resolved
quickly within a few seconds of computation, except some
instances corresponding to landscapes of size 20×20 and a
minimum survival probability of 0.95. In this case, the reso-
lution of several instances requested a few hundred seconds,
the more difficult instances corresponding to e=20 and
r=20 or 30. All instances corresponding to landscapes of size
20×20 admit a feasible solution. Regarding the landscapes of
size 15×15, there is no feasible solution for one seed of the
random number generator for b=0.95 when each species
appears randomly in 4 % of the sites with a survival probabil-
ity drawn at random from the set {0.7,0.8} (landscapes of

Table 9 Description of the eight
types of landscapes considered in
the experiments

Type No. of species Dimension (m×n ) Costs (cij) Presence of each
species (no. of sites)

Survival probabilities
(epi js )

1 50 15×15 {1,2,…,10} 5(m×n)/100 {0.5,0.6,0.7,0.8}

2 50 15×15 {1,2,…,10} 4(m×n)/100 {0.7,0.8}

3 50 15×15 {1,2,…,20} 5(m×n)/100 {0.5,0.6,0.7,0.8}

4 50 15×15 {1,2,…,20} 4(m×n)/100 {0.7,0.8}

5 50 20×20 {1,2,…,10} 5(m×n)/100 {0.5,0.6,0.7,0.8}

6 50 20×20 {1,2,…,10} 4(m×n)/100 {0.7,0.8}

7 50 20×20 {1,2,…,20} 5(m×n)/100 {0.5,0.6,0.7,0.8}

8 50 20×20 {1,2,…,20} 4(m×n)/100 {0.7,0.8}

Table 10 Instances with no solution

b Type of
landscapes

r e No. of instances without
solution (out of 5)

0.85 2 100 20 1

0.85 4 100 20 1

0.90 2 100 10 1

0.90 2 100 20 1

0.90 4 100 10 1

0.90 4 100 20 1

0.95 1 100 20 1

0.95 2 100 20 1

0.95 4 100 20 2
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types 2 and 4). Other instances for which there is no feasible
solution are presented in Table 10.

The experiments have shown that the cost of protection
against uncertainty is often relatively high. Figures 3, 4, and 5
summarize the average increase (in percentage) in the cost of
an optimal robust reserve based on the uncertainty with re-
spect to the cost of an optimal reserve without uncertainty, for
all instances of size 20×20 (landscapes of types 5, 6, 7, and 8).

The average increase is calculated on five instances. For
example, consider the landscapes of type 8 when the mini-
mum survival probability, b, is equal to 0.90 (Fig. 4). The
results obtained for r=30 and e=10 are given in Table 11. In
this case, the average increase in the cost for protection against
uncertainty is about 55 %.

Let us now look at Fig. 3, which corresponds to a minimum
survival probability of 0.85. We see in this figure that there is
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Fig. 3 Average percentage
increase in costs for the four types
of landscapes of size 20×20when
b=0.85
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Fig. 4 Average percentage
increase in costs for the four types
of landscapes of size 20×20
when b=0.90
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when b=0.95
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no increase in the cost of an optimal robust reserve for land-
scapes of types 6 and 8 when e=10 and r=30 or r=100.
However, for landscapes of types 5 and 7 and for the same
parameter values, the average cost increases of about 20 %.
The largest increase (about 57 %) occurs for landscapes of
type 8 when e=20 and r=100. Note that for the four types of
landscapes, the average increase of the cost is very similar
when e=20 and r=30 or e=20 and r=100. We can also notice
in Figs. 4 and 5 that the curves representing the increase in the
average cost basis of the uncertainty are very similar for the
four types of landscapes. Finally, the largest average increase
in the cost occurs when the minimum survival probability, b,
is equal to 0.90 (Fig. 4). Indeed, the average increase in cost
for the four types of landscapes, when uncertainty is defined
by e=20 and r=100, is between approximately 61 and 77 %.

7 Taking into Account Additional Constraints

The fact of being able to formulate the search for an
optimal robust reserve by a mixed-integer linear pro-

gram, that is to say by the program (PR2), provides
an easy way to take into account additional constraints
on the selection of sites such as, for example, spatial
constraints. This can be done by introducing into the
program (PR2) some linear constraints—or some con-
straints which can be linearized without too much dif-
ficulty—on the variables xij. Of course, the mathemati-
cal program obtained will be more or less easy to solve
depending on the additional constraints that one wishes
to consider. For example, to avoid getting too
fragmented reserves (see, e.g., [7, 8, 10, 13, 14, 19,
21, 37, 39]), we can search for compact reserves. Many
measures have been proposed to evaluate the compact-
ness of a reserve. Here, we have chosen to measure it
by the perimeter-to-area ratio (see, e.g., [20, 26]). So,
we only consider reserves with perimeter-to-area ratio
less than or equal to a certain value ρ. The area of the
reserve, A(x), is simply expressed by the linear function
a∑(i,j)∈Mxijand its perimeter by the quadratic function Π

xð Þ ¼ 4l ∑
i; jð Þ∈M

xi j−2l ∑
i; jð Þ∈M ; j≠n

xi jxi jþ1−2l ∑
i; jð Þ∈M ; i≠m

xi jxiþ1; j

where a is the area of a site and l is the side length
[39]. Here, we assume that the side length, l, of a site is
equal to one unit length and therefore that its area, a, is
equal to one unit area. The compactness constraint is
therefore expressed by the inequality Π(x)≤ρA(x) where
ρ is a fixed parameter. The problem of looking for a
robust and compact reserve of minimal cost, ensuring
that each species has a minimum survival probability,
can therefore be formulated by the mixed-integer linear
program (PR3) obtained from (PR2) by adding the
compactness constraint (3.1).

PR3ð Þ

min
X
i; jð Þ∈M

ci jxi j

s:t:

2:1ð Þ ; 2:2ð Þ ; 2; 3ð Þ ; 2; 4ð Þ ; 2; 5ð Þ
4
X
i; jð Þ∈M

xi j−2
X
i; jð Þ∈M
j≠n

xi jxi jþ1−2
X
i; jð Þ∈M
i≠m

xi jxiþ1; j≤ρ
X
i; jð Þ∈M

xi j 3:1ð Þ
�������

8>>>>>><
>>>>>>:

Note that a classical technique provides easily a
linearization of the constraint (3.1). In effect, it is suf-
ficient to substitute the variable wij

1 to the product xijxij+1, the
variable wij

2 to the product xijxi+1,j and to add the supplemen-
tary constraints wij

1≤xij, wij
1≤xij+1, wij

2≤xij, and wij
2≤xi+1,j. We

will call (PR4) the program (PR3) thus linearized. We
have taken up the landscape described in Fig. 1 (Section 5)
when the different parameter values are set as follows:
b=0.9, e=10, r=20. In this case, the optimal robust reserve

costs 77 (Table 3) and is described by Fig. 2e. We have solved
this instance again, but this time considering the compactness
constraint (3.1), for three values of the compactness
parameter, ρ=1, ρ=2, and ρ=3. The optimal reserves
obtained cost 159, 90, and 77, respectively, and are
described in Fig. 6. The cost of the optimal robust reserve is
heavily dependent on the compactness constraint. Figure 6
shows that this constraint also has great influence on the
structure of the reserve.

Table 11 Cost of the optimal robust reserve for landscapes of type 8
when r=30, e=10, and b=0.90

Cost if no
uncertainty

Cost with
uncertainty defined
by r=30 and e=10

Increase
in the
cost (%)

Average
increase in
the cost (%)

Seed n°1 119 188 57.98 55.26
Seed n°2 90 147 63.33

Seed n°3 114 180 57.89

Seed n°4 124 183 47.58

Seed n°5 99 148 49.49
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We also studied the resolution of (PR4) for the four
types of landscapes 1, 2, 3, and 4, defined at the
beginning of “Section 6”, and when b=0.9. The results
relating to the cost of uncertainty when the compactness
constraint is defined by ρ=2 are shown in Fig. 7, and
the results when there is no compactness constraint are
shown in Fig. 8.

Figures 7 and 8 correspond to the average results of 100
instances (four types of landscapes, five values that define the
uncertainty, and five values for the seed of the random
number generator). Without the compactness constraint, the

average cost of the optimal robust reserve is equal to about
218 while with the compactness constraint, that cost becomes
equal to about 274. The considered compactness constraint
therefore increases the cost of the optimal robust reserve by
about 26 %.We can see that the shape of the four curves when
there is a compactness constraint (Fig. 7) does not differ
greatly from the shape of the four curves when there is no
compactness constraint (Fig. 8). As might be expected, the
compactness constraint makes the problem more difficult.
Indeed, without this constraint, the average time to resolve
an instance (resolution of PR2) is about 2.5 s while with the

(a) 
1,20,10,9.0 ==== ρreb

Optimal cost : 159    

(b)
2,20,10,9.0 ==== ρreb

Optimal cost : 90    

(c)
3,20,10,9.0 ==== ρreb

Optimal cost : 77    

Fig. 6 Optimal robust reserves
for one instance of Table 3 when
ρ=1, 2, and 3
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Fig. 7 Average percentage
increase in costs for the four types
of landscapes of size 15×15when
b=0.90 and ρ=2
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constraint (resolution of PR4) that time becomes equal to
about 104 s.

8 Conclusions

We considered the problem of defining a nature reserve to
protect a set of predetermined species. For each species and
for each site, we know the survival probability of this species
in this site and we assume that these probabilities are inde-
pendent. The aim is to determine a reserve providing to each
species a survival probability greater than or equal to a certain
threshold value. This problem has already been studied in the
literature of conservation biology, but in this study, we as-
sume, realistically, there may be errors more or less important
in estimating the different survival probabilities. However, we
limit the number of possible errors for each species by a
parameter eventually depending on the species. We show
how to determine a robust reserve of minimum cost, i.e., a
reserve which ensures that the survival probability of each
species exceeds a certain threshold regardless the errors made
in the estimation of the survival probabilities in each site. We
show that this optimal reserve can be determined by solving a
mixed-integer linear program. The approach is therefore rela-
tively simple to implement since it only requires the use of a
standard mathematical programming solver. It also has the
advantage that the model can be easily modified which is
generally not the case when constructing a specific algorithm.
For example, we show how to design a compact and
robust optimal reserve by simply introducing an addi-
tional constraint in the previous mixed-integer linear
program. We illustrate in detail the approach on a small
hypothetical landscape. The resulting reserves are sub-
stantially different from that which would be produced
if the possible errors on the survival probabilities were
ignored. Finally, we present and analyze the results
achieved by applying the proposed approach to many
large hypothetical landscapes.
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